Linear Equations Geometric Algorithms Lecture 1

CAS CS 132

Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

Keywords

Systems of linear equations Solutions Coefficient matrix Augmented matrix Elimination and Back-substitution Replacement, interchange, scaling Row Equivalence (In)consistency

Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

Motivation

Lines and line intersections An example from chemistry

Motivation

Lines and line intersections An example from chemistry

Lines (Slope-Intercept Form)

y = mx + b

Lines (Slope-Intercept Form)

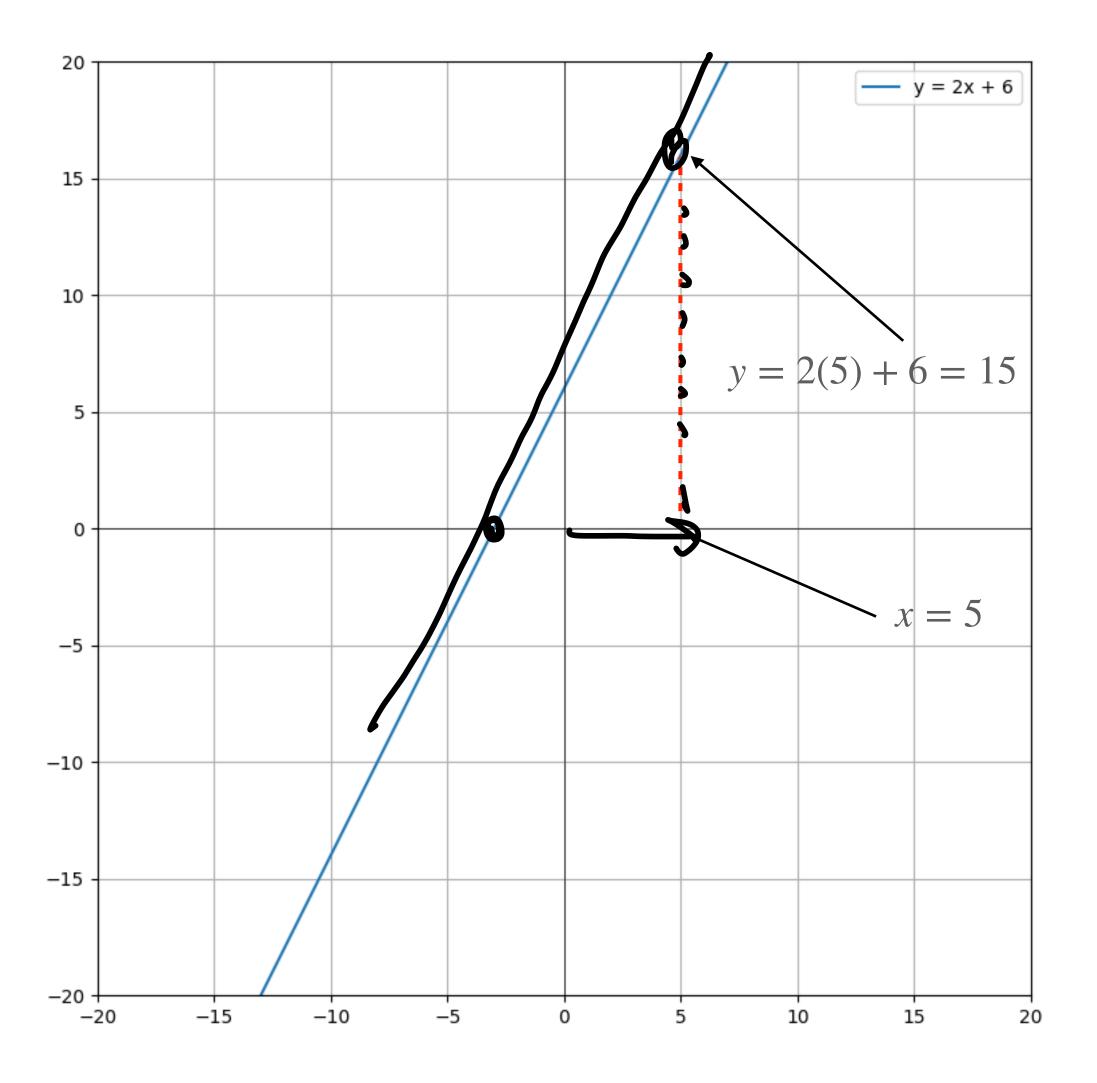
y = mx + bslope y-intercept

Lines (Slope-Intercept Form)

y = mx + bslope y-intercept

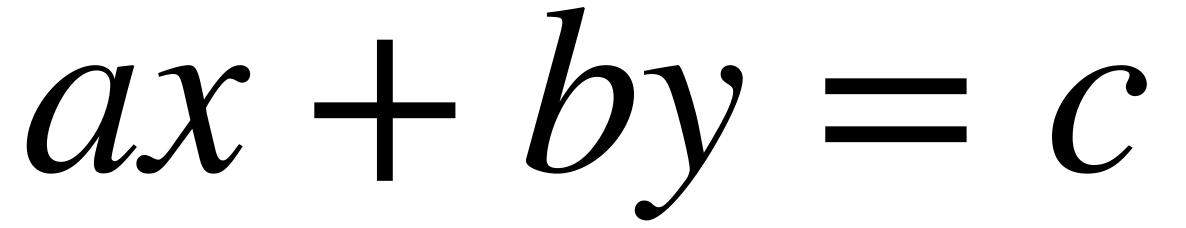
Given a value of x, I can compute a value of y

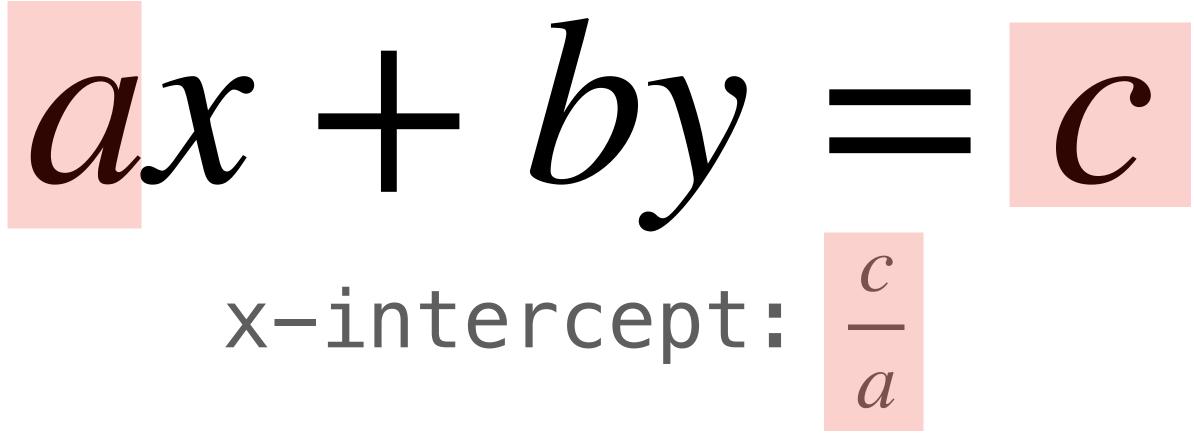
Lines (Graph)



y=Zx+6 x=-3 Y= 2(-3)+6

ケラの





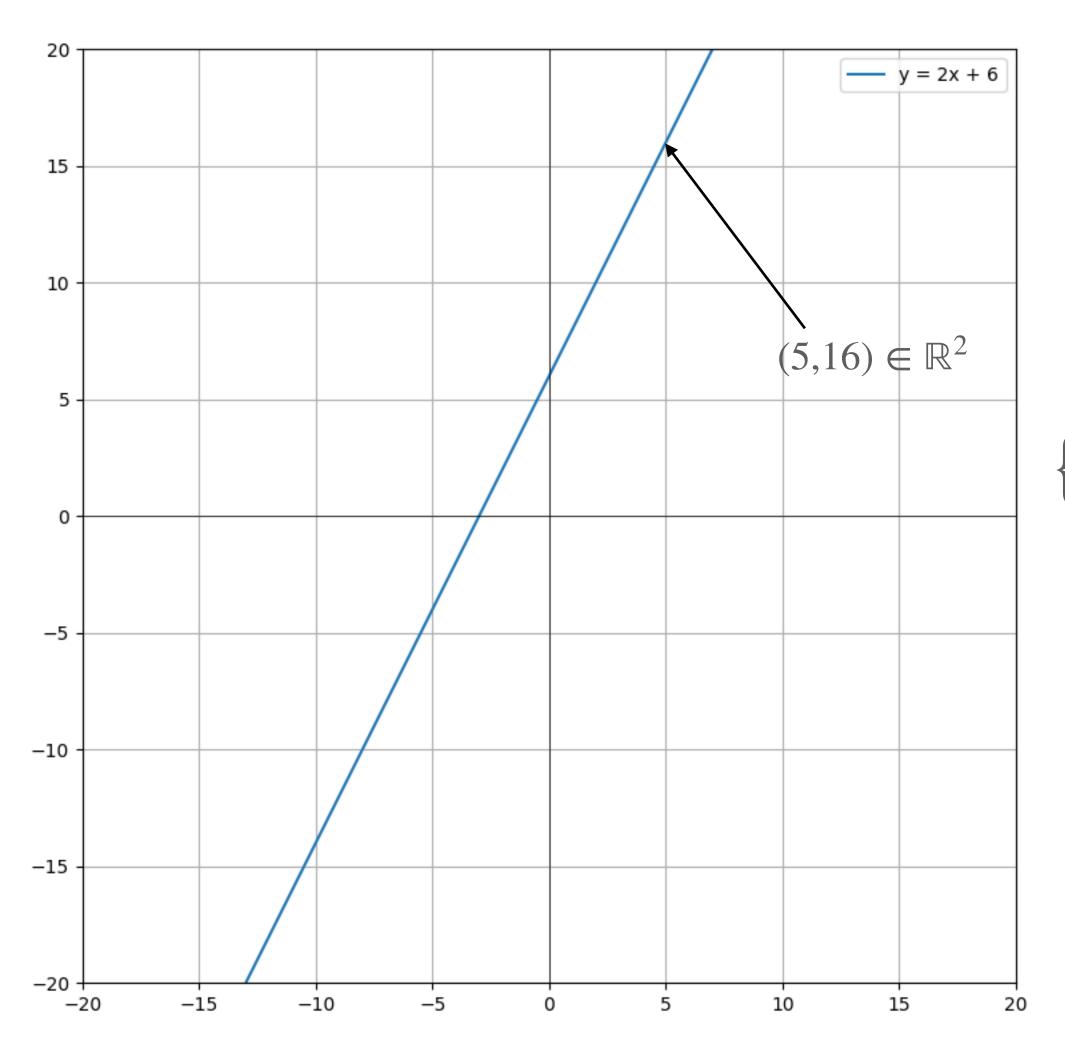
ax + by = cx-intercept: C $\boldsymbol{\mathcal{A}}$ y-intercept: $\frac{c}{b}$

ax + by = c

x-intercept: C y-intercept: $\frac{c}{b}$

What values of x and y make the equality hold?

