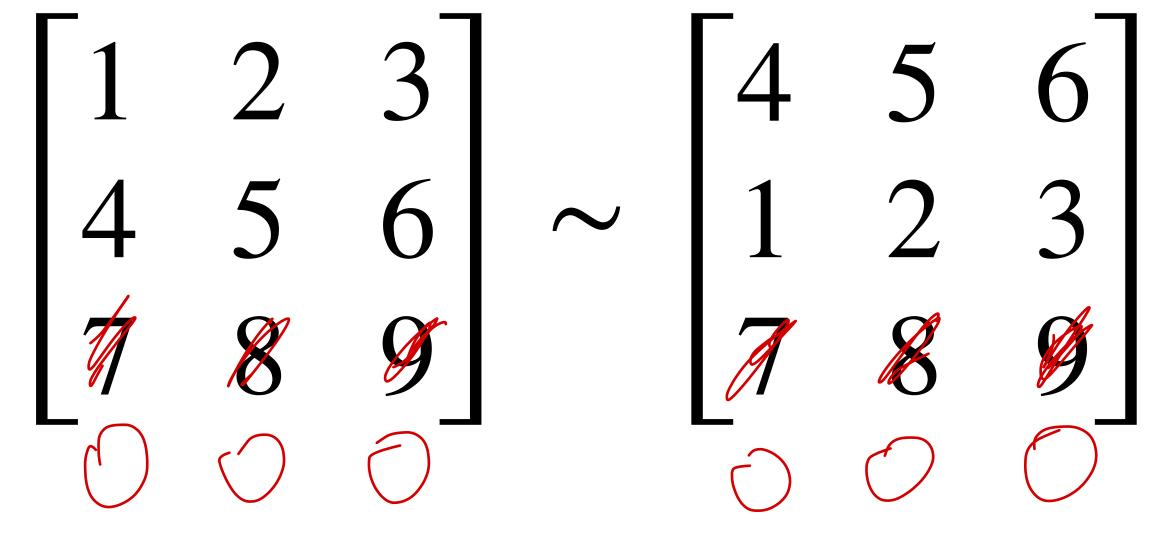


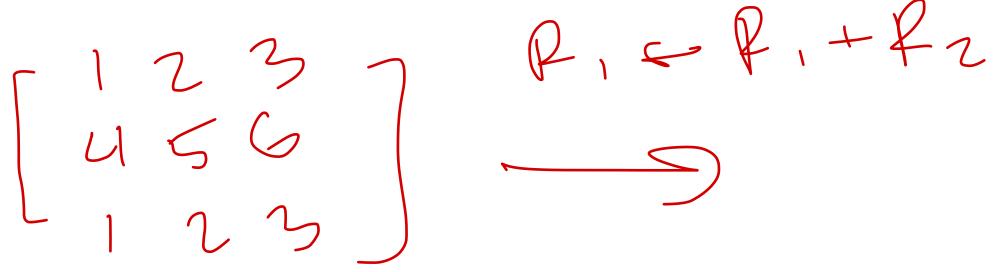
Lecture 3

CAS CS 132

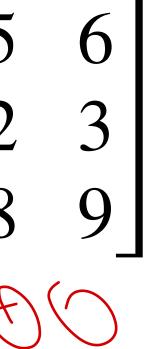
Practice Problem [1 2 3] [4 5 6] [7 8 9] [0 0 0]

Write a sequence of elementary row operations which transforms the left matrix to the right matrix **without using the exchange operation**.





6 2 3 4 5 6 1Z3~ 1 2 3 7 8 9 4 5 6 Solution $R_{z} \in R_{z} - R_{z}$ L D 0 0 789 $O \circ O$ OB G $R_3 = R_3 + R_1$ 123 $P_1 \leftarrow P_1 + P_2$ e fz +R3 K24 123 $R_z \leftarrow P_z$ $q = P_1 \in F_1 - F_3$ 56 57 456 以与 123 123 123)



Objectives

- which "represents" solutions
- echelon form matrix

1. Introduce echelon forms as a kind of matrix

2. Learn how to "read off" a solution from an

seussing Gaussian elimina

Keywords

leading entries

echelon form

(row-)reduced echelon form (RREF)

pivot positions

pivot columns

free variables

basic variables

general form solutions

forward elimination

back substitution

Recap

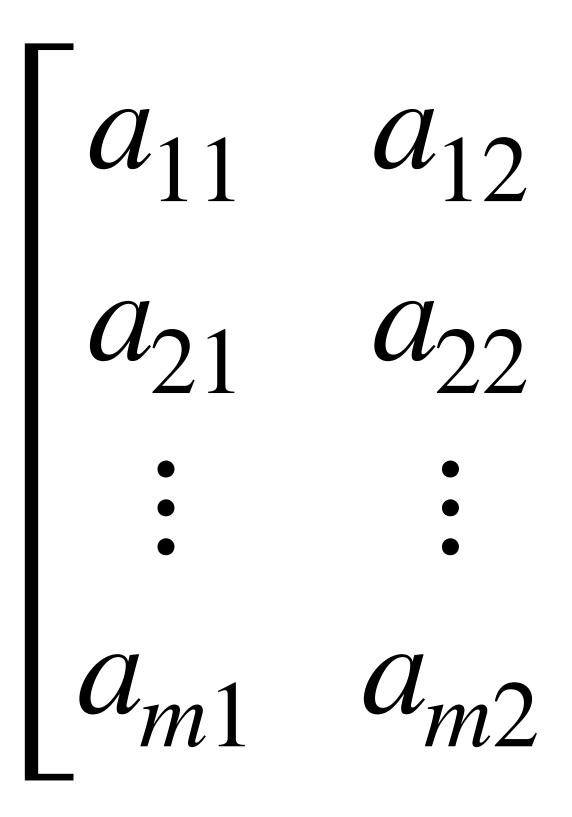
Recall: Linear Systems (General-form)

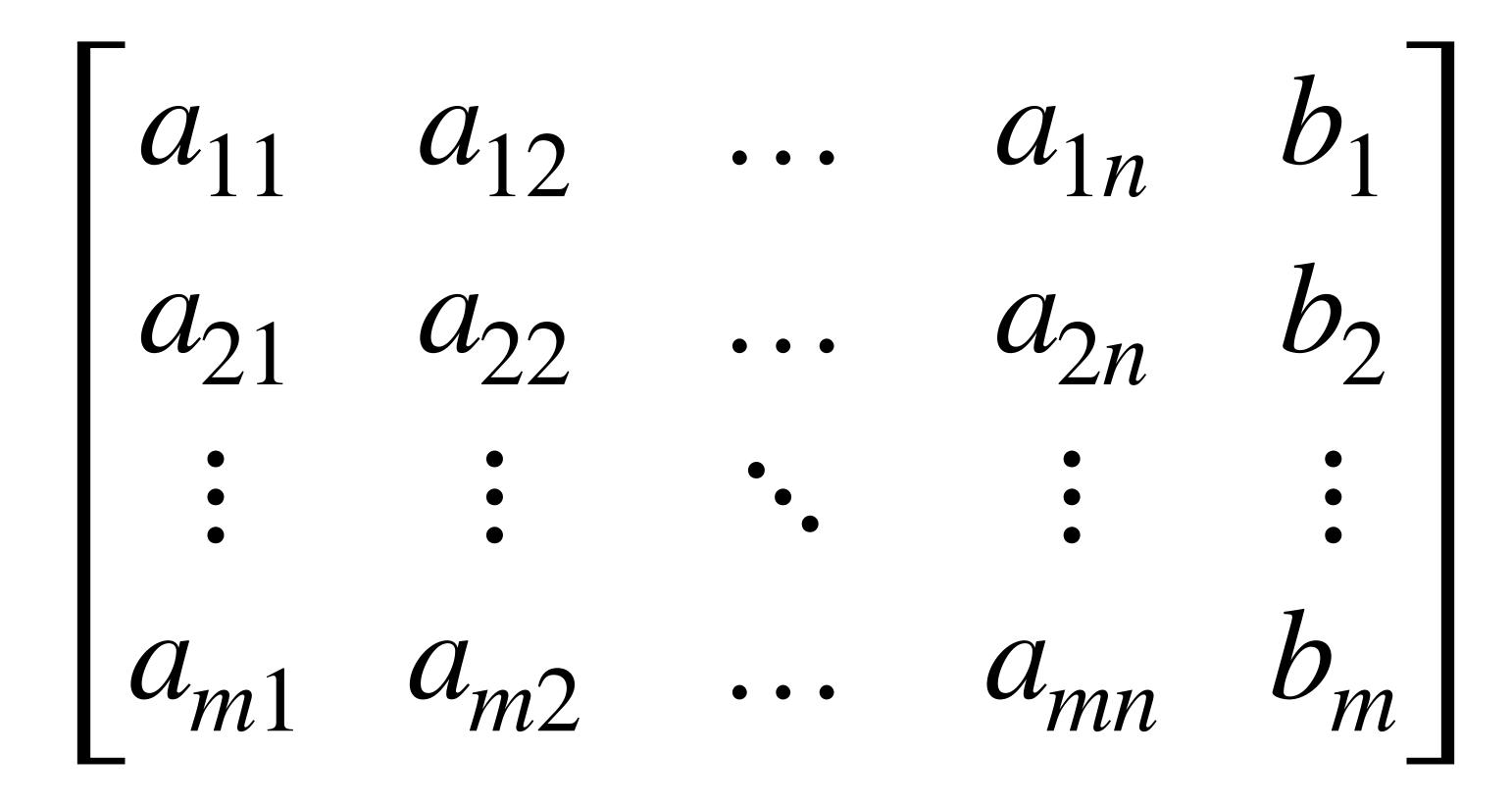
 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

