Geometric Algorithms
Lecture 1

Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

Keywords

Systems of linear equations Solutions Coefficient matrix Augmented matrix Elimination and Back-substitution Replacement, interchange, scaling Row Equivalence (In)consistency

Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

Motivation

- 1. Lines and line intersections
- 2. An example from chemistry

Motivation

- 1. Lines and line intersections
- 2. An example from chemistry

Lines (Slope-Intercept Form)

$$y = mx + b$$

Lines (Slope-Intercept Form)

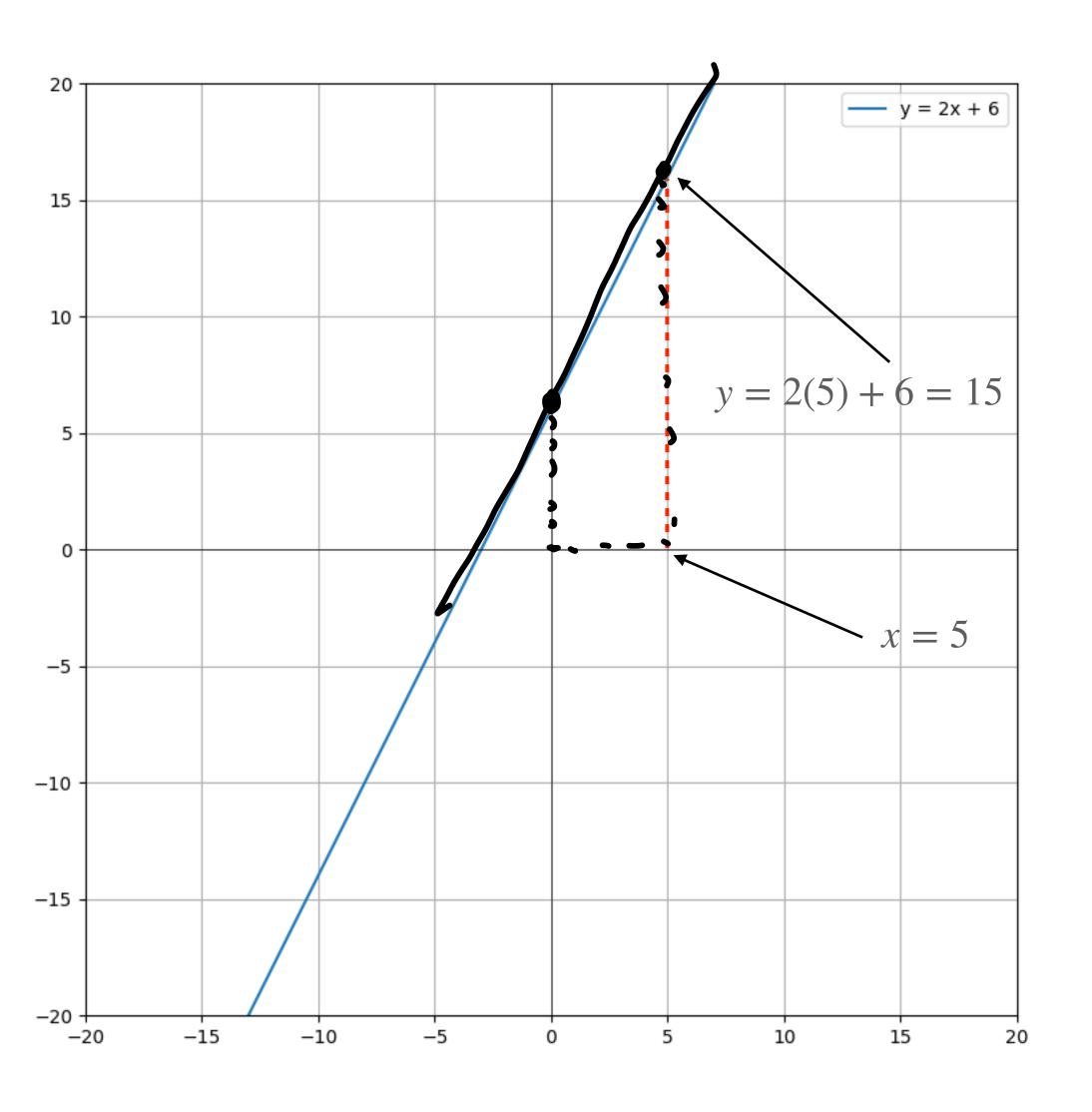
$$y = mx + b$$
slope y-intercept

Lines (Slope-Intercept Form)

$$y = mx + b$$
slope y-intercept

Given a value of x, I can compute a value of y

Lines (Graph)