Lines (Graph)

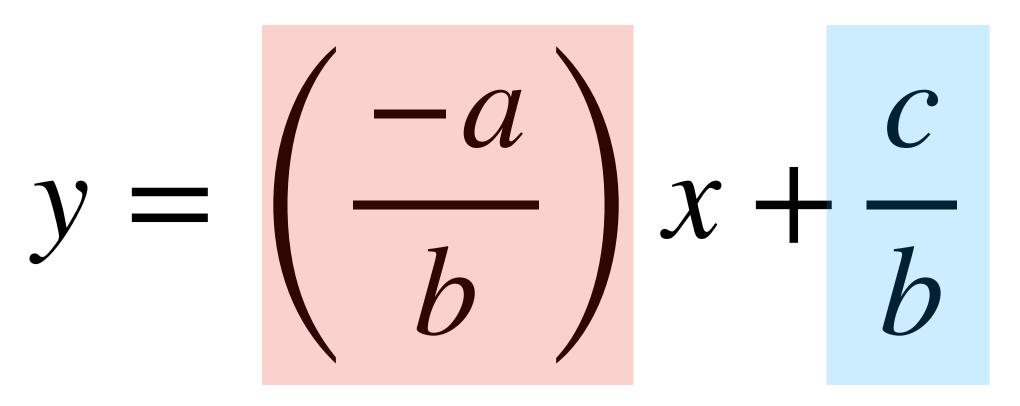


 $\{(x, y) : (-2)x + y = 6\}$

(0, 6)- 2 \bigcirc J

Lines

$slope-int \rightarrow general$ (-m)x + y = b



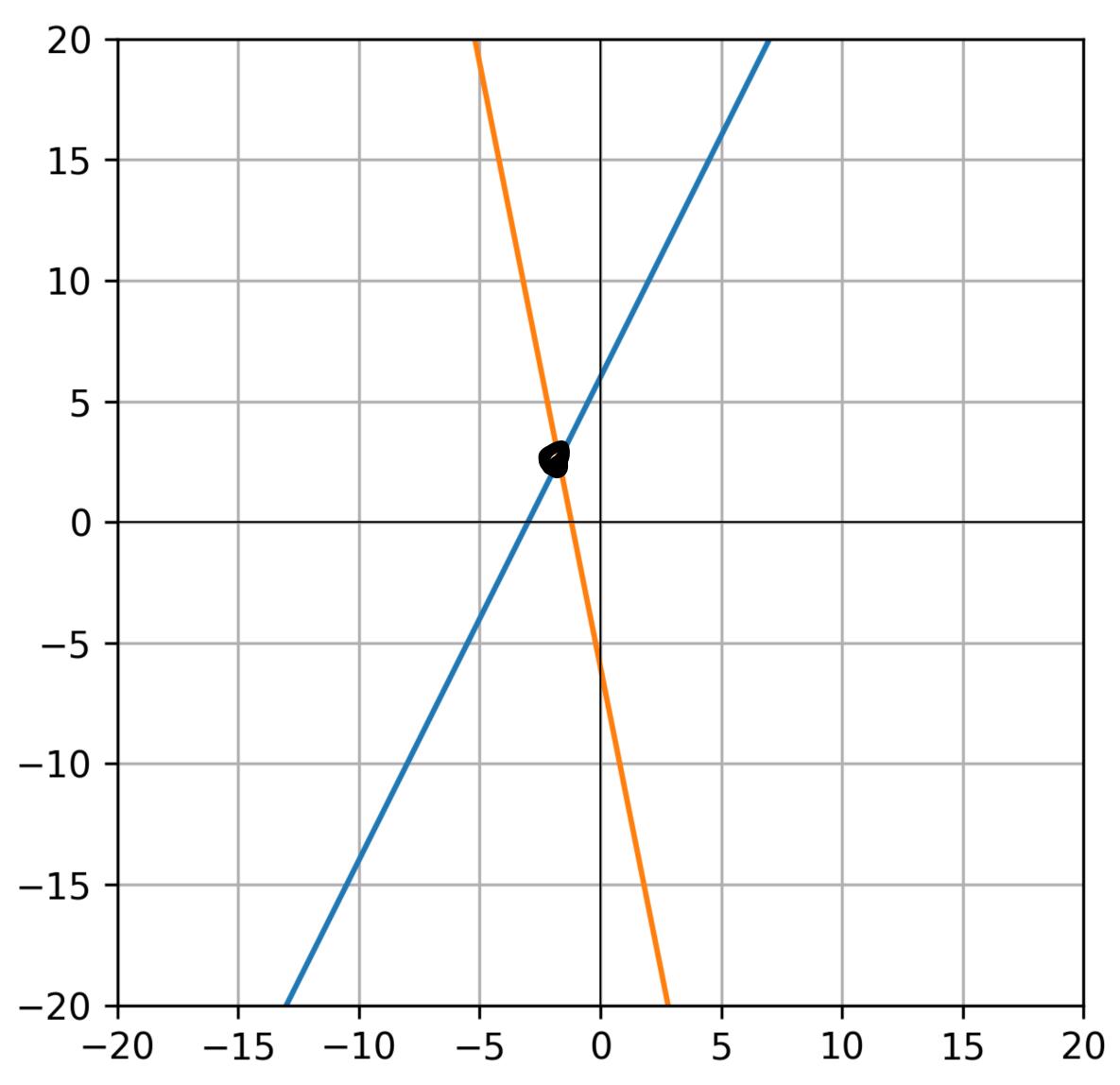
general \rightarrow slope-int

Line Intersection

Question. Given two lines, where do they intersect?

$y = m_1 x + b_1$ $y = m_2 x + b_2$

Line Intersection (Graph)



Line Intersection (Alternative)

Question. Given two (general form) lines, what values of x and y satisfy **both** equations?

$a_1 x + b_1 y = c_1$ $a_{2}x + b_{2}y = c_{2}$

Line Intersection (Alternative)

Question. Given two (general form) lines, what values of x and y satisfy **both** equations? This is the same question

$a_1 x + b_1 y = c_1$ $a_{2}x + b_{2}y = c_{2}$

Motivation

Lines and line intersections An example from chemistry

Example: Balancing Chemical Equations

Example: Balancing Chemical Equations

We want to know how much ethanol is produced by fermentation (for science)

Example: Balancing Chemical Equations

$C_{6}H_{12}O_{6} \rightarrow C_{2}H_{5}OH + C_{2}O_{2}$ Glucose Ethanol

We want to know how much ethanol is produced by fermentation (for science)

The number of atoms has to be preserved on each side of the equation

Balancing Chemical Equations

$\begin{array}{ll} \alpha C_{6}H_{12}O_{6} \rightarrow \beta C_{2}H_{5}OH + \gamma CO_{2} \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & &$

Balancing Chemical Equations

$\alpha C_6 H_{12}O_6 \rightarrow \beta C_2 H_5 OH + \gamma CO_2$ Ethanol Glucose

 $6\alpha = 2\beta + \gamma$ $12\alpha = 6\beta$ $6\alpha = \beta + 2\gamma \qquad (O)$

(C)

(H)

Balancing Chemical Equations

$\alpha C_6 H_{12}O_6 \rightarrow \beta C_2 H_5 OH + \gamma CO_2$ Glucose Ethanol

 $6\alpha - 2\beta - \gamma = 0$ $12\alpha - 6\beta = 0$ $6\alpha - \beta - 2\gamma = 0 \qquad (O)$

(C) (H)

Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

Defining Systems of Linear Equations

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Defining Systems of Linear Equations

1. Linear equations

- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Linear Equations

Definition. A linear equation in the variables x_1, x_2, \dots, x_n is an equation of the form that can be expressed in $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$

where a_1, a_2, \ldots, a_n, b are real numbers (\mathbb{R})

Linear Equations

Definition. A linear equation in the variables x_1, x_2, \ldots, x_n is an equation of the form

coefficients

$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$

where a_1, a_2, \ldots, a_n, b are real numbers (\mathbb{R})