Recall: Linear Systems (General-form) $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

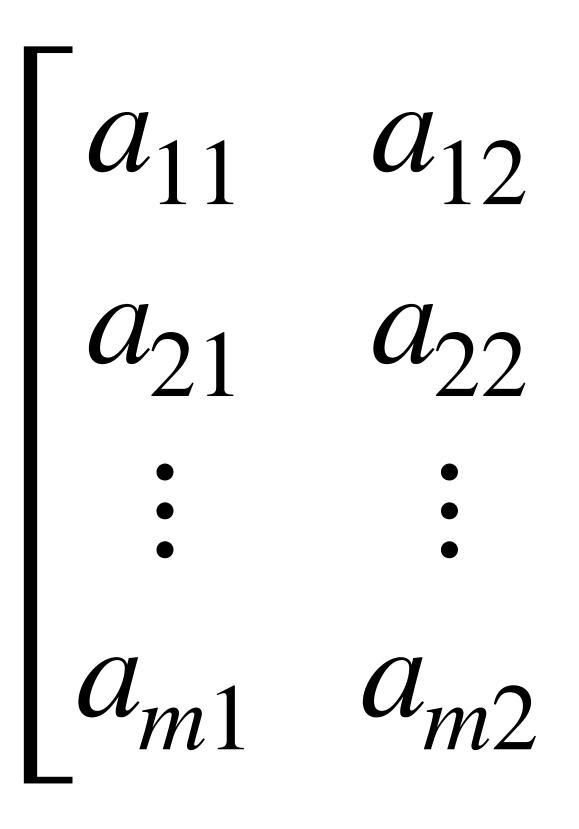
Does a system have a solution? How many solutions are there? What are its solutions?

Recall: Matrix Representations

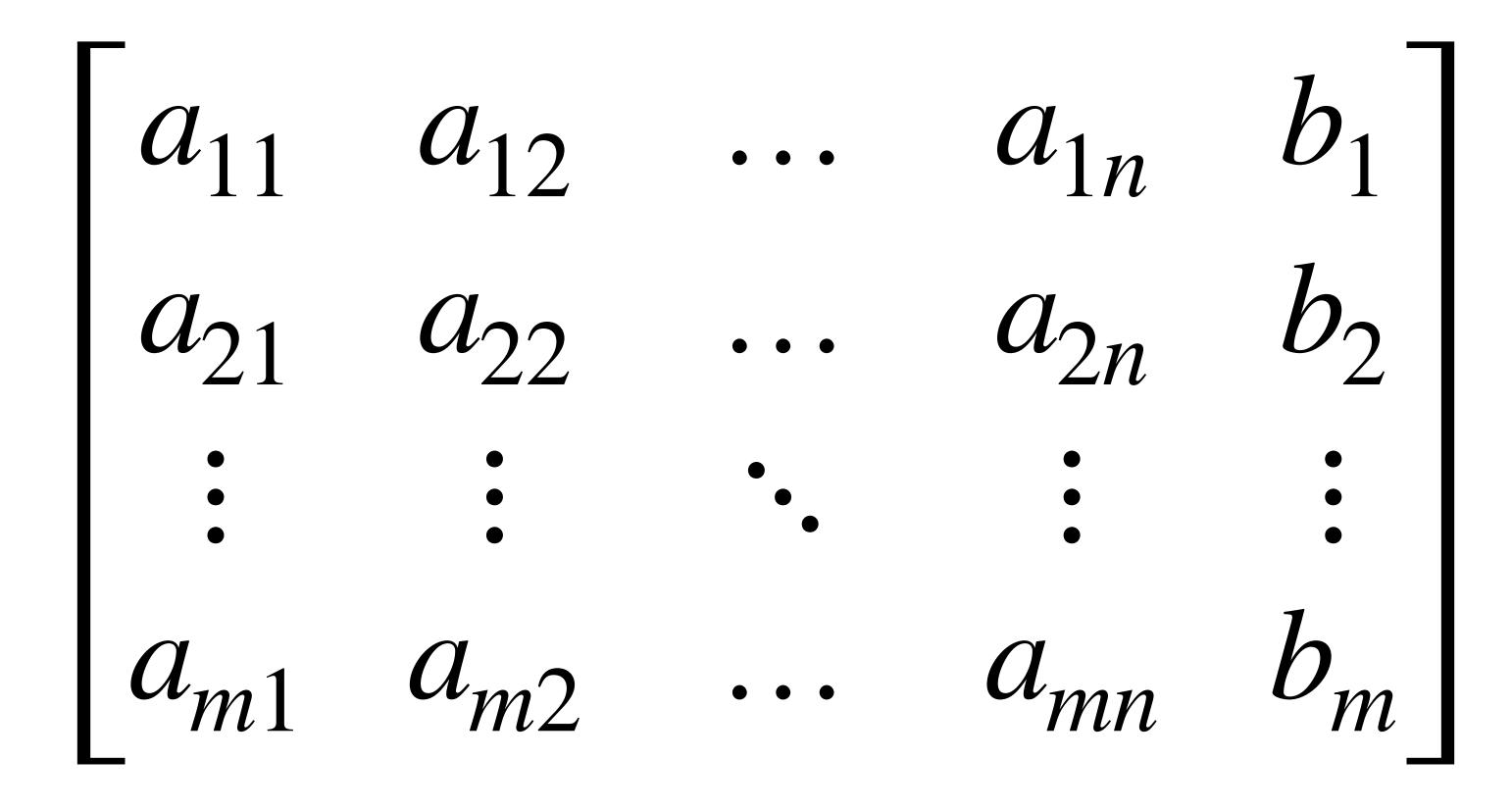




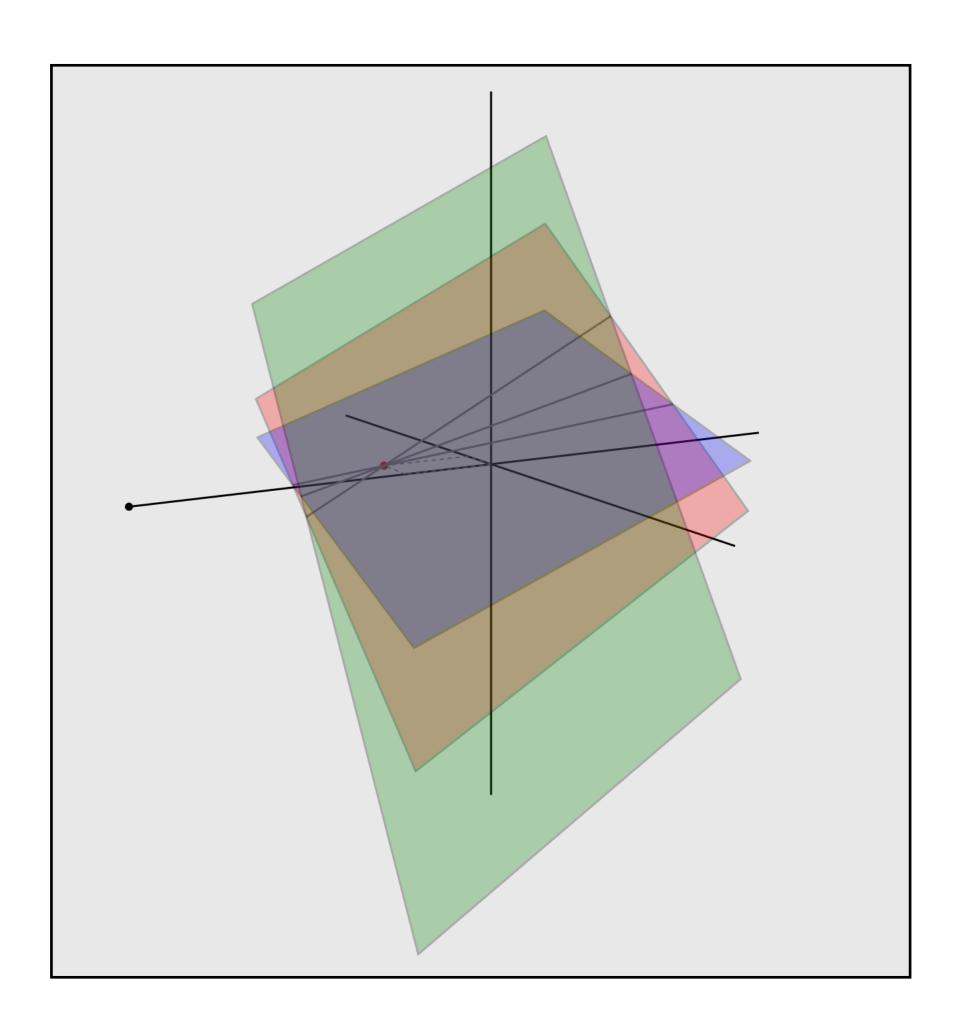
Recall: Matrix Representations



augmented matrix



Recall: Linear Systems (Pictorially)



Recall: Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

Recall: Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

These are the only options

Motivating Questions

What matrices "represent solutions"? (which have solutions that are easy to "read off"?)