$$y = 2(a) + 6$$

$$y = 6$$

$$ax + by = c$$

$$ax + by = c$$

$$x-intercept: \frac{c}{a}$$

$$ax + by = c$$

$$x-intercept: \frac{c}{a}$$

$$y-intercept: \frac{c}{b}$$

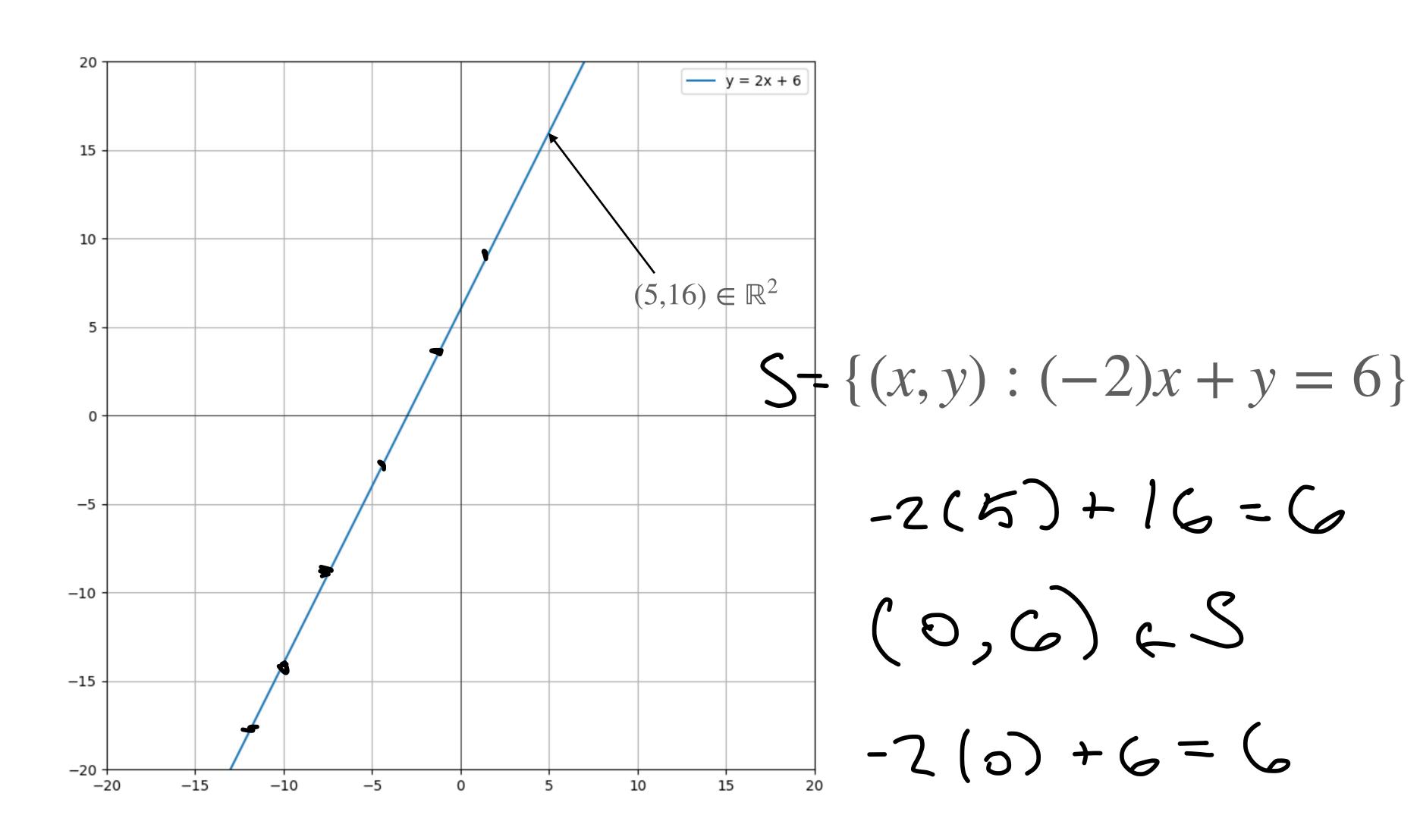
$$ax + by = c$$

$$x-intercept: \frac{c}{a}$$

$$y-intercept: \frac{c}{b}$$

What values of x and y make the equality hold?

Lines (Graph)



Lines

slope-int \rightarrow general

$$(-m)x + y = b$$

general → slope-int

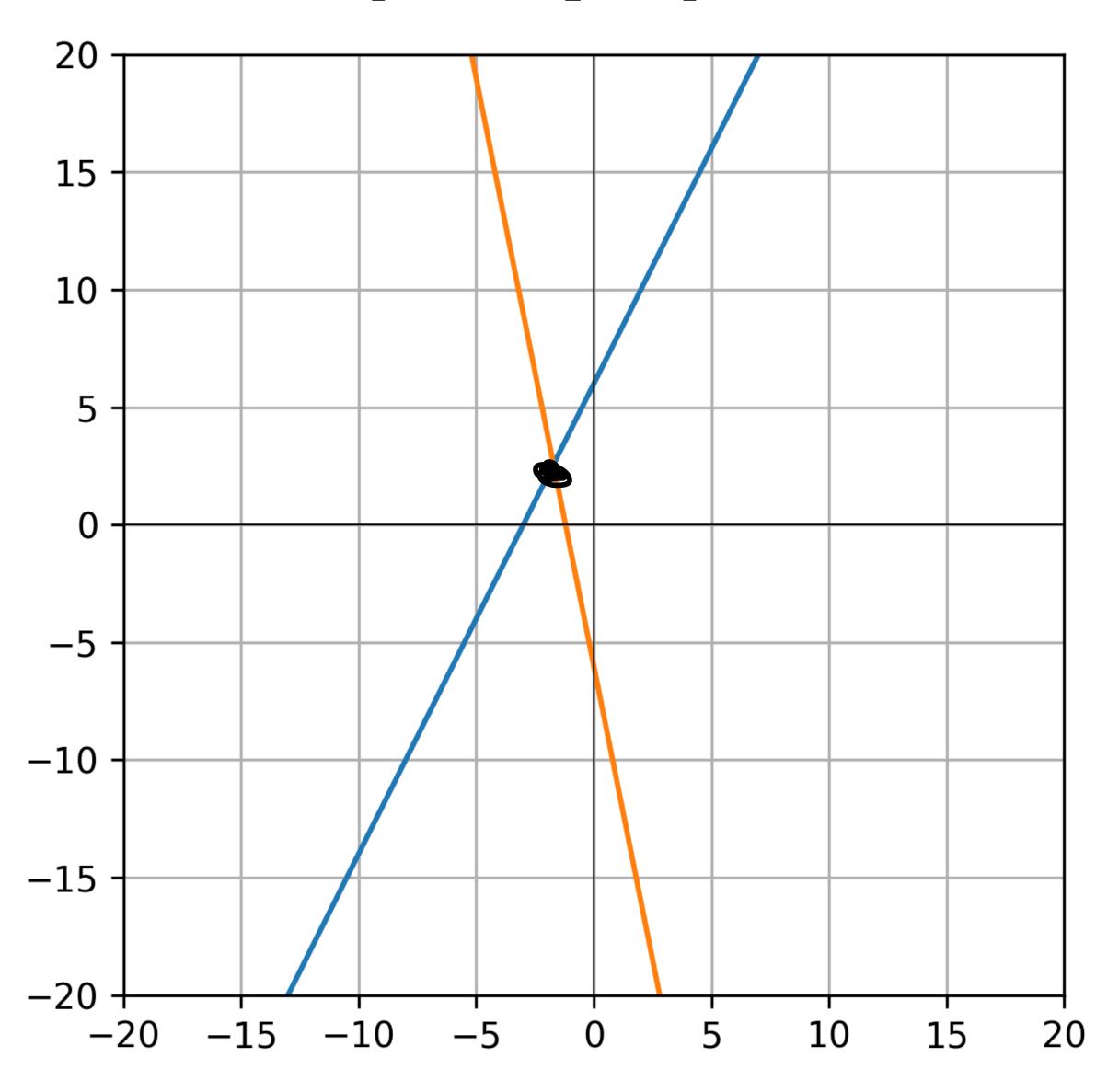
$$y = \left(\frac{-a}{b}\right)x + \frac{c}{b}$$