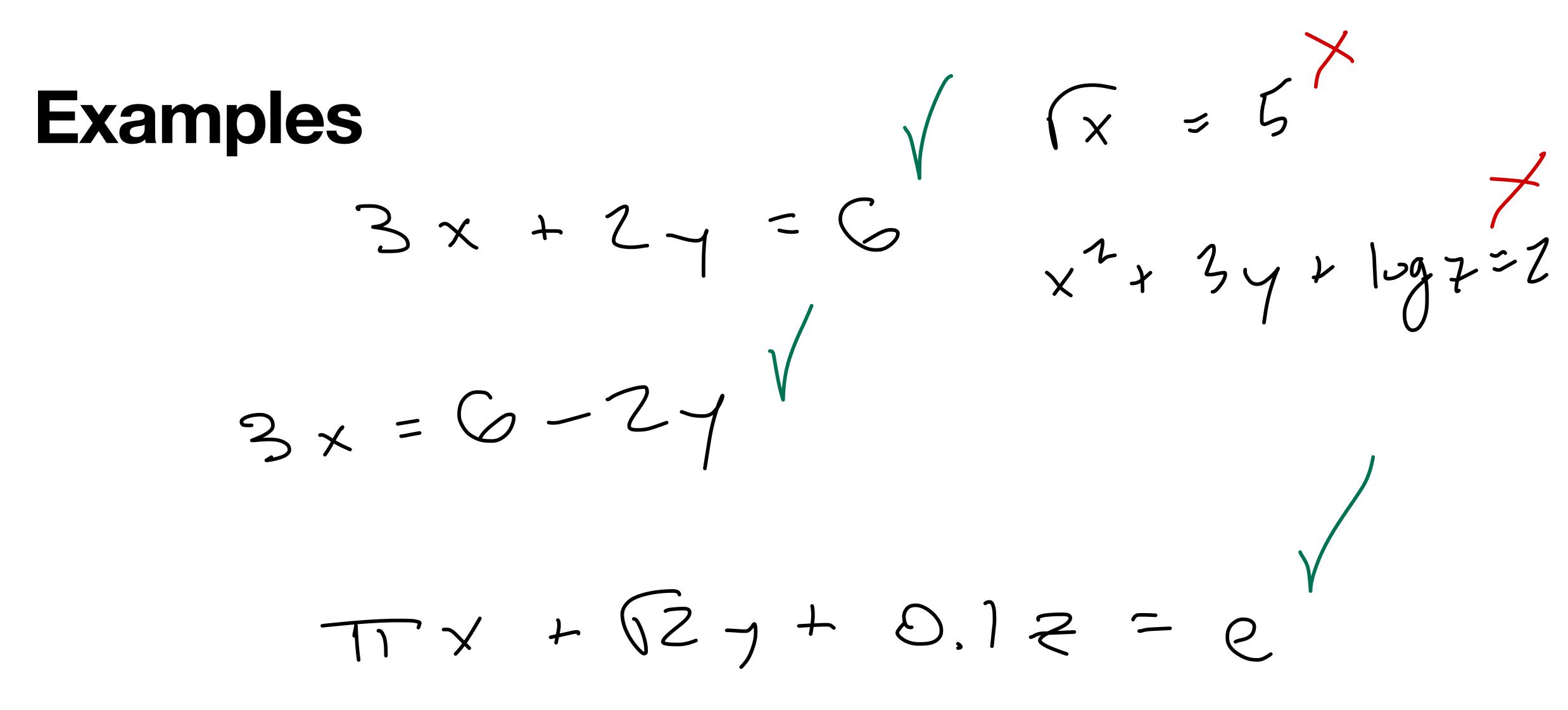
Linear Equations

Definition. A linear equation in the variables x_1, x_2, \dots, x_n is an equation of the form

where a_1, a_2, \ldots, a_n, b are real numbers (\mathbb{R})

unknowns

$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$



Linear Equations (Point sets)

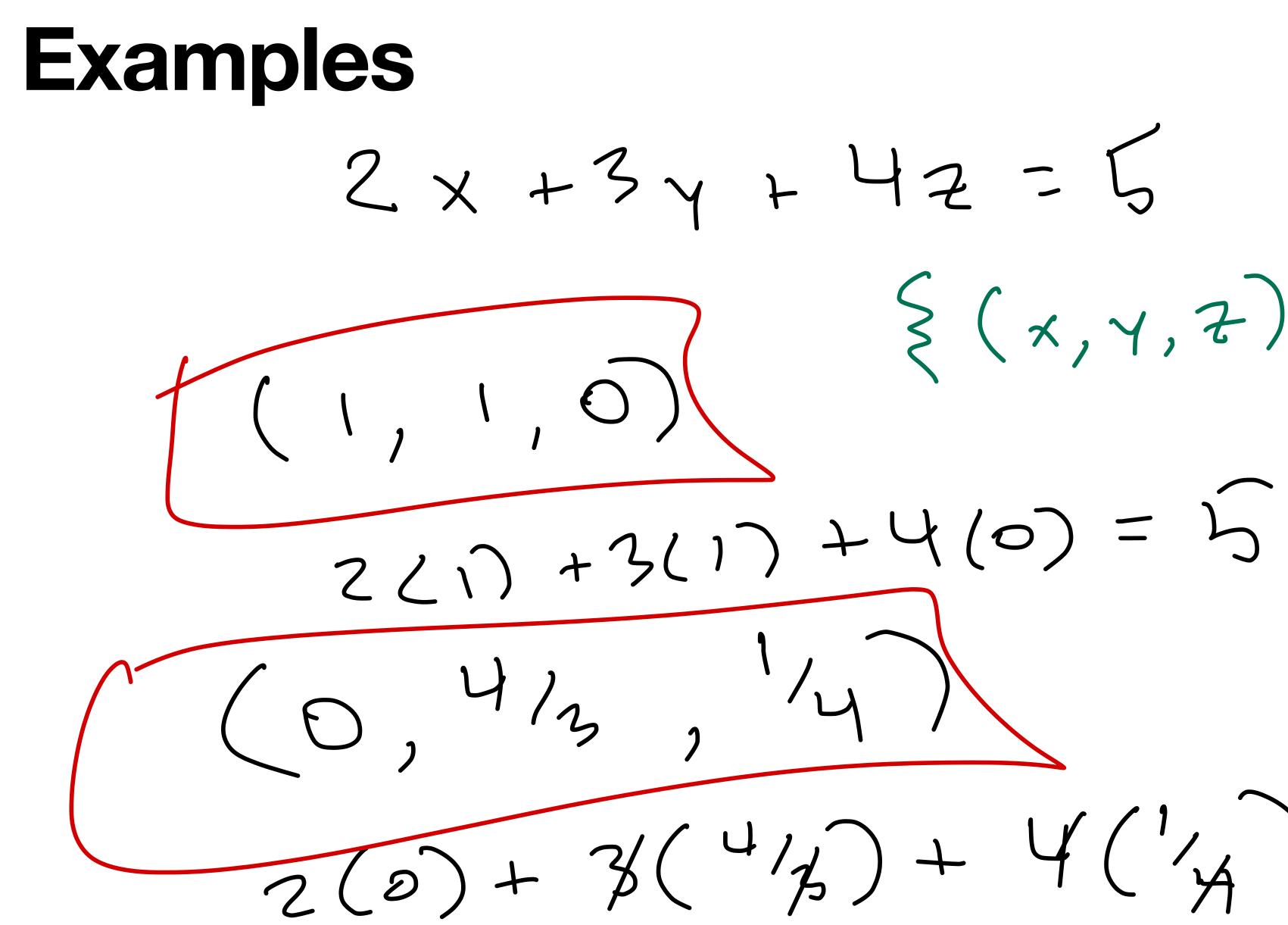
Linear equations describe point sets:

$\{(s_1, s_2, \dots, s_n) \in \mathbb{R}^n : a_1s_1 + a_2s_2 + \dots + a_ns_n = b\}$

$$\{(s_1, s_2, ..., s_n) \in \mathbb{R}^n : a$$

Linear equations describe *point sets* $P^4: ? P^{100}: ?$ R: line

$l_1 s_1 + a_2 s_2 + \ldots + a_n s_n = b$ The collections of numbers such that the equation holds.



12,0,1) S(x, Y, Z): 2x + 3y + 42 = 52(0) + 3(-4) + 4(-4) = 5

If a 2D linear equation is a *line* then a 3D linear equation is...

$Z_{X}+3\gamma + Q_{Z}=5$

If a 2D linear equation is a *line* then a 3D linear equation is...

Not a line...

If a 2D linear equation is a *line* then a 3D linear equation is...

If a 2D linear equation is a *line* then a 3D linear equation is...

A plane(!)