How does the number of solutions affect the shape of these matrix?

How do we use row operations to get to those matrices?

Motivating Questions echelon forms

What matrices "represent solutions"? (which have solutions that are easy to "read off"?)

How does the number of solutions affect the shape of these matrix?

How do we use row operations to get to those matrices?

$\begin{bmatrix} 2 & -3 & 5 & 11 \\ 2 & -1 & 13 & 39 \\ 1 & -1 & 5 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$

x = 1y = 2z = 3

$\begin{bmatrix} 2 & -3 & 5 & 11 \\ 2 & -1 & 13 & 39 \\ 1 & -1 & 5 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$

z = 3

x = 1 y = 2Like all the examples we've seen for so far

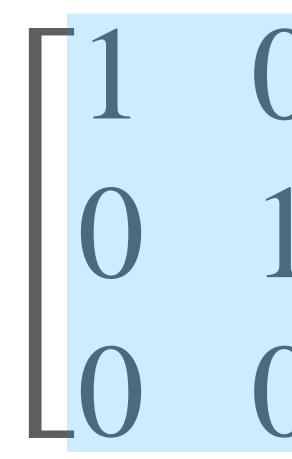
The Identity Matrix

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

The Identity Matrix

$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{bmatrix}$ 1s along the diagonal 0s elsewhere 0 0 1 \\ 0 & 1 \end{bmatrix}

coefficient matrix



a system of linear equations whose coefficient matrix is the identity matrix represents a unique solution

$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$

Example

$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix}$

$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

two parallel planes

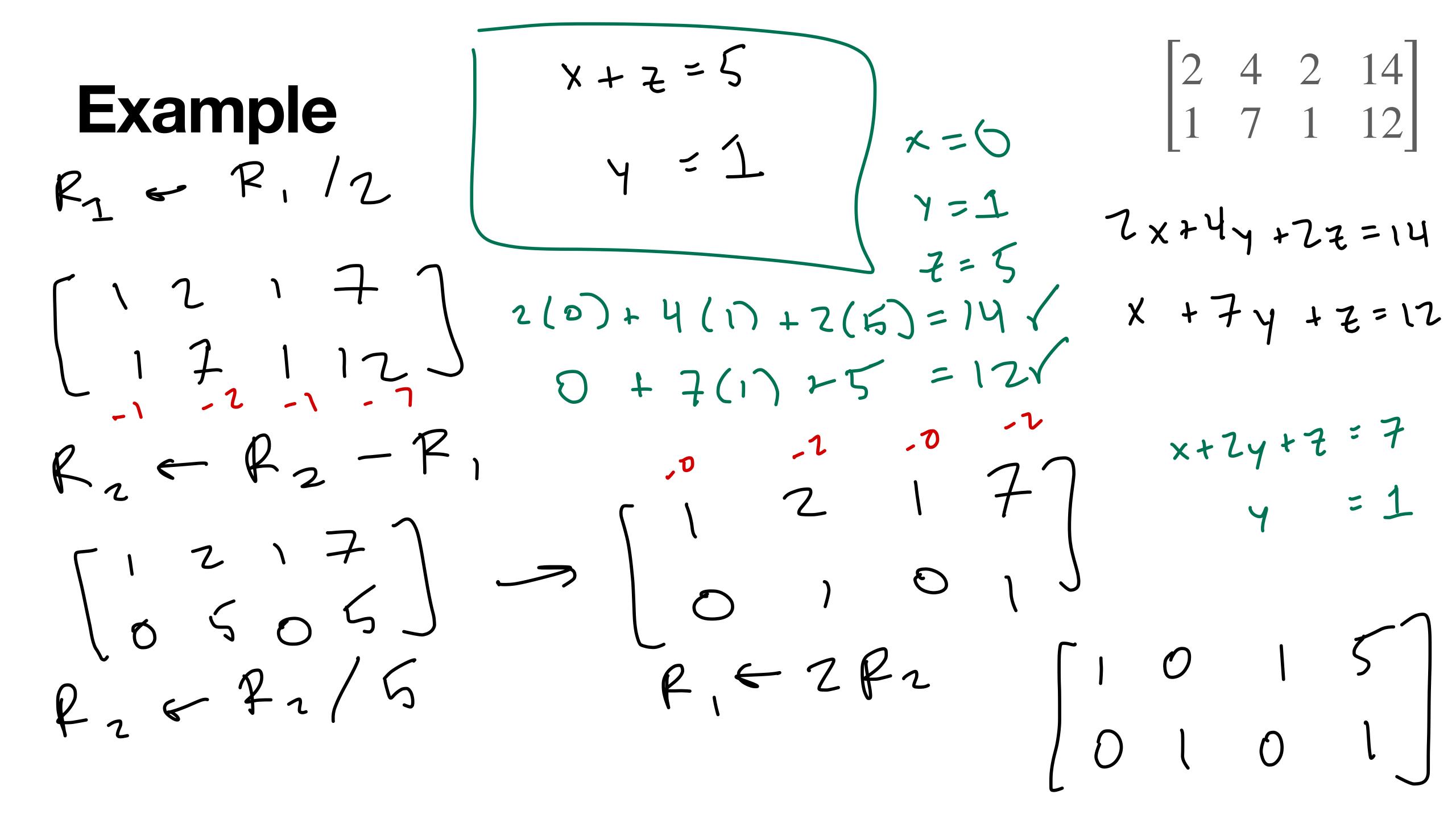
$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

two parallel lanes

$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ row representing 0 = 1

a system with no solutions can be reduced to a matrix with the row 00...01

$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ row representing 0 = 1



demo (plane intersection)

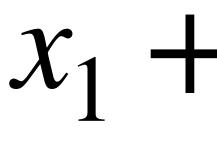
$\begin{bmatrix} 2 & 4 & 2 & 14 \\ 1 & 7 & 1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

$\begin{bmatrix} 2 & 4 & 2 & 14 \\ 1 & 7 & 1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ $x_1 + x_3 = 2$

 $x_2 = 1$

a system with infinity solutions can be

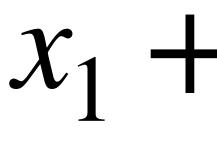
 $\begin{bmatrix} 2 & 4 & 2 & 14 \\ 1 & 7 & 1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ $x_1 + x_3 = 2$ $x_2 = 1$ reduced to a system which leaves a variable <u>unrestricted</u>



$x_1 + x_3 = 2$ $x_{2} = 1$

it doesn't matter what x_3 is if we want to satisfy this system of equations

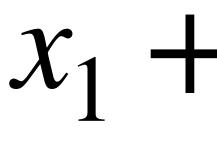
 $x_1 = 2$ $x_2 = 1$ $x_3 = 0$



$x_1 + x_3 = 2$ $x_{2} = 1$

it doesn't matter what x_3 is if we want to satisfy this system of equations

 $x_1 = 1.5$ $x_2 = 1$ $x_3 = 0.5$

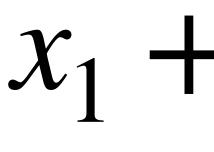


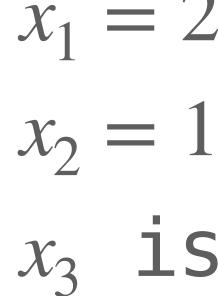
$x_1 + x_3 = 2$ $x_{2} = 1$

it doesn't matter what x_3 is if we want to satisfy this system of equations

 $x_1 = 20$ $x_2 = 1$ $x_3 = -18$

Infinite Solution Case



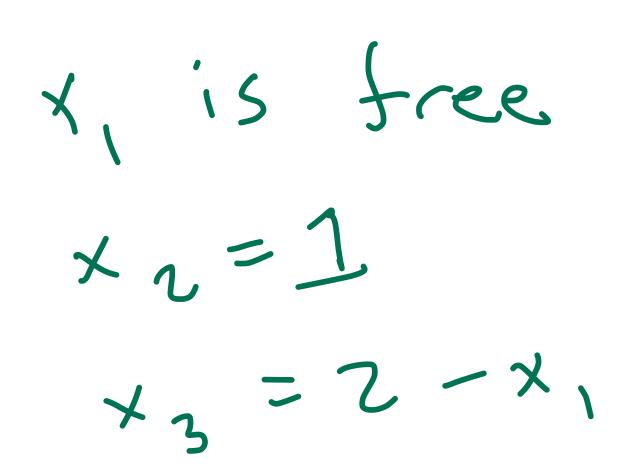


$x_1 + x_3 = 2$ $x_{2} = 1$

it doesn't matter what x_3 is if we want to satisfy this system of equations

 $x_1 = 2 - x_3$ x_3 is free

Infinite Solution Case



 $x_1 = 2 - x_3$ $x_2 = 1$ x_3 is free

$x_1 + x_3 = 2$ $x_{2} = 1$

it doesn't matter what x_3 is if we want to satisfy this system of equations

general form

In Sum

reduces to a system with the none equation 0 = 1reduces to a system whose coefficient one matrix is the identity matrix

infinity

reduces to a system which leaves a variable unrestricted

In Sum

none equation 0 = 1

one

infinity variable unrestricted

reduces to a system with the

- reduces to a system whose coefficient matrix is the identity matrix
- reduces to a system which leaves a
- Ideally, we want one form that handles all three cases