Line Intersection

$$y = m_1 x + b_1$$
$$y = m_2 x + b_2$$

Question. Given two lines, where do they intersect?

Line Intersection (Graph)



Line Intersection (Alternative)

$$a_1x + b_1y = c_1$$

 $a_2x + b_2y = c_2$

Question. Given two (general form) lines, what values of x and y satisfy **both** equations?

Line Intersection (Alternative)

$$a_1x + b_1y = c_1$$

 $a_2x + b_2y = c_2$

Question. Given two (general form) lines, what values of x and y satisfy **both** equations?

This is the same question

Motivation

- 1. Lines and line intersections
- 2. An example from chemistry

Example: Balancing Chemical Equations

$$C_6H_{12}O_6 \rightarrow C_2H_5OH + CO_2$$
Glucose Ethanol

Example: Balancing Chemical Equations

$$\begin{array}{c} C_6H_{12}O_6 \rightarrow C_2H_5OH + CO_2 \\ \text{Glucose} \end{array}$$
 Ethanol

We want to know how much ethanol is produced by fermentation (for science)

Example: Balancing Chemical Equations

We want to know how much ethanol is produced by fermentation (for science)

The number of atoms has to be preserved on each side of the equation

Balancing Chemical Equations

$$\alpha C_6 H_{12} O_6 \rightarrow \beta C_2 H_5 O H + \gamma C O_2$$
Glucose Ethanol

Balancing Chemical Equations

$$\alpha C_6 H_{12}O_6 + \beta C_2 H_5 O H + \gamma C O_2$$
Ethanol

$$6\alpha = 2\beta + \gamma \qquad (C)$$

$$12\alpha = 6\beta \tag{H}$$

$$6\alpha = \beta + 2\gamma \qquad (O)$$

Balancing Chemical Equations

$$\alpha C_6 H_{12} O_6 \rightarrow \beta C_2 H_5 O H + \gamma C O_2$$
 Glucose Ethanol

$$6\alpha - 2\beta - \gamma = 0$$
 (C)
 $12\alpha - 6\beta = 0$ (H)
 $6\alpha - \beta - 2\gamma = 0$ (O)

Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

Defining Systems of Linear Equations

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Defining Systems of Linear Equations

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Definition. A *linear equation* in the variables $x_1, x_2, ..., x_n$ is an equation of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where $a_1, a_2, ..., a_n, b$ are real numbers ($\mathbb R$)

Definition. A *linear equation* in the variables $x_1, x_2, ..., x_n$ is an equation of the form

coefficients

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where $a_1, a_2, ..., a_n, b$ are real numbers (\mathbb{R})

Definition. A *linear equation* in the variables $x_1, x_2, ..., x_n$ is an equation of the form

unknowns

$$a_1x_1 + a_2x_2 + ... + a_nx_n = b$$

where $a_1, a_2, ..., a_n, b$ are real numbers (\mathbb{R})

Examples

2x+3y+4z=5
2x+4z=5-3y

$$Tx+Cy+z=eV$$

 $Tx+Cy+z=eV$
 $Tx+Cy+z=eV$
 $Tx+Cy+z=eV$
 $Tx+Cy+z=eV$

$$\int x + y = 5 \times$$

$$x^{2} + y = 5 \times$$

$$x = 5 \times$$

$$x = 5 \times$$

Linear Equations (Point sets)

Linear equations describe point sets:

$$\{(s_1, s_2, ..., s_n) \in \mathbb{R}^n : a_1 s_1 + a_2 s_2 + ... + a_n s_n = b\}$$

Linear Equations (Point sets)

R: rumber line R: plane

R. Plance
R. Space

Linear equations describe *point sets*: p'': 771

$$\{(s_1, s_2, ..., s_n) \in \mathbb{R}^n : a_1 s_1 + a_2 s_2 + ... + a_n s_n = b\}$$

The collections of numbers such that the equation holds.

tuples

2(1)+3(1)+4(6)=5

$$2x + 3y + 4z = 5$$

 $\{(1, 1, 0), (1/2, 0, 1), ...\}$

If a 2D linear equation is a *line* then a 3D linear equation is...

If a 2D linear equation is a *line* then a 3D linear equation is...

Not a line...

If a 2D linear equation is a *line* then a 3D linear equation is...