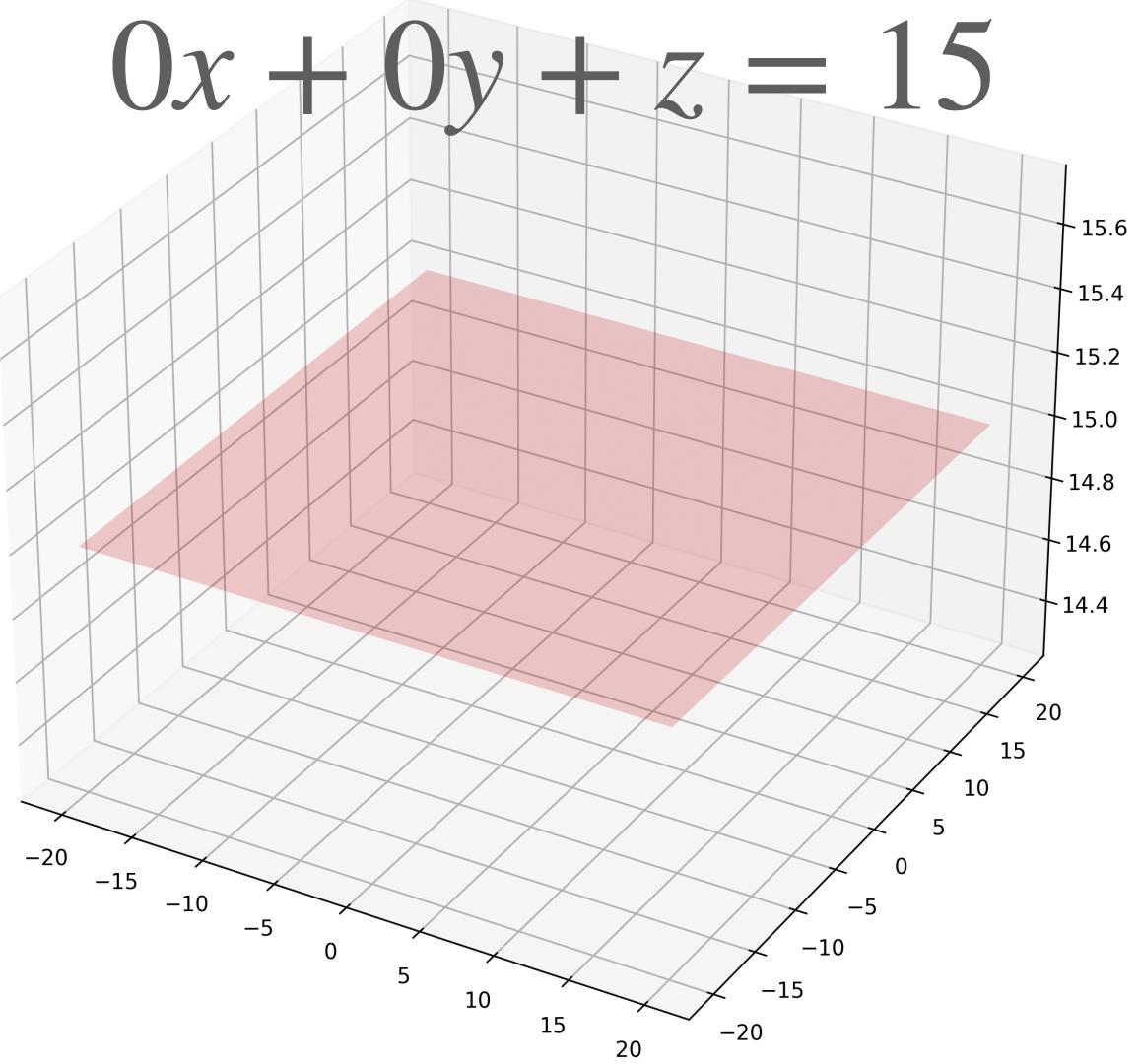
demo

Example 1 0x + 0y + z = 5

This equation describes the solution set so x and y can be whatever we want

- $\{(x, y, z) : z = 5\}$

Example 1



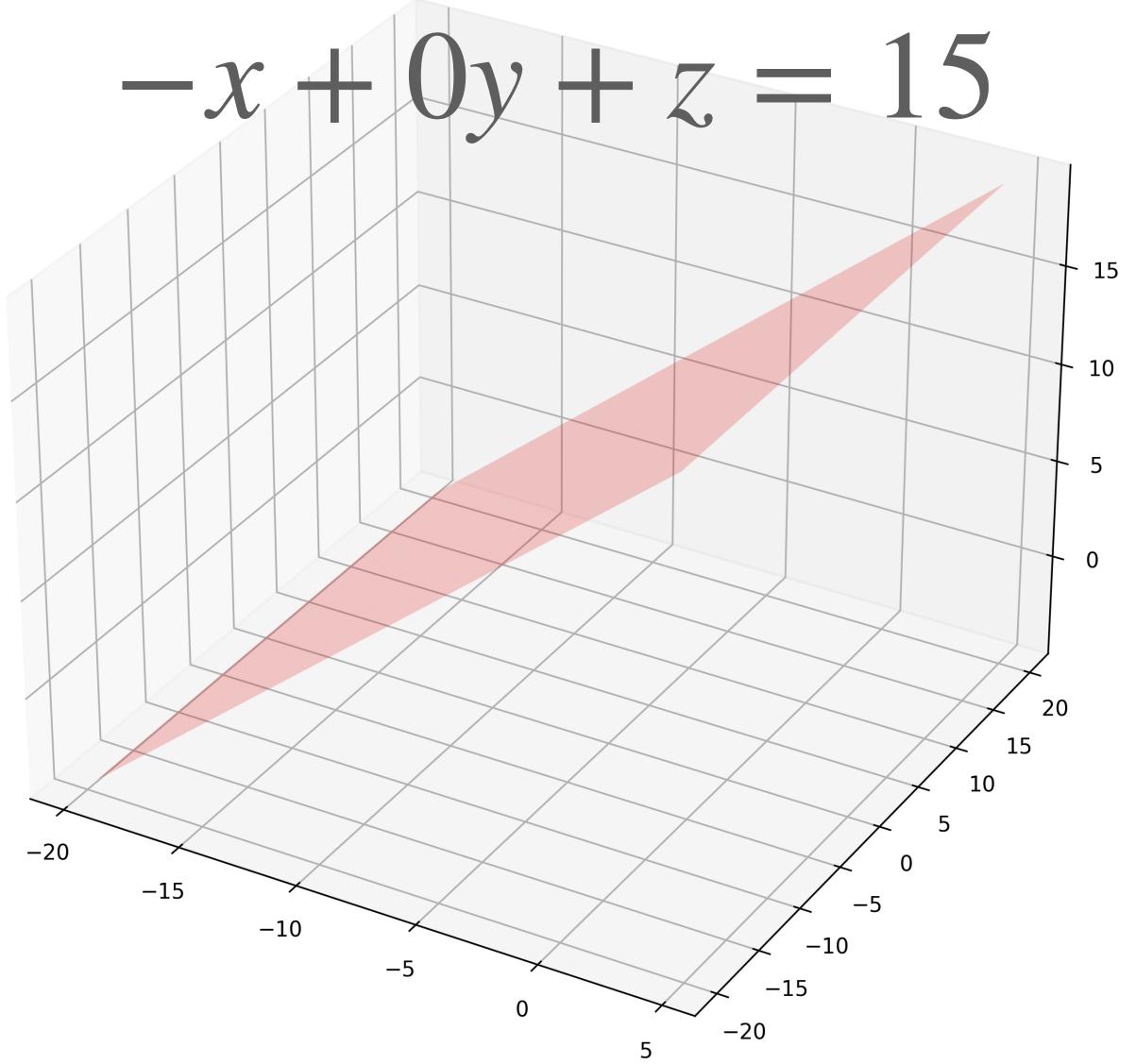
demo

Example 2 -x + 0y + z = 5

This equation describes the point set so y can be whatever we want

- $\{(x, y, z) : z = x + 5\}$

Example 2



demo

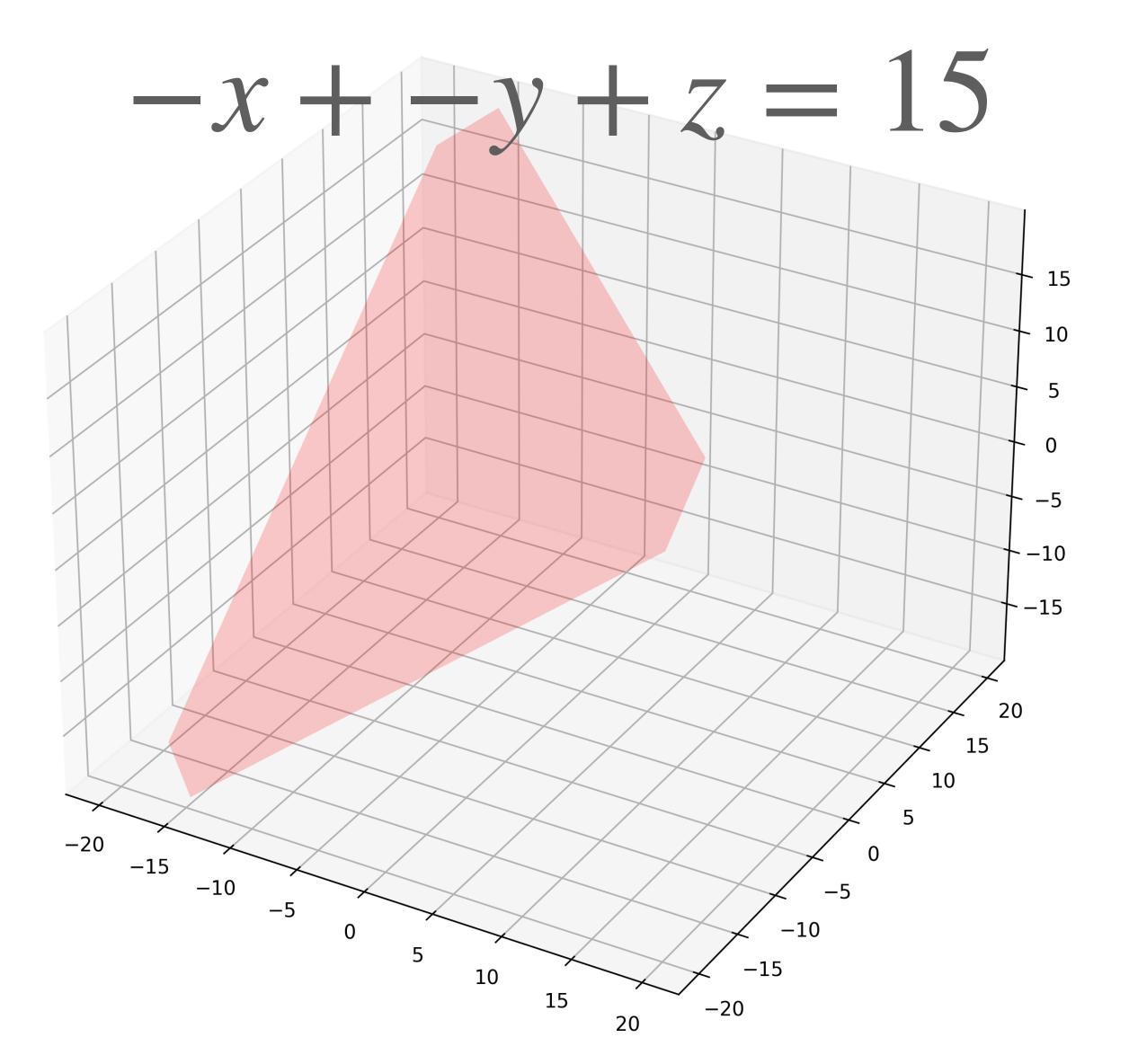
Example 3

This equation describes the solution set so all variables depend on each other

-x + -y + z = 5

- $\{(x, y, z) : z = x + y + 5\}$

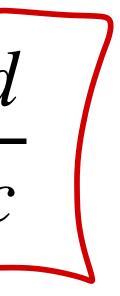
Example 3



demo

XYZ-intercepts ax + by + cz = dJust like with lines, we can define x-intercept: $\frac{d}{a}$ y-intercept: $\frac{d}{b}$ z-intercept: $\frac{d}{c}$

These three points define the plane



Question

I just lied.