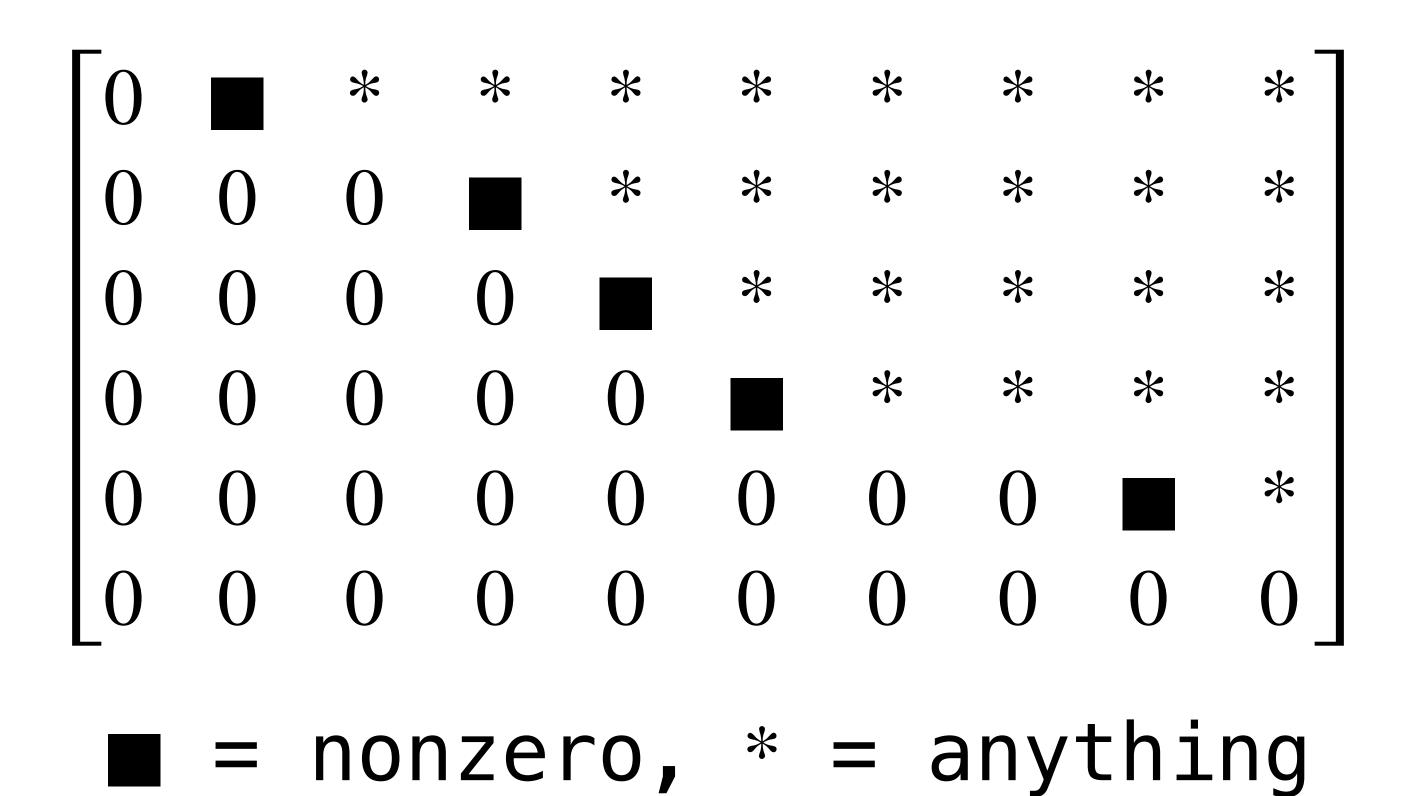
Echelon Form

The Picture (and a bit of history)

TROOPS

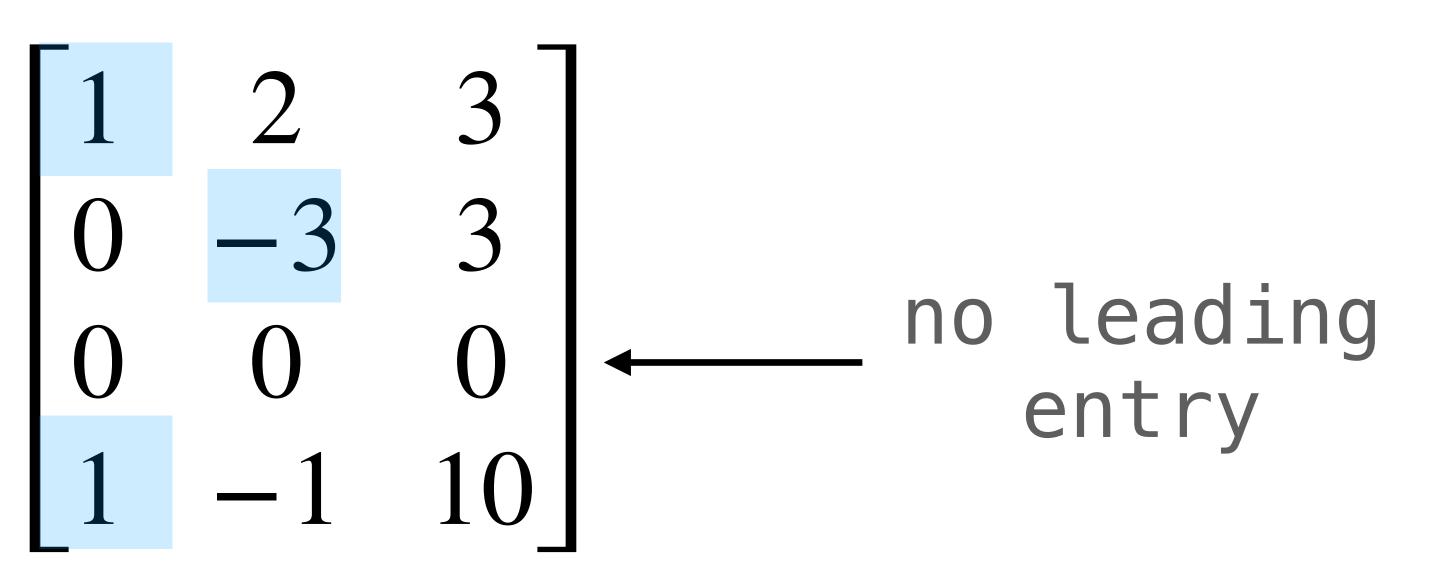
https://commons.wikimedia.org/wiki/File:Echelon_1_(PSF).png

Echelon Form (Pictorially)