If a 2D linear equation is a *line* then a 3D linear equation is...

A plane(!)

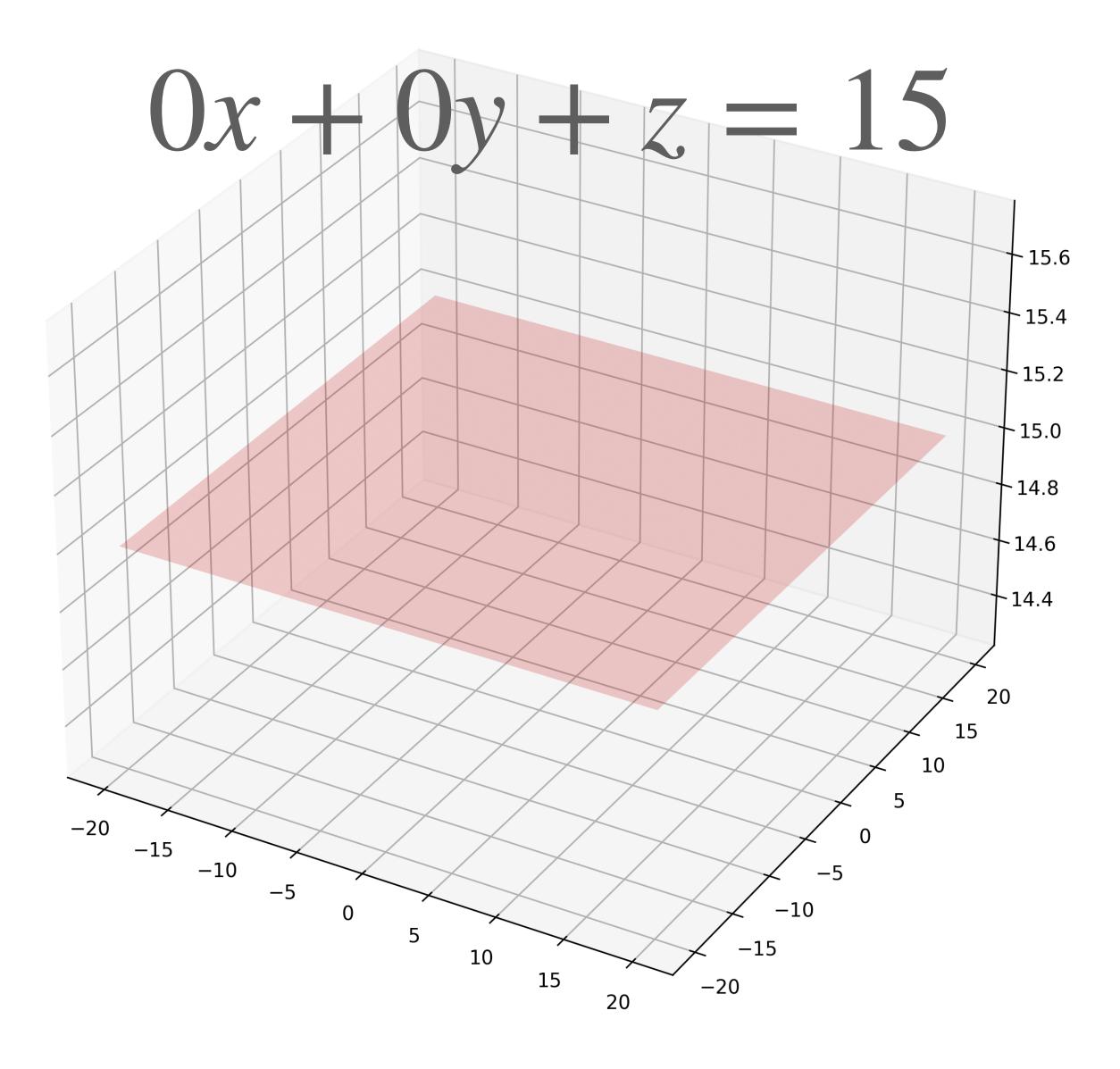
demo

$$0x + 0y + z = 5$$

This equation describes the solution set

$$\{(x, y, z) : z = 5\} \subset \mathbb{R}^3$$

so x and y can be whatever we want



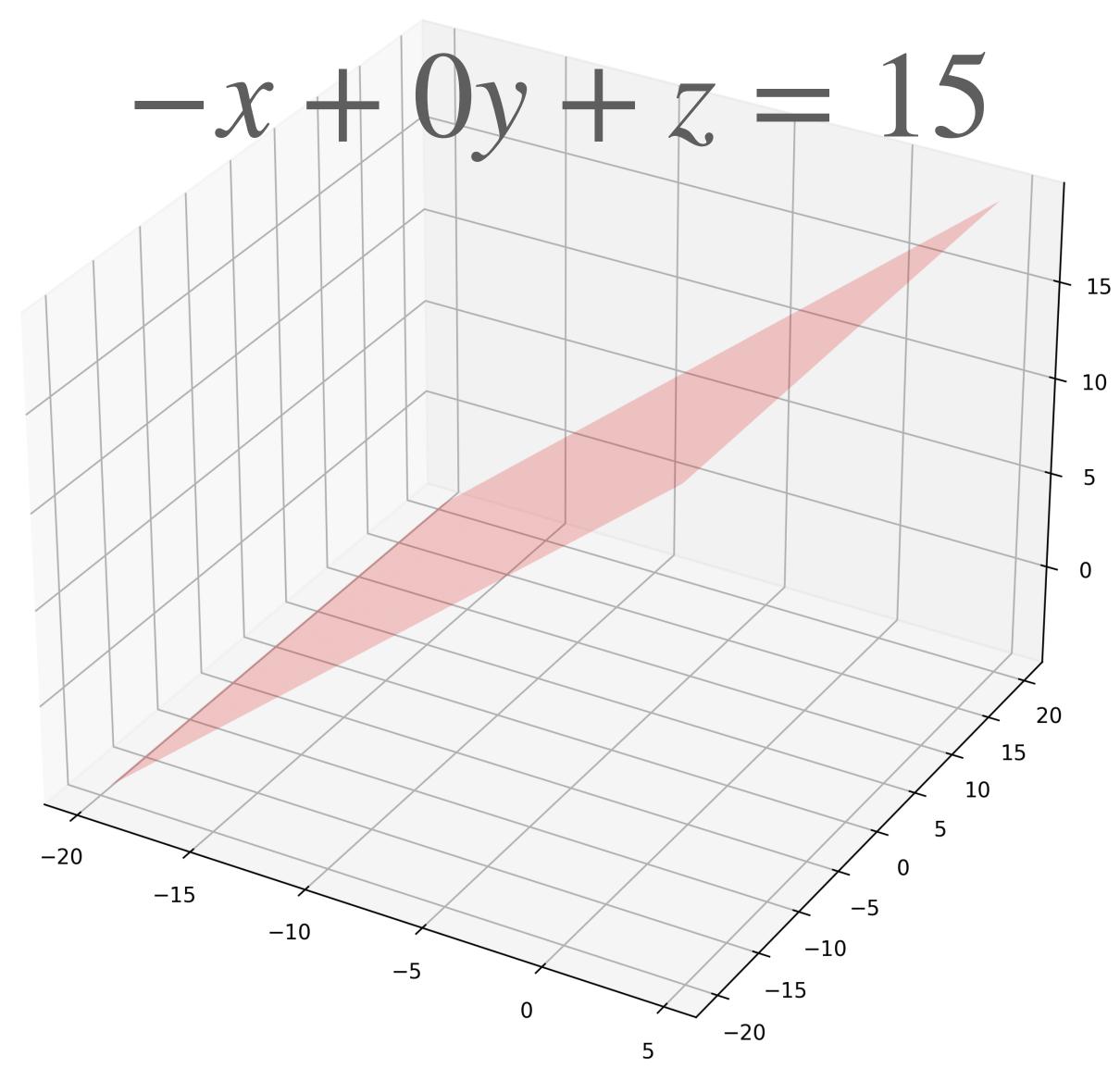
demo

$$-x + 0y + z = 5$$
 $-x + 2 = 6$

This equation describes the point set

$$\{(x, y, z) : z = x + 5\}$$

so y can be whatever we want



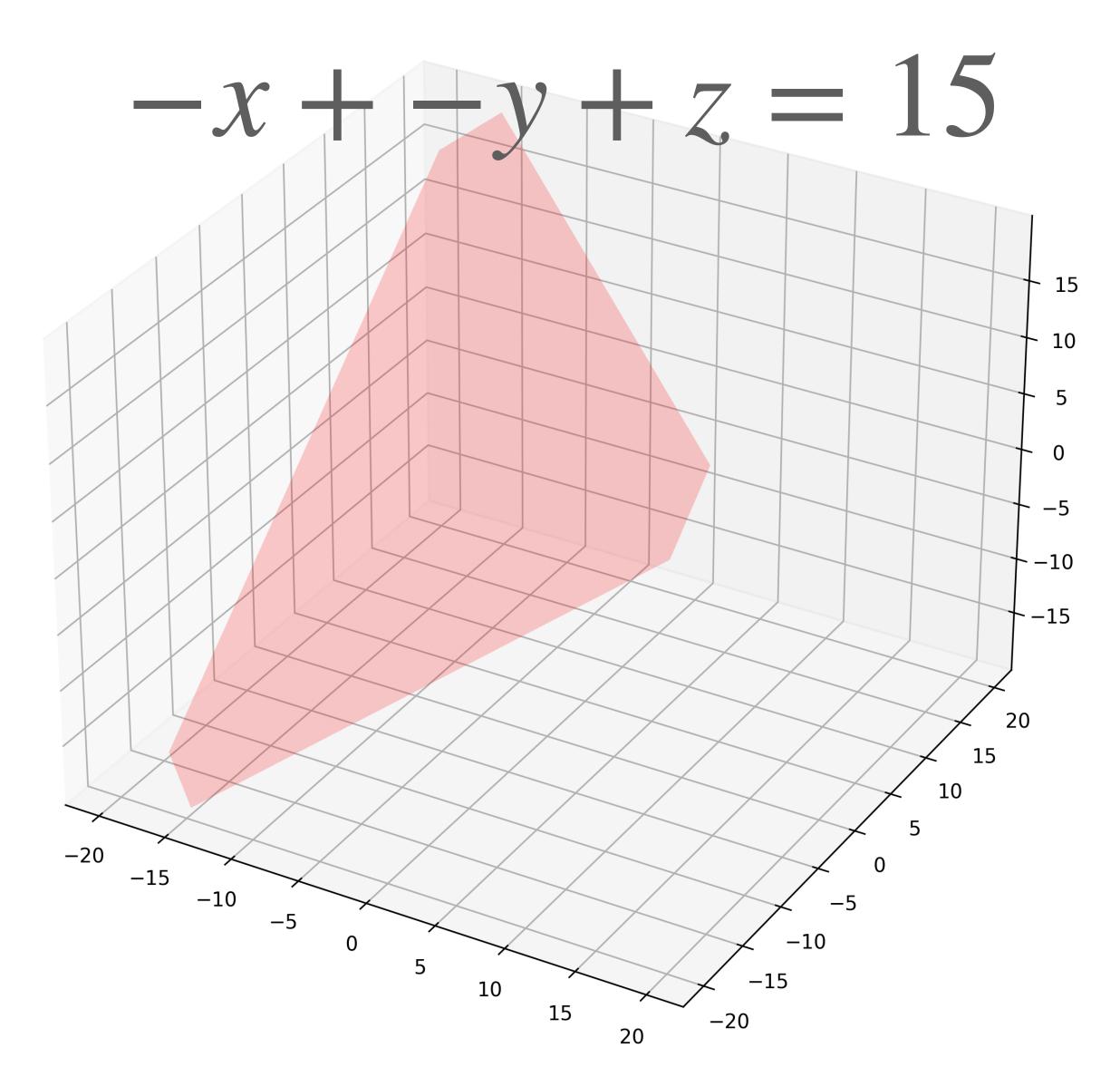
demo

$$-x + -y + z = 5$$

This equation describes the solution set

$$\{(x, y, z) : z = x + y + 5\}$$

so all variables depend on each other



demo

XYZ-intercepts

$$ax + by + cz = d$$

Just like with lines, we can define

x-intercept:
$$\frac{d}{a}$$
 y-intercept: $\frac{d}{b}$ z-intercept: $\frac{d}{c}$

These three points define the plane

