Practice Final Exam

CAS CS 132: Geometric Algorithms

December 9, 2024

Name:

BUID:

- \triangleright You will have approximately 120 minutes to complete this exam. Make sure to read every question, some are easier than others.
- $\triangleright\,$ Please do not remove any pages from the exam.
- \triangleright If there is a solution box for a problem, please put your *final* solution in the box and nothing else. You should do your work outside of the box.
- ▷ We will not look at any work on the pages marked "*This page is intentionally left blank.*" You should use these pages for scratch work.

1 Interpreting Matrices

Α.

$$A \sim \begin{bmatrix} 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Find a general-form solution for the equation $A\mathbf{x} = \mathbf{0}$. Fill in your solution by writing "is free" or "= *expression*" next to each variable below.

Solution. x_1 x_2 x_3 x_4 B. Find a basis of $\mathsf{Nul}\,A,$ where A is the matrix from the previous part.

$$B = \begin{bmatrix} 2 & -3 & 1 & -4 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

C. Determine the characteristic polynomial of B. Your answer should be given in fully factored form.

D. Is the matrix B from the previous part invertible? Circle your answer below and provide justification.

Solution.

 O
 Yes

 O
 No

 Justification.

2 Roots of Matrices

Suppose A is a 2×2 matrices such that

$$A\begin{bmatrix} -3\\1 \end{bmatrix} = \begin{bmatrix} 3\\-1 \end{bmatrix}$$
 and $A\begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} -16\\8 \end{bmatrix}$

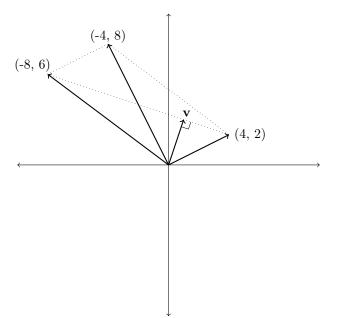
A. Determine A by first determining a diagonalization of A (that is, find matrices P and D such that $A = PDP^{-1}$). Show your work and fill in your answer below.

Solution. $P = \\ D = \\ P^{-1} = \\ A =$

B. Find a matrix B such that BBB = A. Show your work and fill in your answer below. *Hint:* B is diagonalizable.

$$B =$$

3 Analytic Geometry



This picture is not be to scale.

A. Write down the two 2×2 matrices A and B which transforms the unit square into the parallelogram formed by (0,0), (4,2), (-4,8) and (-8,6). Recall that the unit square is the set of points in

 $\{(x,y): 0 \le x \le 1 \text{ and } 0 \le y \le 1\}$

$$A = B =$$

B. Compute the determinants of A and B. For partial credit, write down the general equation for the determinant of a 2×2 matrix.

Solution. $\det A = \qquad \qquad \det B =$

C. Find the distance between (-8, 6) and (4, 2).

Find the length of the vector \mathbf{v} , whose endpoint is on the line segment between (-8, 6) and (4, 2) and which forms a 90° angle with that line segment.

Use these values to determine the area of the triangle formed by (0,0), (4,2) and (-8,6). Show your work and fill in your answer below.

Solution.

 $\mathsf{dist}((-8,6),(4,2)) =$

 $\|\mathbf{v}\| =$

area =

4 True/False Questions

A. For any two symmetric matrices A and B, if AB is defined then $(AB)^T = A^T B^T$.

⊖ True

- ⊖ False
- B. For any $n \times n$ orthogonal matrix A (that is, the columns of A are orthonormal) and any vector $\mathbf{v} \in \mathbb{R}^n$, it must be that $||A\mathbf{v}|| = ||A^2\mathbf{v}||$.

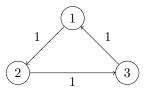
⊖ True

○ False

- C. For any $m \times n$ matrix A, there is an eigenbasis of \mathbb{R}^n for $A^T A$.
 - ⊖ True
 - False
- D. For any matrix A and quadratic form $Q(\mathbf{x})$, if $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, then A is symmetric.
 - ⊖ True
 - False
- E. For any set X of vectors in \mathbb{R}^n and any vector $\mathbf{v} \in \mathbb{R}^n$, if X is linearly dependent and $\mathbf{v} \in X$, then \mathbf{v} can be written as a linear combination of the vectors in X not including \mathbf{v} .
 - ⊖ True
 - False
- F. For any two matrices A and B, if A + B is defined then A + B = B + A.
 - ⊖ True
 - \bigcirc False
- G. For any square matrix A, if $A\mathbf{x} = \mathbf{b}$ has a unique least squares solution for each choice of \mathbf{b} , then A is invertible.
 - \bigcirc True
 - False

5 Stochastic Matrices

A. Consider the following state diagram.



If an edge between two states is not present, the probability of transitioning in a single step is 0. For example, the probability of transitioning from state 3 to state 2 in a single step is 0.

Write down the transition matrix T for the above diagram. You should write T such that the *i*th column of T corresponds to the transitions from state *i*. (In the following parts, T refers to the matrix you determined here.)

Solution.

T =

B. Compute T^2 , T^3 and T^{2023} . Write your answer below.

$$T^2 =$$

 $T^3 =$
 $T^{2023} =$

C. Is T regular?	Circle your answer	below and provide justifica	ation. For partial credit,	define regularity.
--------------------	--------------------	-----------------------------	----------------------------	--------------------

Solution. O Yes O No Justification. D. Does T have a unique steady-state distribution? Circle your answer below and provide justification.

Solution.
O Yes
O No
Justification.

6 Singular Values

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 3 & 1 & 1 & -2 \end{bmatrix}$$

Determine the singular values of the above matrix.