Leading Entries

Definition. the leading entry of a row is the first nonzero value



Echelon Form

Echelon Form Definition. A matrix is in echelon form if

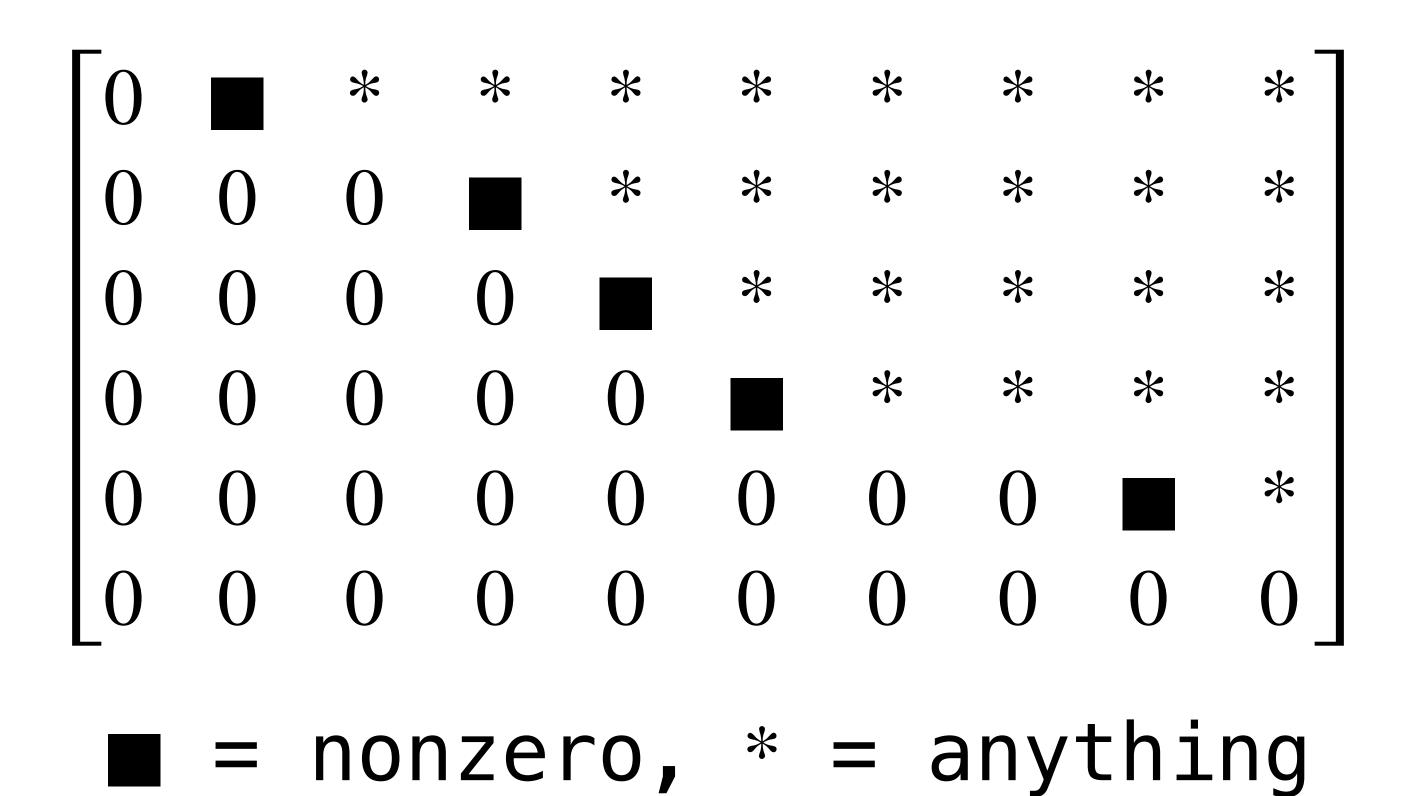
Echelon Form

- Definition. A matrix is in echelon form if
- 1. The leading entry of each row appears to the right of the leading entry above it

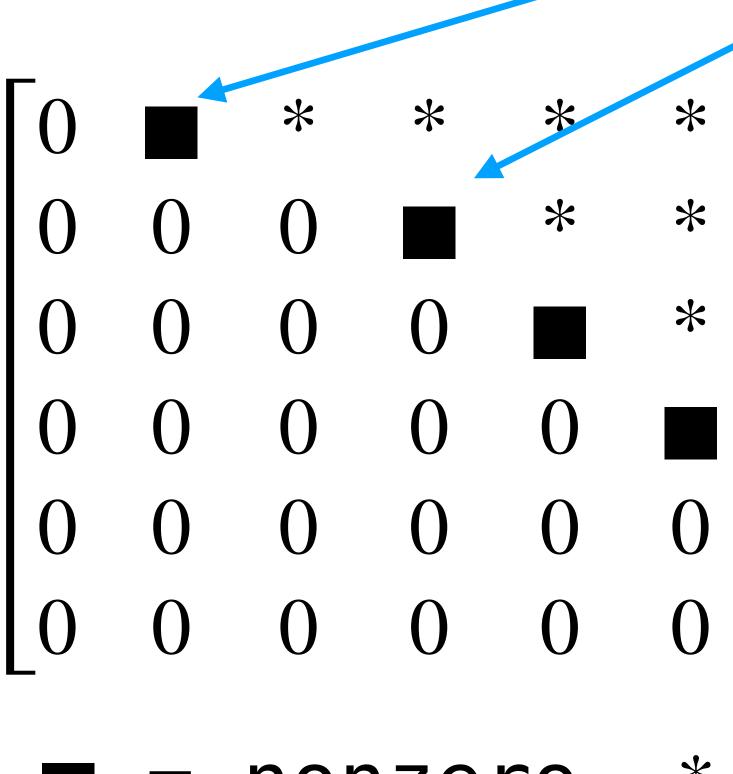
Echelon Form

- Definition. A matrix is in echelon form if
- 1. The leading entry of each row appears to the right of the leading entry above it (except for 2. Every all-zeros row appears below any non-
- zero rows

Echelon Form (Pictorially)



Echelon Form (Pictorially)



4+22 = 5

* * * * * * * * * * * * * * * * * * * all-zero rows at 0 0 0 * the bottom 0 0 ()

= nonzero, * = anything

next leading entry

to the right

Question

Is the identity matrix in echelon form?

$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

Answer: Yes

the leading entries of each row appears right of the leading entry above it

it has no all-zero rows

to t

Question

Is this matrix in echelon form?

$\begin{bmatrix} 2 & 3 & -8 \\ 0 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}$

Answer: No

$\begin{bmatrix} 2 & 3 & -8 \\ 0 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}$ The leading entry of the least row is not to the right of the leading entry of the second row

What's special about Echelon forms?

Theorem. Let A be the augmented matrix of an echelon form then B has the row

<u>inconsistent</u> linear system. If $A \sim B$ and B is in

$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

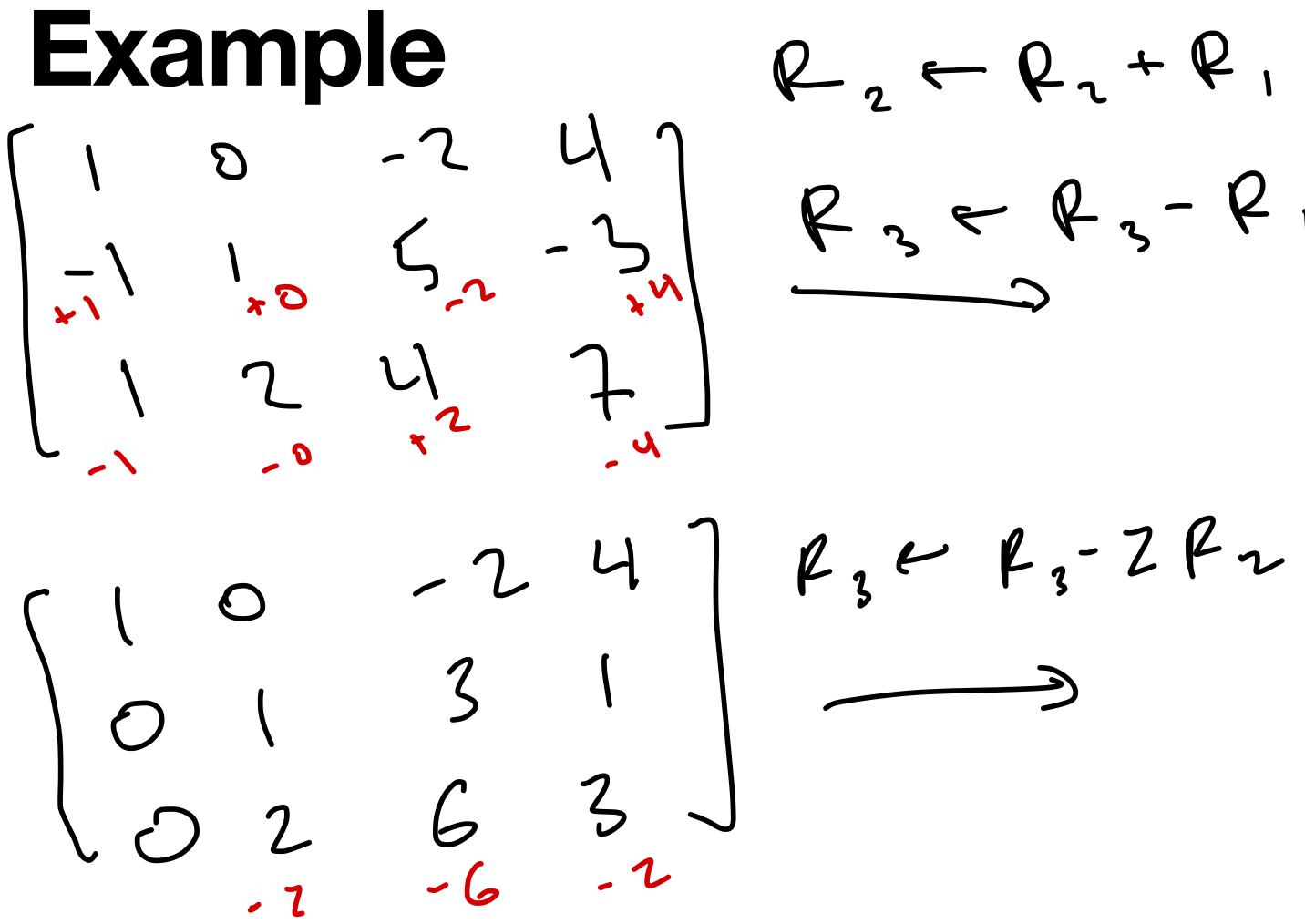
What's special about Echelon forms?