らメン ろう ナのマ こら 0 x + 0 y = 56)=5

Give an example of a linear equation that defines a plane with an x-intercept and v-intercept but no z-intercept

{(×,4,2): 5=53 のメ+0y+5=5 5=5

X + Y = 1

after three dimensions, we can't visualize planes

after three dimensions, we can't visualize planes

a hyperplane

the point set of a linear equation is called

planes

a hyperplane

<u>Theme of the course:</u> Hyperplanes "behave" like 3D planes in many respects

the point set of a linear equation is called

after three dimensions, we can't visualize

Defining Systems of Linear Equations

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Systems of Linear Equations ×+y = 5 ×+Z=G

Definition. A *system of linear equations* is just a collection of linear equations <u>over the</u> <u>same variables</u>.

x + y + 02 = 5x + 0y + z = 6

Systems of Linear Equations

Definition. A system of linear equations is same variables.

just a collection of linear equations over the

Definition. A solution to a system is a point that satisfies all its equations <u>simultaneously</u>

Example

linear system: $y_{x+x+2y=1}$ -x - y - z = -12x + 6y - z = 1

solution: (3, -1, -1)

3 + 2(-1) = 1-3+1+I==11 2(3) + G(-i) - (-i) = j

System of Linear equations (General-form) $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

System of Linear equations (General-form) $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_m x_2 + \dots + a_m x_n = b_m$

Does a system have a solution? How many solutions are there? What are its solutions?

Defining Systems of Linear Equations

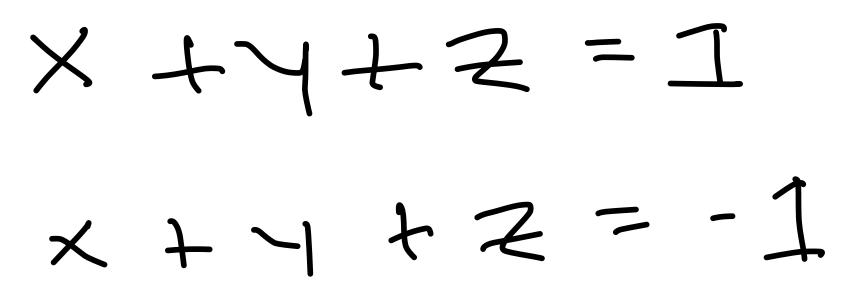
- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

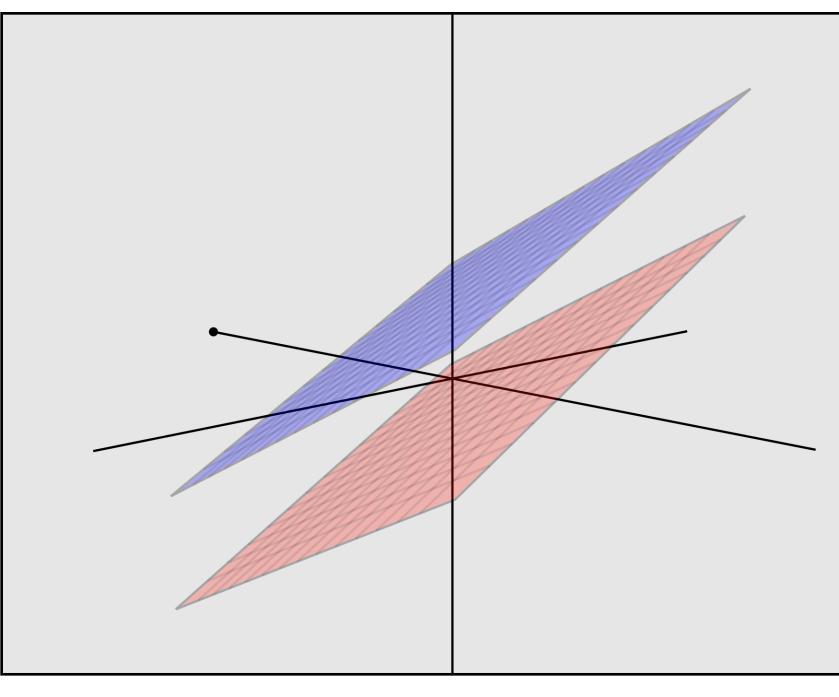
Consistency

Definition. A system of linear equations is *consistent* if it has a solution

It is *inconsistent* if it has <u>no</u> solutions

Example





Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

These are the only options

Defining Systems of Linear Equations

- 1. Linear equations
- 2. Systems of linear equations
- 3. Consistency
- 4. Matrix representations

Matrix Representations

always writing down the unknowns is <u>exhausting</u>

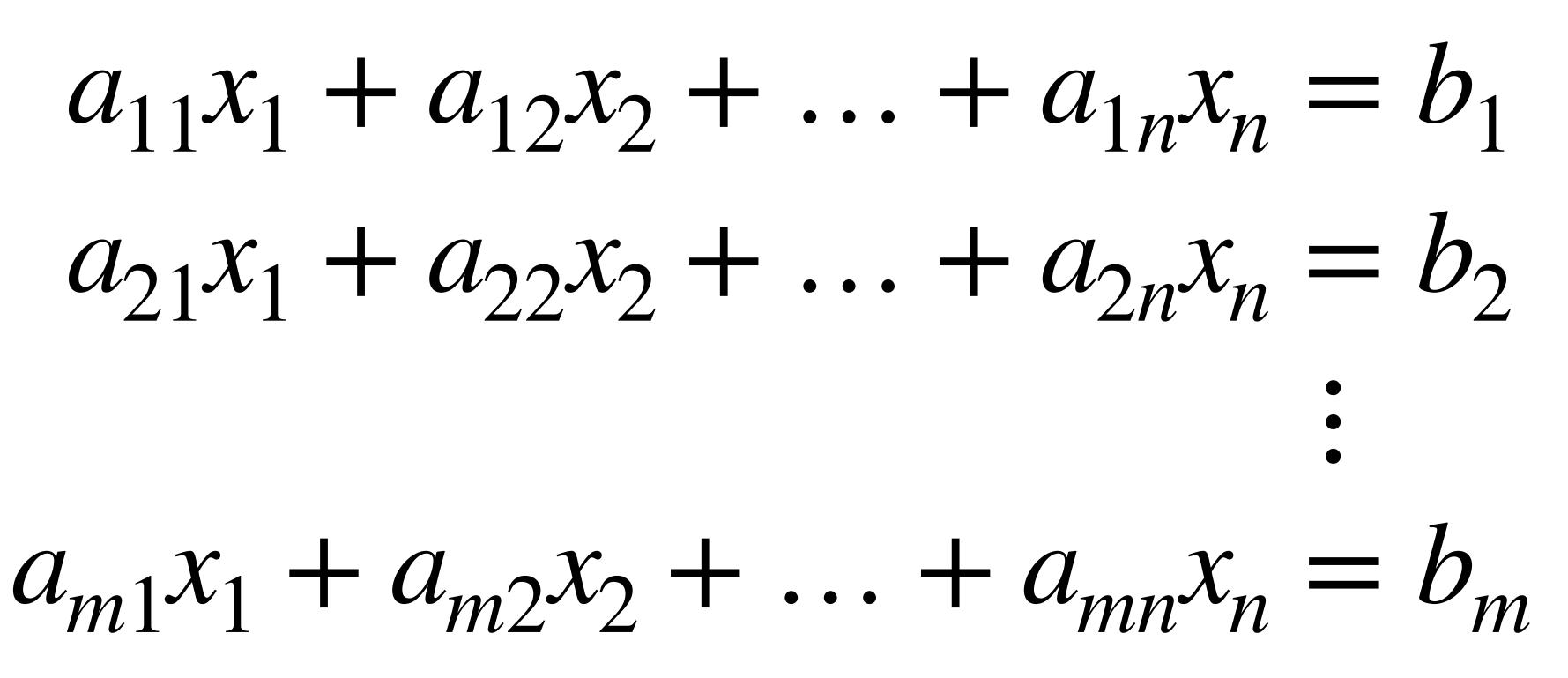
we will write down linear systems as matrices, which are just 2D grids of numbers with fixed width and height