Question

I just lied.

Give an example of a linear equation that defines a plane with an x-intercept and y-intercept but no z-intercept

Answer

any equation

vith 0 2-coefficient

and nonzero x and

y-wef.

after three dimensions, we can't visualize planes

after three dimensions, we can't visualize planes

the point set of a linear equation is called a *hyperplane*

after three dimensions, we can't visualize planes

the point set of a linear equation is called a *hyperplane*

Theme of the course: Hyperplanes "behave" like 3D planes in many respects

Defining Systems of Linear Equations

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Systems of Linear Equations

Definition. A *system of linear equations* is just a collection of linear equations <u>over the same variables</u>.

Systems of Linear Equations

Definition. A *system of linear equations* is just a collection of linear equations <u>over the same variables</u>.

Definition. A *solution* to a system is a point that satisfies all its equations <u>simultaneously</u>

linear system:

$$x + 2y = 1$$

$$-x - y - z = -1$$

$$2x + 6y - z = 1$$

$$3+2(-1)=1$$
 $-3-(-1)-(-1)=-1$
 $2(4)+6(-1)-(-1)=1$

solution: (3, -1, -1)

System of Linear equations (General-form)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

System of Linear equations (General-form)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Does a system have a solution?
How many solutions are there?
What are its solutions?

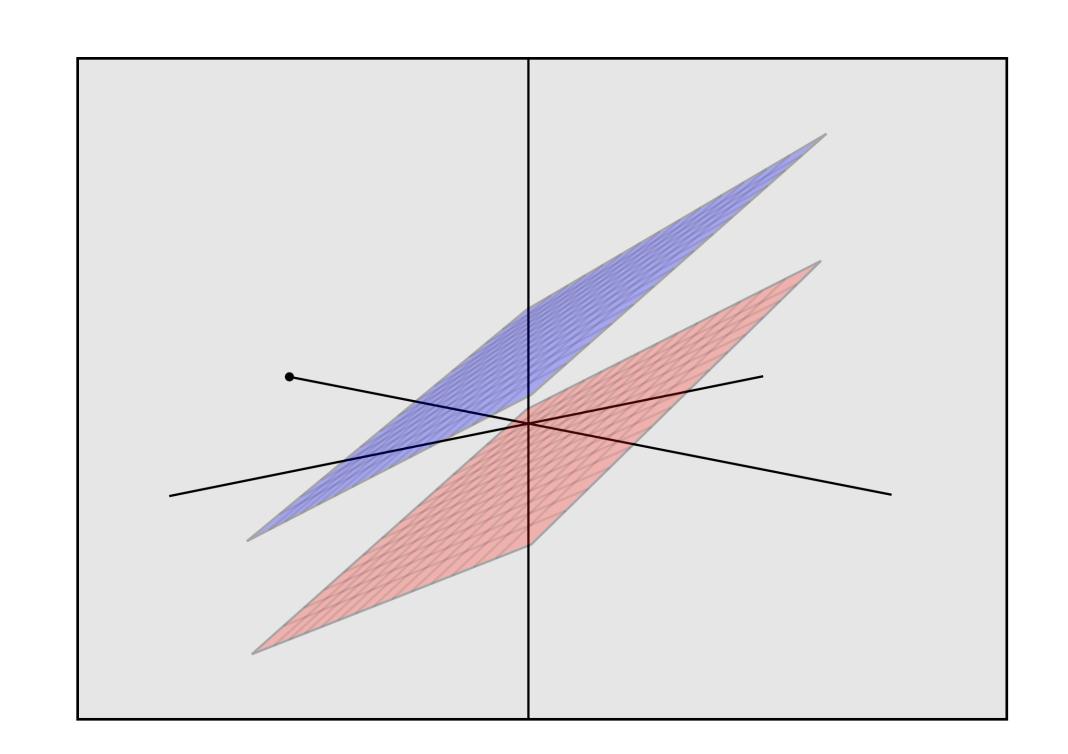
Defining Systems of Linear Equations

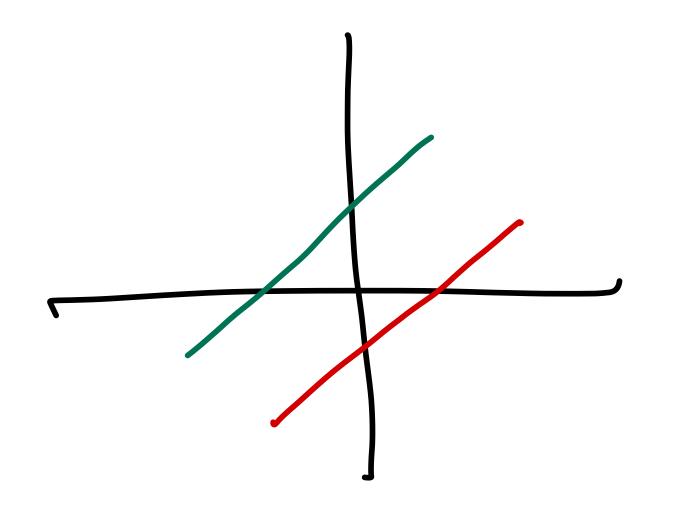
- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Consistency