Theorem. Let A be the augmented matrix of an echelon form then B has the row

<u>inconsistent</u> linear system. If $A \sim B$ and B is in

[00.00]

If all we care about is consistency then we just need to find an echelon form



x - 2z = 4 $R_2 \leftarrow R_1 + R_1$ -x + y + 5z = -3x + 2y + 4z = 7< R2 - R1

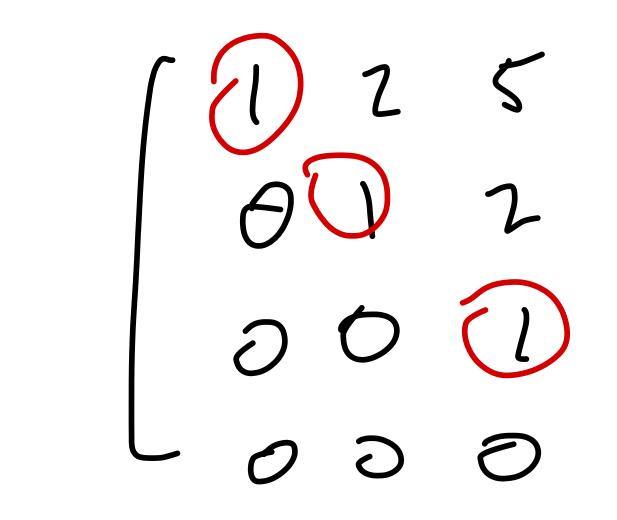
0 3

The Problem with Echelon Forms

If our system *is* consistent, we can't get a solution quite yet.

The Problem with Echelon Forms

If our system *is* consistent, we can't get a solution quite yet.



We need to simplify our matrix a bit more until it "represents" a solution

 $\begin{pmatrix} 1 & 2 & 5 & -5 & 3 \\ 0 & 2 & 3 & -3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ \end{pmatrix} \begin{array}{c} \times_{1} - 2 \times_{2} + 5 \times_{3} - 5 \times_{n} = 3 \\ \times_{2} + 2 \times_{3} + 3 \times_{4} = -5 \\ \times_{3} = 2 \\ \times_{4} = 5 \end{array}$

Reduced Echelon Form

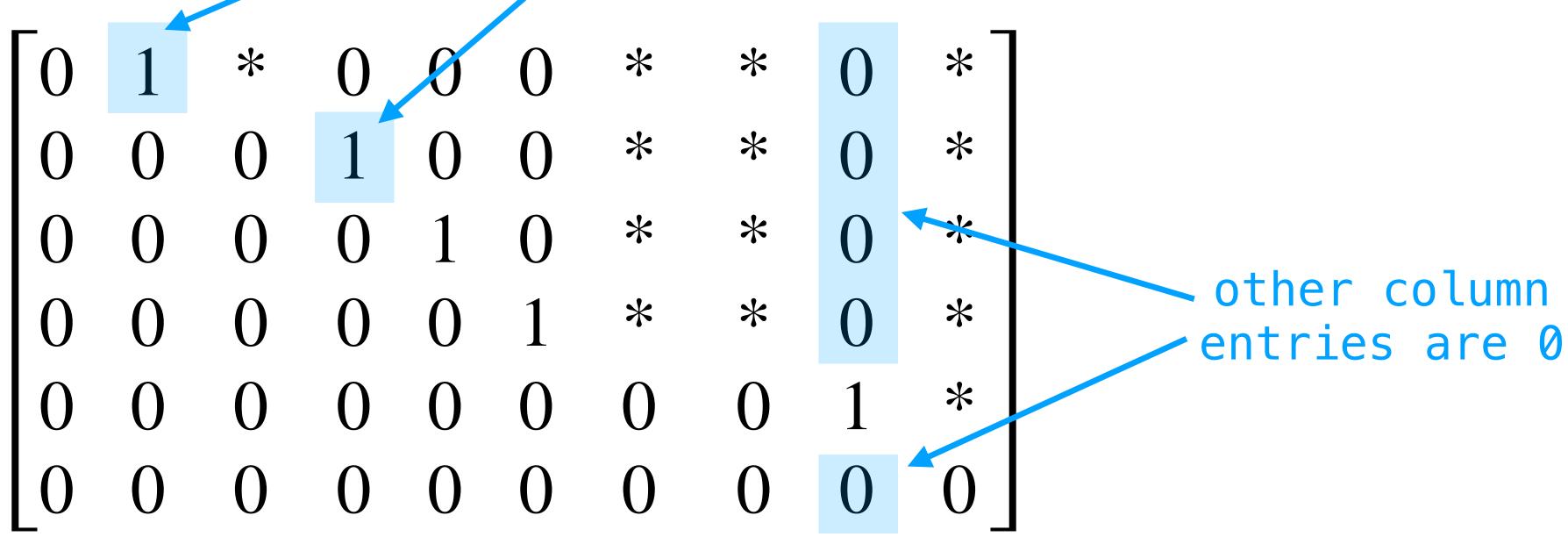
Row-Reduced Echelon Form (RREF)

- Definition. A matrix is in (row-)reduced echelon form if
- 1. The leading entry of each row appears to the right of the leading entry above it
- 2. Every all-zeros row appears below any non-zero rows
- 3. The leading entries of non-zero rows are 1
- 4. the leading entries are the only non-zero entries of their columns

Reduced Echelon Form (Pictorially)

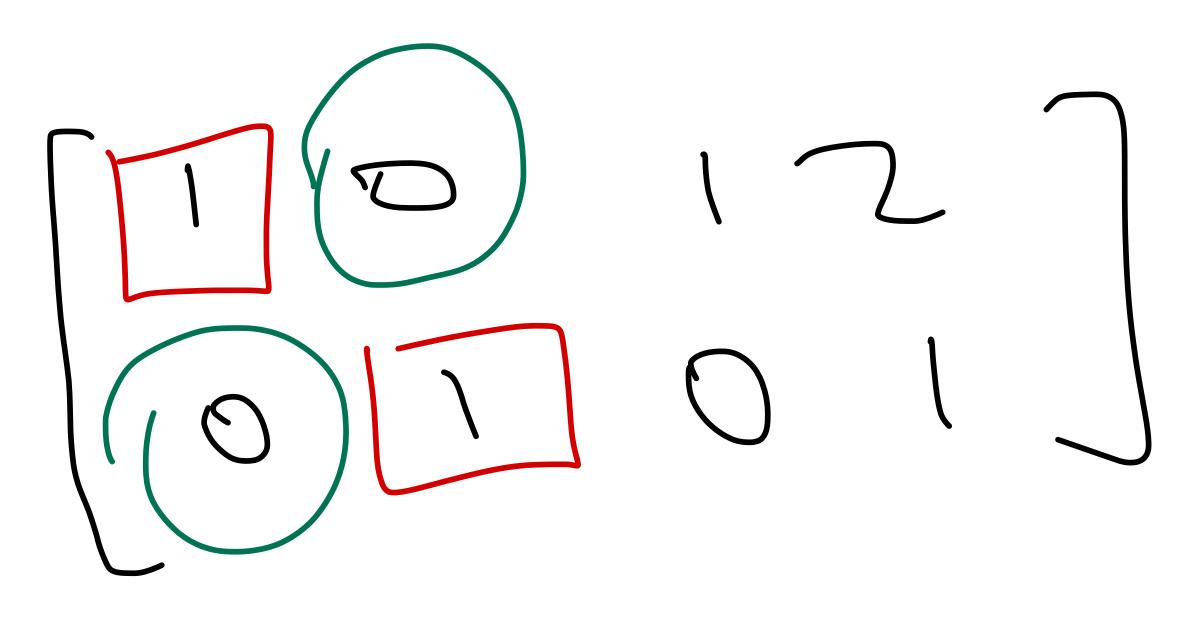
 $\begin{bmatrix} 0 & 1 & * & 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 1 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