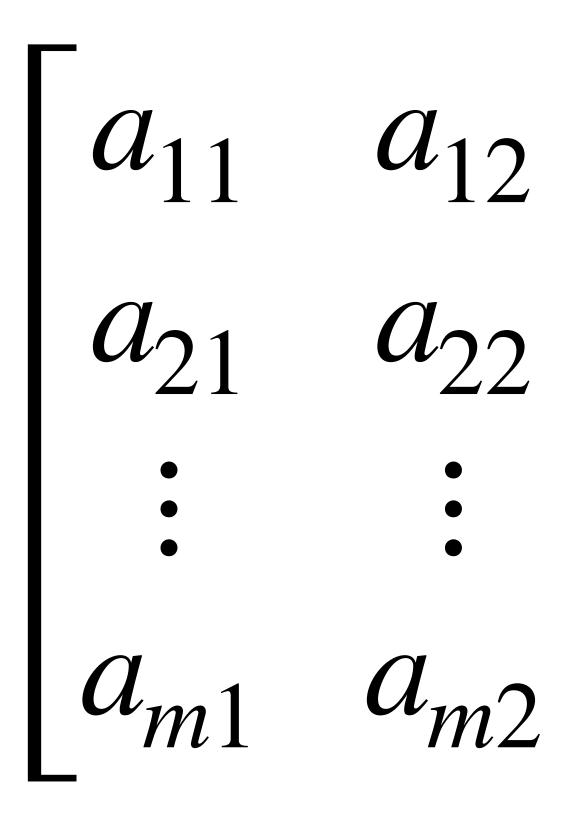
Matrix Representations

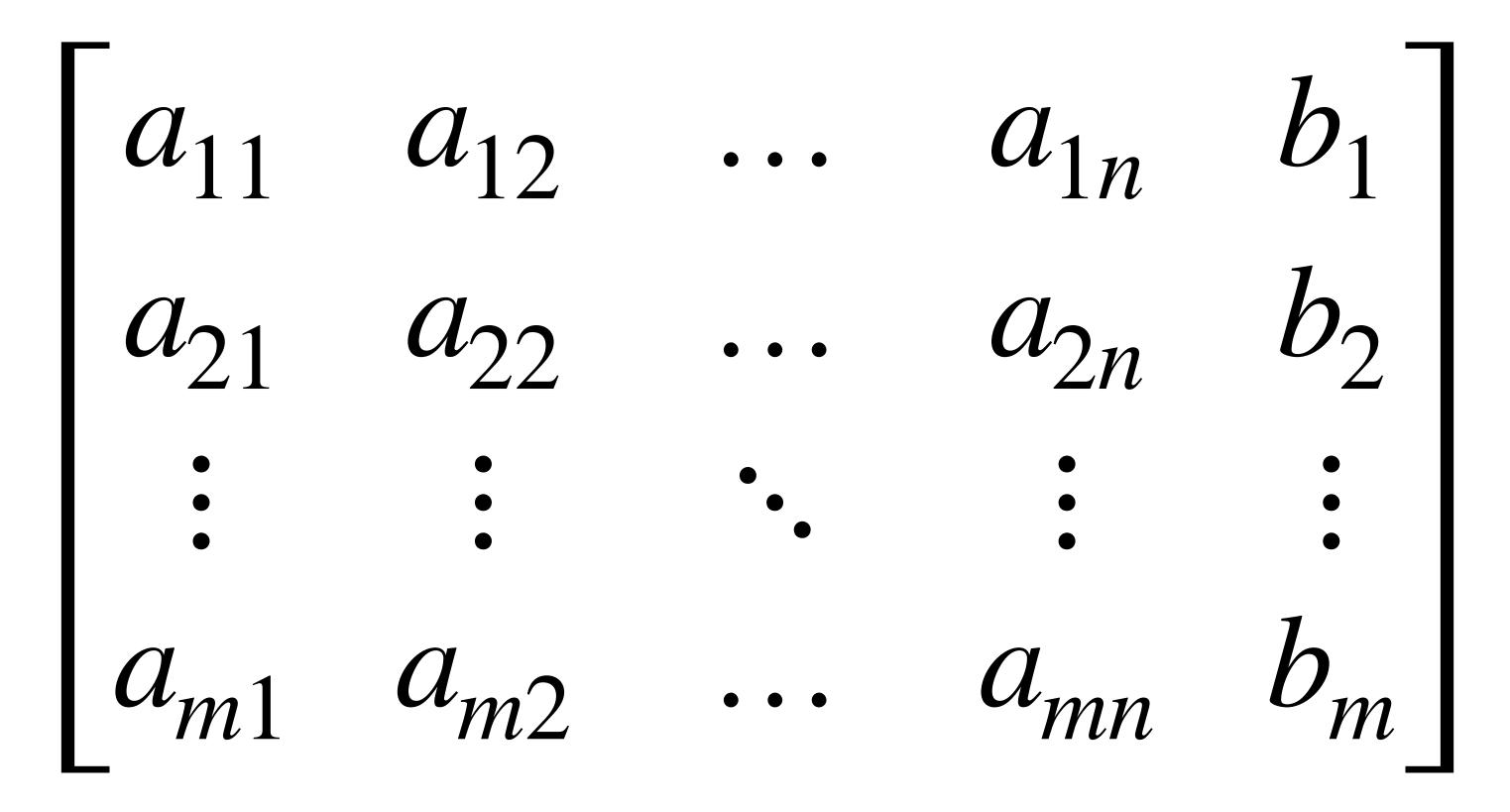
always writing down the unknowns is <u>exhausting</u>

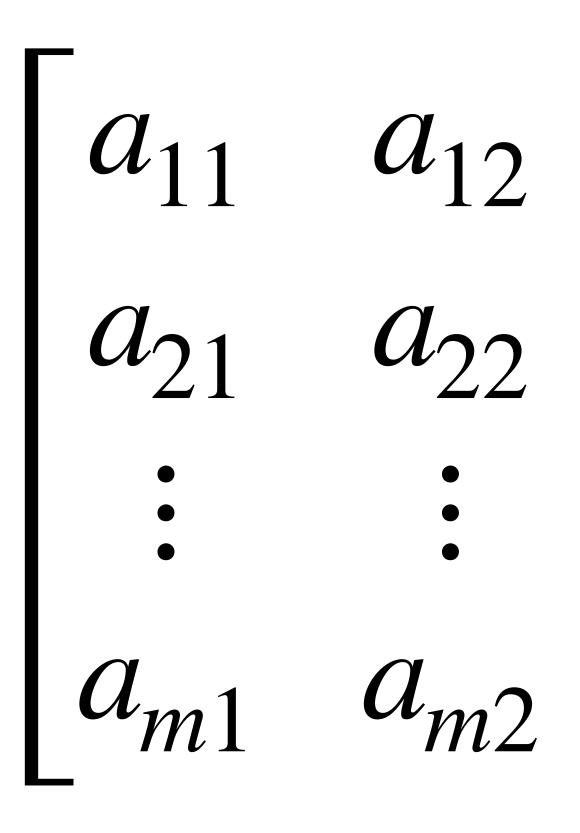
we will write down linear systems as matrices, which are just 2D grids of numbers with <u>fixed</u> width and height