Definition. A system of linear equations is *consistent* if it has a solution

It is *inconsistent* if it has <u>no</u> solutions





Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

These are the only options

Defining Systems of Linear Equations

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Matrix Representations

always writing down the unknowns is exhausting

we will write down linear systems as matrices, which are just 2D grids of numbers with <u>fixed</u> width and height

Matrix Representations

always writing down the unknowns is exhausting

we will write down linear systems as matrices, which are just 2D grids of numbers with <u>fixed</u> width and height

a matrix is just a representation

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

augmented matrix

```
\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}
```

coefficient matrix

$$6\alpha - 2\beta - \gamma = 0$$

$$12\alpha - 6\beta = 0$$

$$6\alpha - \beta - 2\gamma = 0$$
(C)
(C)
(H)

$$\begin{bmatrix} 6 & -2 & -1 & 0 \\ 12 & -6 & 0 & 0 \\ 6 & -1 & -2 & 0 \end{bmatrix}$$

More Examples

Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

- 1. Some simple examples
- 2. Elimination and Back-Substitution
- 3. Row Equivalence

- 1. Some simple examples
- 2. Elimination and Back-Substitution
- 3. Row Equivalence

- 1. Some simple examples
- 2. Elimination and Back-Substitution
- 3. Row Equivalence

We'll only consider systems with unique solutions for now.

$$2x + 3y = -6$$

 $4x - 5y = 10$

$$2x + 3y = -6$$
$$4x - 5y = 10$$

The Approach

$$2x + 3y = -6$$

 $4x - 5y = 10$

The Approach

Solve for x in terms of y in EQ1

$$2x + 3y = -6$$

 $4x - 5y = 10$

The Approach

Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y

$$2x + 3y = -6$$
$$4x - 5y = 10$$

The Approach

Let's work through it...

$$2x + 3y = -6$$
$$4x - 5y = 10$$

$$2x = (-3)y - 6$$
$$4x - 5y = 10$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x

$$x = (-3/2)y - 3$$
$$4x - 5y = 10$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x

$$x = (-3/2)y - 3$$
$$4((-3/2)y - 3) - 5y = 10$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)y - 3$$
$$-6y - 12 - 5y = 10$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)y - 3$$
$$-11y = 22$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)y - 3$$
$$y = -2$$

The Approach

Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

$$x = (-3/2)(-2) - 3$$
$$y = -2$$

The Approach

$$x = 3 - 3$$

$$y = -2$$

The Approach

$$x = 0$$

$$y = -2$$

The Approach

another perspective...

$$2x + 3y = -6$$

 $4x - 5y = 10$

The Approach

Eliminate x from the EQ2 and solve for yEliminate y from EQ1 and solve for x

Let's work through it again...

$$2x + 3y = -6$$
$$4x - 5y = 10$$

- 1. Some simple examples
- 2. Elimination and Back-Substitution
- 3. Row Equivalence

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

$$x - 2y + z = 5$$

$$2y - 8z = -4$$

$$6x + 5y + 9z = -4$$

The Approach

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

The Approach

Eliminate x from the EQ2 and EQ3

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

The Approach

Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

Elimination

Back-Substitution

Let's work through it

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

$$x - 2y + z = 5$$

$$2y - 8z = -4$$

$$6(5 + 2y - z) + 5y + 9z = -4$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$30 + 12y - 6z + 5y + 9z = -4$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$17y + 3z = -34$$

The Approach

```
Eliminate x from the EQ2 and EQ3
```

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$

$$2y - 8z = -4$$

$$17(8z - 4)/2 + 3z = -34$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$17(4z - 2) - 3z = -34$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$68z - 34 - 3z = 26$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + z = 5$$

 $2y - 8z = -4$
 $71z = 0$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y + 0 = 5$$
 $2y - 8(0) = -4$
 $z = 0$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2y = 5$$

$$2y = -4$$

$$z = 0$$

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

$$x - 2(-2) = 5$$

$$y = -2$$

$$z = 0$$

The Approach

Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3 Eliminate z from EQ2 and EQ1

$$x = 1$$

$$y = -2$$

$$z = 0$$

The Approach

```
Eliminate x from the EQ2 and EQ3
Eliminate y from EQ3
Eliminate z from EQ2 and EQ1
Eliminate y from EQ1
```

$$x = 1$$

$$y = -2$$

$$z = 0$$

The Approach

```
Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3
```

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

Elimination

Back-Substitution

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

$$x = 1$$

$$y = -2$$

$$z = 0$$

$$x - 2y + z = 5$$
$$2y - 8z = -4$$
$$6x + 5y + 9z = -4$$

$$x = 1$$

$$y = -2$$

$$z = 0$$

$$(1) - 2(-2) + (0) = 5$$
$$2(-2) - 8(0) = -4$$
$$6(1) + 5(-2) + 9(0) = -4$$

$$x = 1$$

$$y = -2$$

$$z = 0$$

$$1 + 4 + 0 = 5$$
$$-4 + 0 = -4$$
$$6 - 10 + 0 = -4$$

$$x = 1$$

$$y = -2$$

$$z = 0$$

$$5 = 5$$
 $-4 = -4$
 $-4 = -4$

The solution simultaneously satisfies the equations

$$x = 1$$

$$y = -2$$

$$z = 0$$

Solving Systems of Linear Equations

- 1. Some simple examples
- 2. Elimination and Back-Substitution
- 3. Row Equivalence

Solving Systems as Matrices

How does this look with matrices?