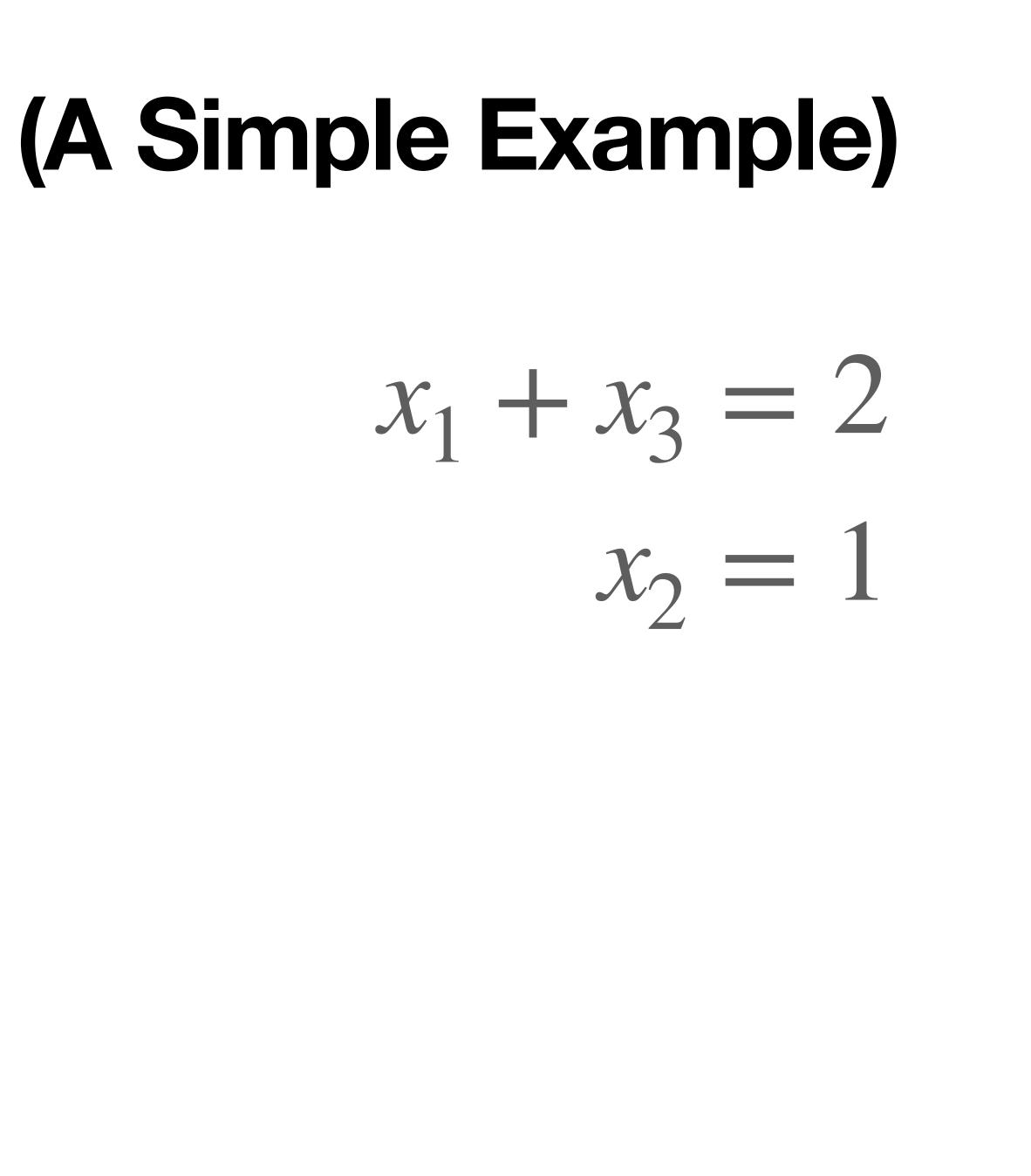
Reduced Echelon Form (Pictorially)



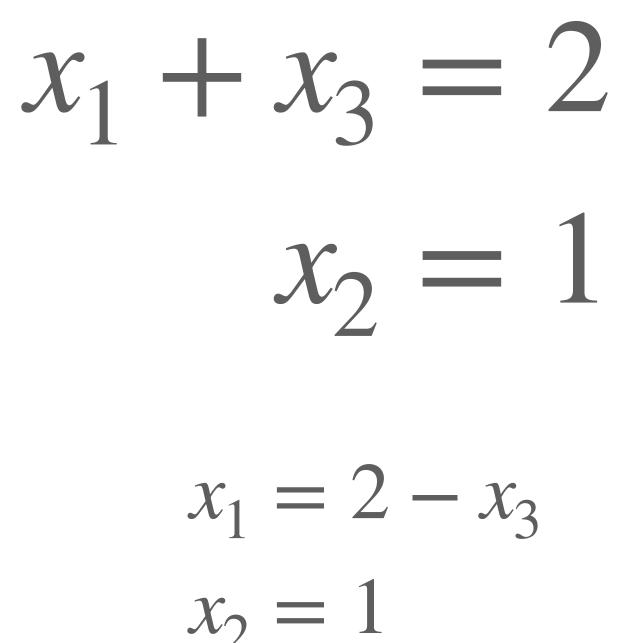
leading entries are 1

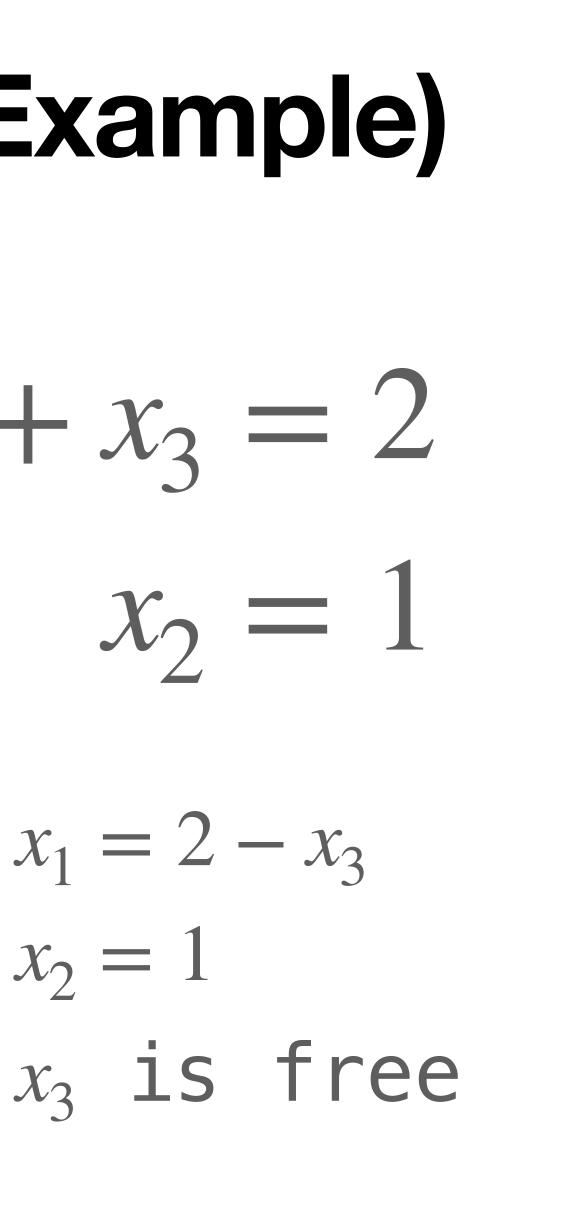
Reduced Echelon Form (A Simple Example)





Reduced Echelon Form (A Simple Example)





The Fundamental Points

The Fundamental Points

system of linear equations from its RREF

Point 1. we can "read off" the solutions of a

The Fundamental Points

Point 1. we can "read off" the solutions of a system of linear equations from its RREF

Point 2. *every* matrix is row equivalent to a <u>unique</u> matrix in reduced echelon form