a matrix is just a representation

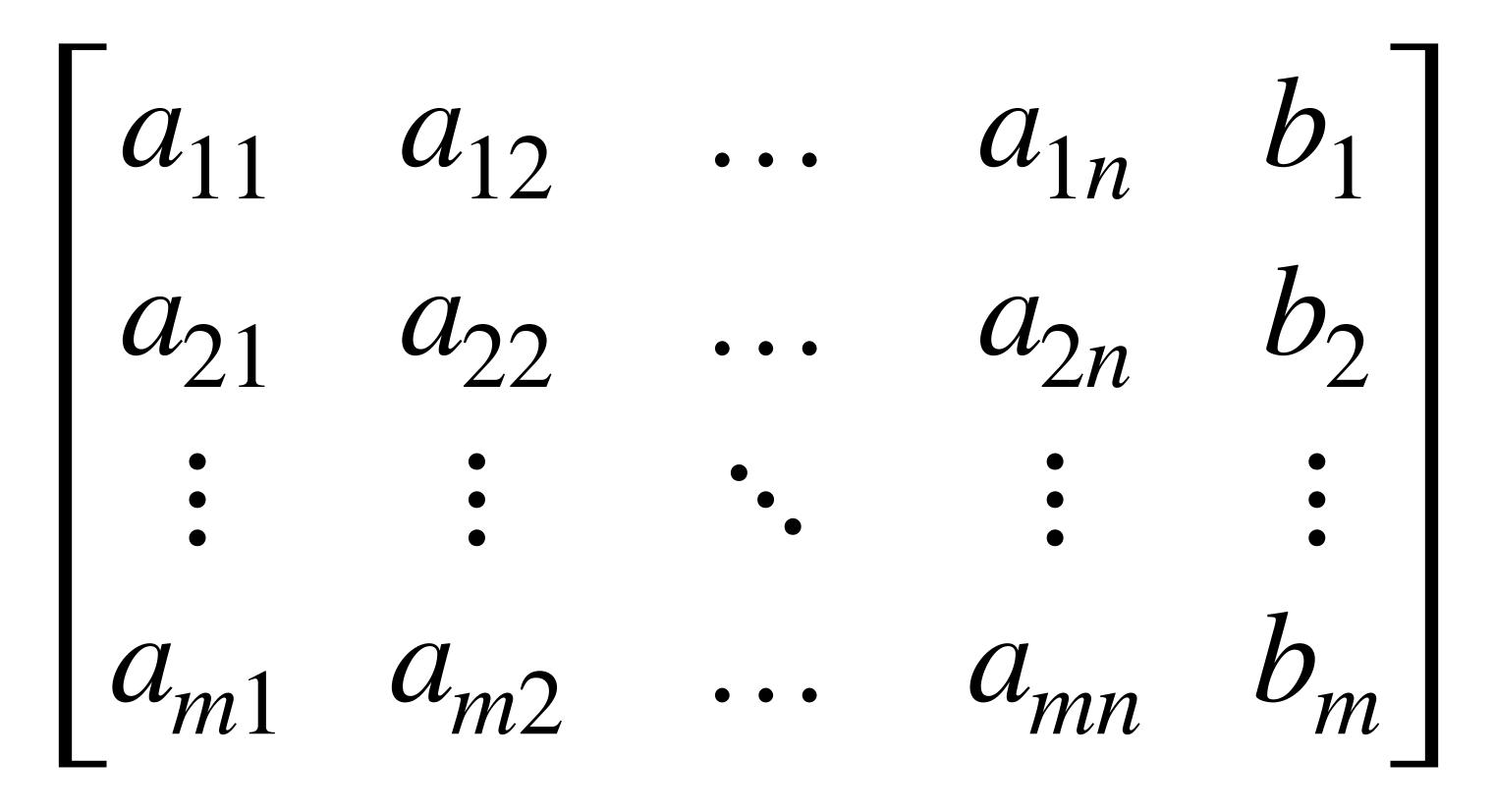




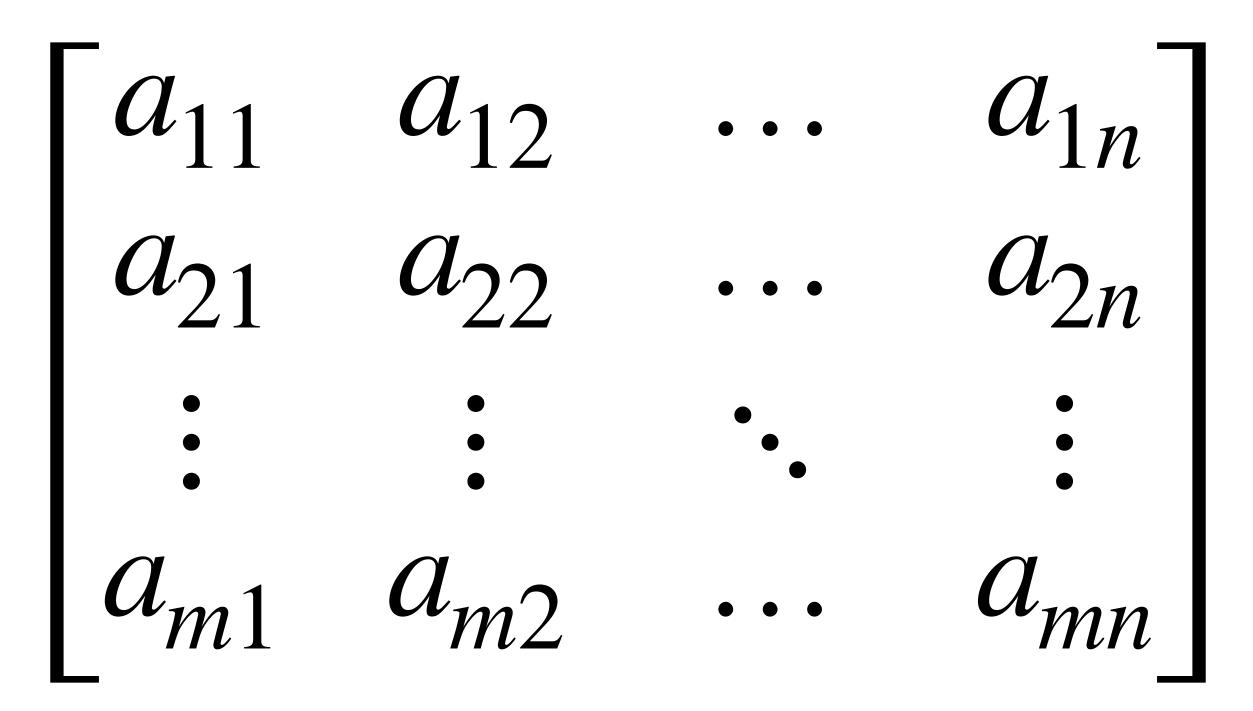




augmented matrix







coefficient matrix

 $6\alpha - 2\beta - \gamma = 0$ $12\alpha - 6\beta = 0$ $6\alpha - \beta - 2\gamma = 0$

 (\mathbf{C}) (H) **(O)**

$\begin{bmatrix} 6 & -2 & -1 & 0 \\ 12 & -6 & 0 & 0 \\ 6 & -1 & -2 & 0 \end{bmatrix}$

More Examples

Objectives

- 1. Motivation
- 2. Definitions
- 3. Solve systems of linear equations

- 1. Some simple examples
- 2. Elimination and Back-Substitution
- 3. Row Equivalence

1. Some simple examples

- 2. Elimination and Back-Substitution
- 3. Row Equivalence

1. Some simple examples

- 2. Elimination and Back-Substitution
- 3. Row Equivalence

We'll only consider systems with unique solutions for now.

2x + 3y = -64x - 5y = 10

The Approach

2x + 3y = -64x - 5y = 10

- The Approach Solve for x in terms of y in EQ1
- 2x + 3y = -64x - 5y = 10

Solving Systems with Two Variables 2x + 3y = -64x - 5y = 10The Approach Solve for x in terms of y in EQ1

Substitute result for x in EQ2 and solve for y

Solving Systems with Two Variables 2x + 3y = -64x - 5y = 10The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x

Let's work through it...

2x + 3y = -64x - 5y = 10

Solving Systems with Two Variables 2x = (-3)y - 64x - 5y = 10The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x

Solving Systems with Two Variables x = (-3/2)y - 34x - 5y = 10The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x

4((-3/2)y - 3) - 5y = 10The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y Substitute result for y in EQ1 and solve for x

x = (-3/2)y - 3

Solving Systems with Two Variables x = (-3/2)y - 3-6y - 12 - 5y = 10

The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x

Solving Systems with Two Variables x = (-3/2)y - 3-11y = 22The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y Substitute result for y in EQ1 and solve for x

Solving Systems with Two Variables x = (-3/2)y - 3y = -2The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y Substitute result for y in EQ1 and solve for x

Solving Systems with Two Variables x = (-3/2)(-2) - 3y = -2The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for ySubstitute result for y in EQ1 and solve for x



The Approach Solve for x in terms of y in EQ1

x = 3 - 3y = -2

- Substitute result for x in EQ2 and solve for y
- Substitute result for y in EQ1 and solve for x



Solving Systems with Two Variables $\chi = ()$ y = -2The Approach Solve for x in terms of y in EQ1 Substitute result for x in EQ2 and solve for y

Substitute result for y in EQ1 and solve for x



another perspective...

Solving Systems with Two Variables 2x + 3y = -64x - 5y = 10The Approach

The Approach Eliminate x from the EQ2 and solve for y Eliminate y from EQ1 and solve for x

Let's work through it again...

2x + 3y = -64x - 5y = 10

1. Some simple examples 2. Elimination and Back-Substitution 3. Row Equivalence

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4

Solving Systems with Three Variables x - 2y + z = 5 2y - 8z = -46x + 5y + 9z = -4

The Approach

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4The Approach Eliminate x from the EQ2 and EQ3

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4The Approach Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate $\ensuremath{\mathcal{Z}}$ from EQ2 and EQ1

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4The Approach Eliminate x from the EQ2 and EQ3

- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4The Approach Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3 Eliminate z from EQ2 and EQ1 Eliminate y from EQ1

Elimination

Back-Substitution

Let's work through it

x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -4

6(5+2y-z) The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate $\ensuremath{\mathcal{Z}}$ from EQ2 and EQ1
- Eliminate y from EQ1

6(5 + 2y - z) + 5y + 9z = -4

x - 2y + z = 52y - 8z = -430 + 12y - 6z + 5y + 9z = -4

Solving Systems with Three Variables The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -417y + 3z = -34The Approach Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3 Eliminate z from EQ2 and EQ1 Eliminate y from EQ1

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -417(8z - 4)/2 + 3z = -34

The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -417(4z - 2) - 3z = -34The Approach Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3 Eliminate z from EQ2 and EQ1 Eliminate y from EQ1

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -468z - 34 - 3z = 26The Approach Eliminate x from the EQ2 and EQ3 Eliminate y from EQ3 Eliminate z from EQ2 and EQ1 Eliminate y from EQ1

Solving Systems with Three Variables x - 2y + z = 52y - 8z = -4

The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

71z = 0

Solving Systems with Three Variables x - 2y + 0 = 52y - 8(0) = -4z = 0

The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

Solving Systems with Three Variables x - 2y = 52y = -4

The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

z = 0

Solving Systems with Three Variables x - 2(-2) = 5 y = -2z = 0

The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

Solving Systems with Three Variables x = 1 y = -2z = 0

The Approach

- Eliminate x from the EQ2 and EQ3
- Eliminate y from EQ3
- Eliminate z from EQ2 and EQ1
- Eliminate y from EQ1

Solving Systems with Three Variables x = 1y = -2z = 0

The Approach

Eliminate x from the EQ2 and EQ3

Eliminate y from EQ3

Eliminate z from EQ2 and EQ1

Eliminate y from EQ1

Elimination

Back-Substitution

Verifying the Solution

x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4

Verifying the Solution

x - 2y + z = 52y - 8z = -46x + 5y + 9z = -4

Verifying the Solution (1) - 2(-2) + (0) = 52(-2) - 8(0) = -46(1) + 5(-2) + 9(0) = -4

Verifying the Solution

1 + 4 + 0 = 5-4 + 0 = -46 - 10 + 0 = -4

Verifying the Solution

5 = 5-4 = -4-4 = -4The solution simultaneously satisfies the equations x = 1y = -2z = 0

Solving Systems of Linear Equations

Some simple examples
 Elimination and Back-Substitution

3. Row Equivalence

Solving Systems as Matrices

How does this look with matrices? elimination and back-substitution same solutions

Observation. Each intermediate step of gives us a new linear system with the

Solving Systems as Matrices

How does this look with matrices? **Observation.** Each intermediate step of elimination and back-substitution gives us a new linear system with the same solutions

Can we represent these intermediate steps as operations on matrices?