Observation. Each intermediate step of elimination and back-substitution gives us a new linear system with the same solutions

Solving Systems as Matrices

How does this look with matrices?

Observation. Each intermediate step of elimination and back-substitution gives us a new linear system with the <u>same solutions</u>

Can we represent these intermediate steps as operations on matrices?

Let's look back at this...

$$2x + 3y = -6$$
$$4x - 5y = 10$$

Elementary Row Operations

scaling multiply a row by a number

replacement add a multiple of one row to

another

interchange switch two rows

Elementary Row Operations

scaling multiply a row by a number

replacement add a multiple of one row to

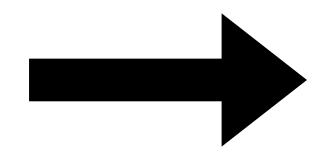
another

interchange switch two rows

These operations don't change the solutions

Scaling Example

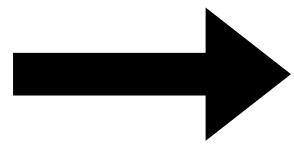
$$2x + 3y = -6$$
$$4x - 5y = 10$$



$$4x + 6y = -12$$

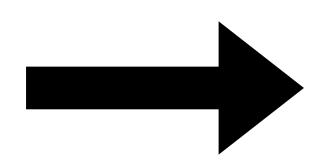
$$4x - 5y = 10$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

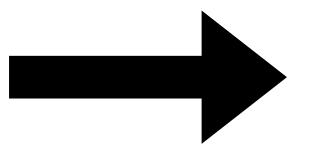


Replacement Example

$$2x + 3y = -6$$
$$4x - 5y = 10$$



$$2x + 3y = -6$$
$$6x - 2y = 4$$

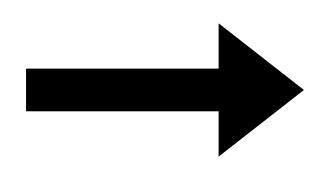


$$\begin{bmatrix} 2 & 3 & -6 \\ 6 & -2 & 4 \end{bmatrix}$$

Interchange Example

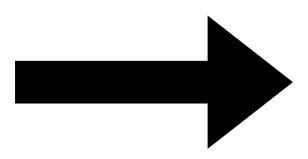
$$2x + 3y = -6$$

 $4x - 5y = 10$



$$4x - 5y = 10$$
$$2x + 3y = -6$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$



$$\begin{bmatrix} 4 & -5 & 10 \\ 2 & 3 & -6 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \qquad \begin{array}{c} R_2 \leftarrow R_2 - 2R_1 \\ \hline 0 & -11 & 22 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \qquad \begin{matrix} R_2 \leftarrow R_2 - 2R_1 \\ R_2 \leftarrow R_2/(-11) \end{matrix} \qquad \begin{matrix} \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix} \end{matrix}$$
$$\begin{matrix} \begin{bmatrix} 2 & 3 & -6 \\ 0 & 1 & -2 \end{bmatrix} \end{matrix}$$
$$\begin{matrix} \begin{bmatrix} 2 & 3 & -6 \\ 0 & 1 & -2 \end{bmatrix} \end{matrix}$$
$$\begin{matrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix} \end{matrix}$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

$$\begin{bmatrix}
2 & 3 & -6 \\
4 & -5 & 10
\end{bmatrix}$$

$$R_{2} \leftarrow R_{2} - 2R_{1}$$

$$R_{2} \leftarrow R_{2}/(-11)$$

$$R_{2} \leftarrow R_{2}/(-11)$$

$$\begin{bmatrix}
2 & 3 & -6 \\
0 & -11 & 22
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 3 & -6 \\
0 & 1 & -2
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 3 & -6 \\
0 & 1 & -2
\end{bmatrix}$$

$$\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & -2
\end{bmatrix}$$

$$R_{1} \leftarrow R_{1}/2$$

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & -2
\end{bmatrix}$$

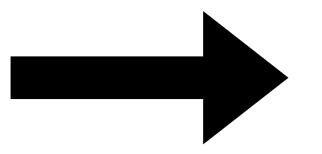
$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & -2
\end{bmatrix}$$

$$R_2 \leftarrow R_2 - 2R_1$$

$$R_2 \leftarrow R_2/(-11)$$

$$R_1 \leftarrow R_1 - 3R_2$$

$$R_1 \leftarrow R_1/2$$



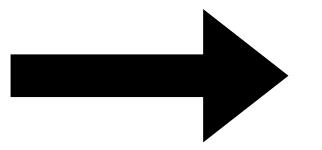
$$R_2 \leftarrow R_2 - 2R_1$$

 $R_2 \leftarrow R_2/(-11)$ elimination

 $R_1 \leftarrow R_1 - 3R_2$

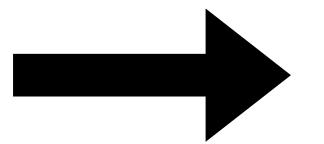
$$R_1 \leftarrow R_1/2$$

substitution



Row Equivalence

Definition. Two matrices are row equivalent if one can be transformed into the other by a sequence of row operations



$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$

Row Equivalence

Definition. Two matrices are *row equivalent* if one can be transformed into the other by a sequence of row operations

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \qquad \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$

We can compute solutions by sequence of row operations

(Open-Ended) Question

How do we know when we're done? What is the "target" matrix?

We'll get to that next time...

demo (SciPy)

Summary

Linear equations define <u>hyperplanes</u>

Systems of linear equations may or may not have <u>solutions</u>

Linear systems can be represented as <u>matrices</u>, which makes them more convenient to solve