Let's look back at this...

2x + 3y = -64x - 5y = 10

Elementary Row Operations

scaling multiply
replacement add a mu
another
interchange switch t

multiply a row by a number

add a multiple of one row to

switch two rows

Elementary Row Operations

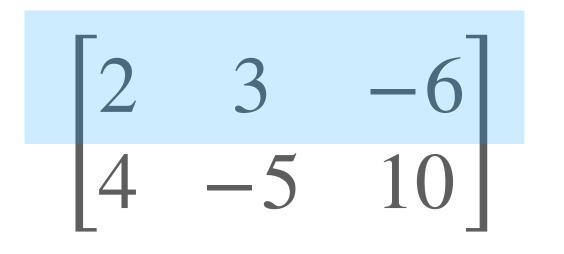
- scaling multiply a row by a number add a multiple of one row to replacement another
- interchange

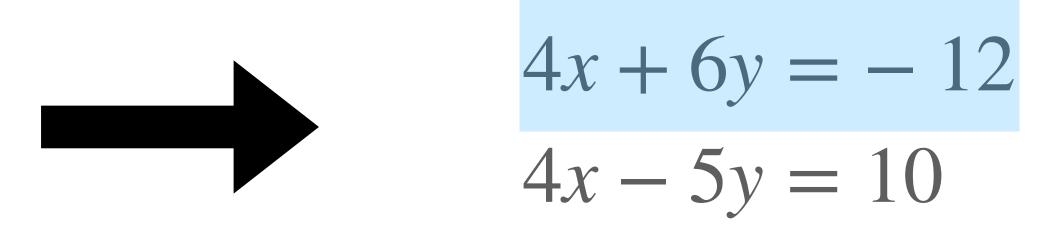
switch two rows

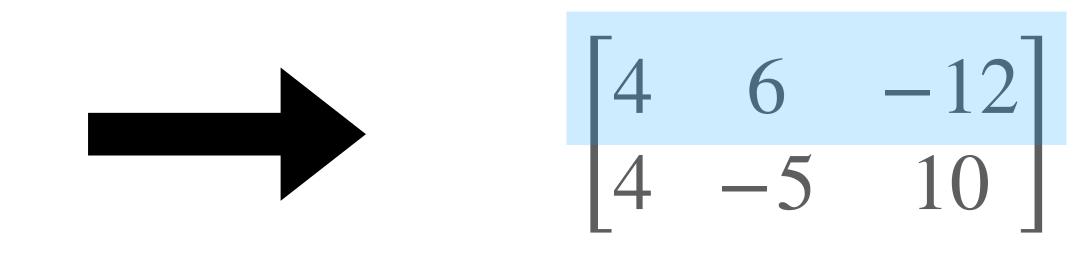
These operations don't change the solutions

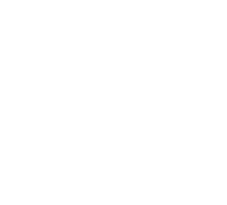
Scaling Example

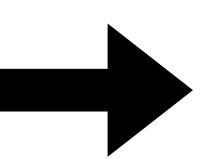
2x + 3y = -64x - 5y = 10









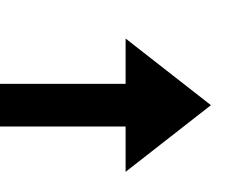


Replacement Example

$$2x + 3y = -6$$
$$4x - 5y = 10$$

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

2x + 3y = -66x - 2y = 4



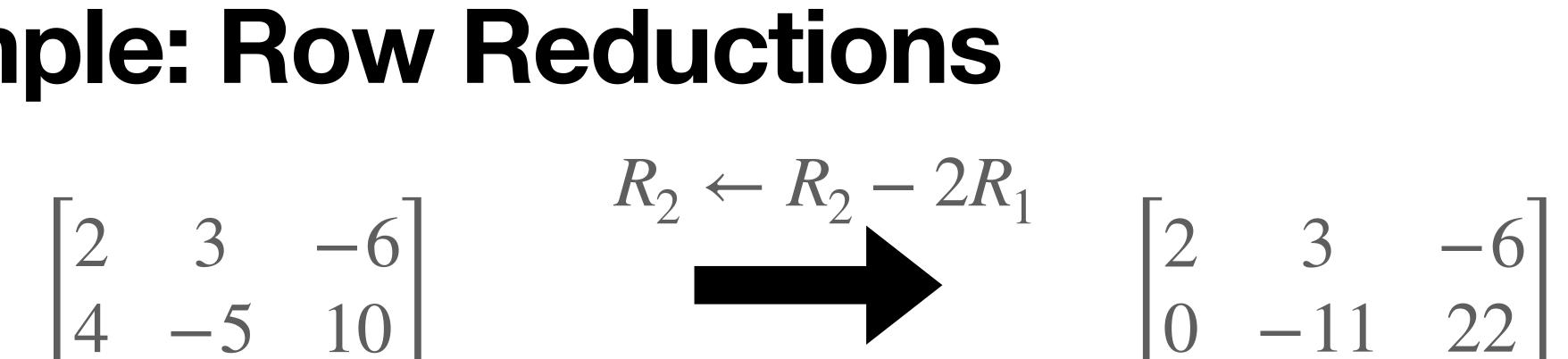
Interchange Example

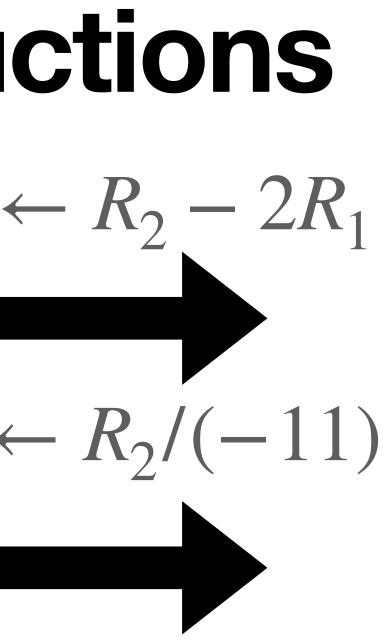
2x + 3y = -64x - 5y = 10

 $\begin{vmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{vmatrix}$

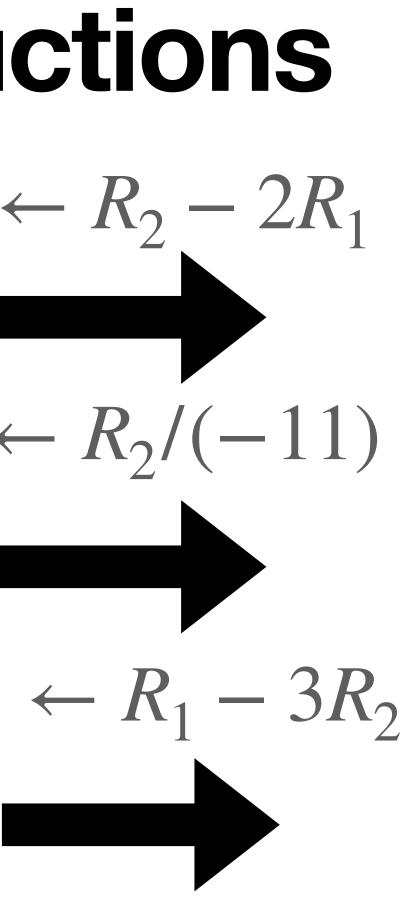
4x - 5y = 102x + 3y = -6

$\begin{vmatrix} 4 & -5 & 10 \\ 2 & 3 & -6 \end{vmatrix}$





 $\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$ $R_2 \leftarrow R_2/(-11) \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & -6 \\ 0 & 1 & -2 \end{bmatrix}$



 $\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$ $R_2 \leftarrow R_2/(-11) \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix} \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$ $R_{1} \leftarrow R_{1} - 3R_{2}$ $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$

 $\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$ $R_2 \leftarrow R_2/(-11) \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix} \begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$ $R_1 \leftarrow R_1 - 3R_2$ $R_1 \leftarrow R_1/2$

 $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$ $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{vmatrix}$

 $\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$

 $R_2 \leftarrow R_2 - 2R_1$ $R_2 \leftarrow R_2/(-11)$ $R_1 \leftarrow R_1 - 3R_2$ $R_1 \leftarrow R_1/2$

0 1 2

 $R_{2} \leftarrow R_{1} \leftarrow R_{1$

 $\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$

$$- \frac{R_2 - 2R_1}{R_2 - R_2 - R_1 - 3R_2}$$
$$- \frac{R_1 - 3R_2}{R_1 - R_1 - 2R_2}$$

elimination substitution

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$

Row Equivalence

one can be transformed into the other by a sequence of row operations

$$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$

Definition. Two matrices are row equivalent if

Row Equivalence

one can be transformed into the other by a sequence of row operations

$\begin{vmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{vmatrix}$

Definition. Two matrices are row equivalent if

We can compute solutions by sequence of row operations

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$

(Open-Ended) Question

How do we know when we're done? What is the "target" matrix?

We'll get to that next time...

demo (SciPy)

Summary

Linear equations define <u>hyperplanes</u> not have <u>solutions</u> Linear systems can be represented as matrices, which makes them more convenient to solve

Systems of linear equations may or may