1. Write your system as an augmented matrix

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

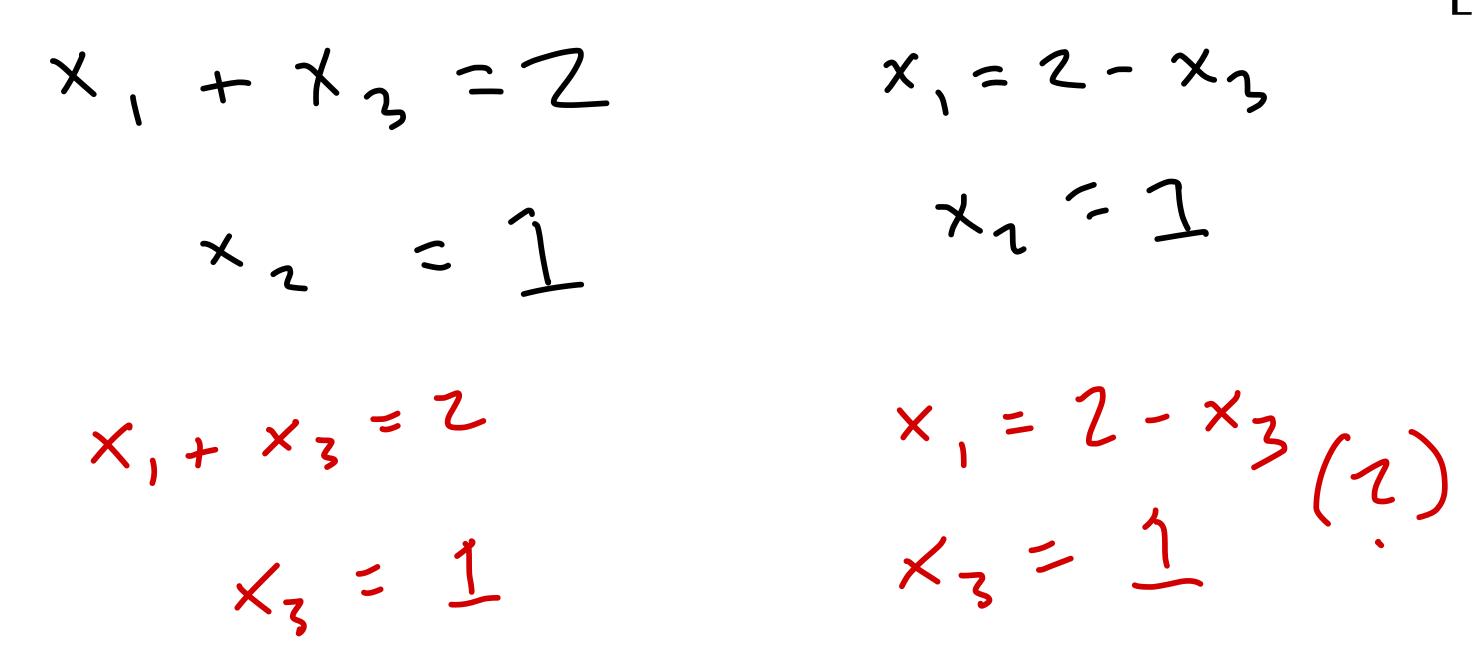
2. Find the RREF of that matrix

3. Read off the solution from the RREF Our next topic

demo (a.rref())

What's special about RREF?

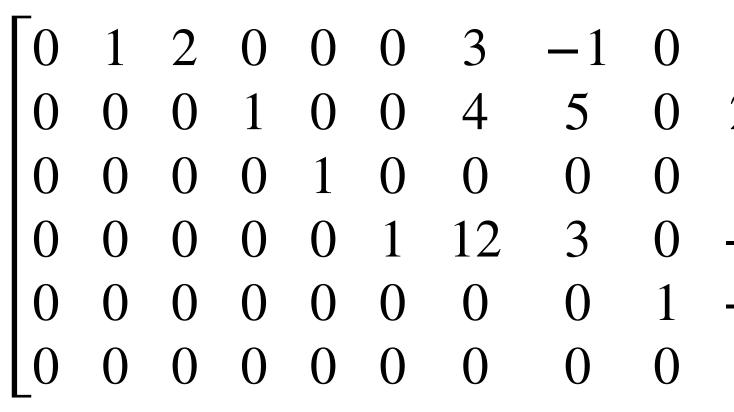
Every leading variable can be written in terms of only non-leading variables.

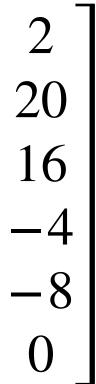


| $\begin{bmatrix} 0 \end{bmatrix}$ | 1 | * | 0 | 0 | 0 | * | * | 0 | * |
|-----------------------------------|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 1 | 0 | 0 | * | * | 0 | * |
| 0 | 0 | 0 | 0 | 1 | 0 | * | * | 0 | * |
| 0 | 0 | 0 | 0 | 0 | 1 | * | * | 0 | * |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | * |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

 $\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$

Example







the goal of <u>back-substitution</u> is to reduce an echelon form matrix to a **reduced** echelon form

the goal of <u>back-substitution</u> is to reduce an echelon form matrix to a **reduced** echelon form

the goal of <u>Gaussian elimination</u> is to reduce an **augmented** matrix to a **reduced** echelon form

reduced echelon forms describe solutions to linear equations

the goal of <u>back-substitution</u> is to reduce an echelon form matrix to a reduced echelon form

the goal of Gaussian elimination is to reduce an augmented matrix to a reduced echelon form

General-Form Solutions

We know how to use an RREF to see if a system is inconsistent.

- is inconsistent.
- solution, if there is one.

We know how to use an RREF to see if a system We know how to use an RREF to read of a unique

- We know how to use an is inconsistent.
- We know how to use an RREF to read of a unique solution, if there is one.
- But how do we characterize all solutions in the infinite solution case?

We know how to use an RREF to see if a system

Definition. a *pivot position* (*i*,*j*) in a matrix is the

position of a leading entry in it's reduced echelon form

Definition. a *pivot position* (i,j) in a matrix is the position of a leading entry in it's reduced echelon form

Definition. A variable is *basic* if its column has a pivot position (this is called a *pivot column*). It is *free* otherwise.

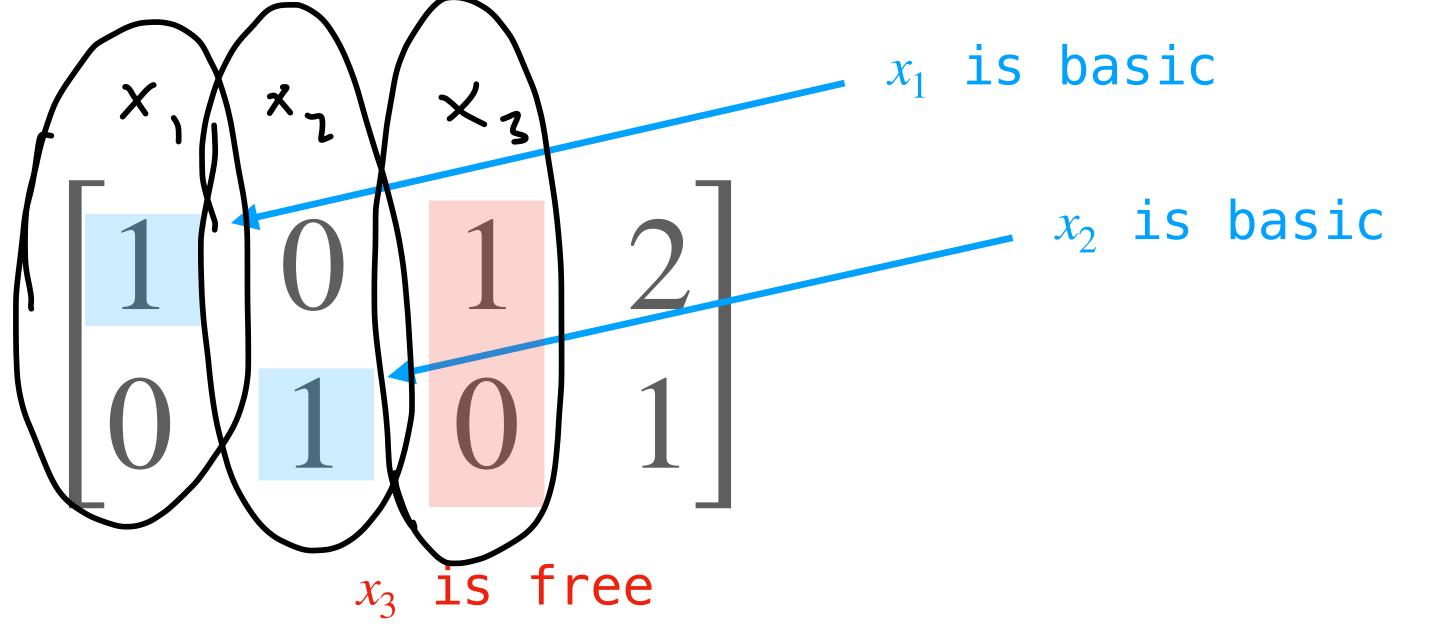
Definition. a *pivot position* (*i*,*j*) in a matrix is the position of a leading entry in it's reduced echelon form

Definition. A variable is *basic* if its column has a pivot position (this is called a *pivot column*). It is *free* otherwise.

1 0 1 2 0 1 0 1 0 1 0 1

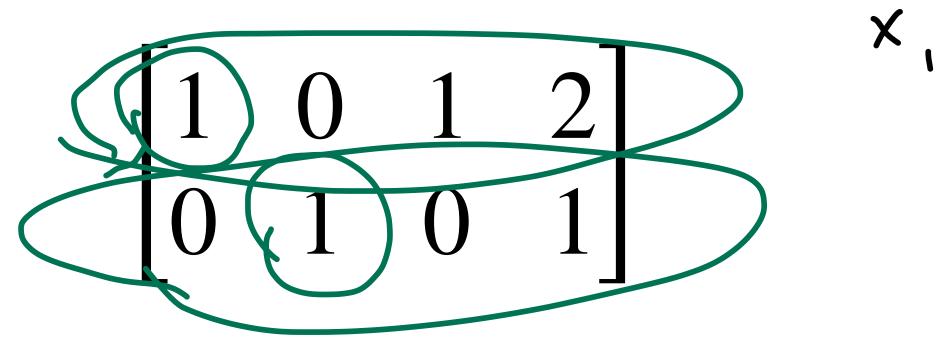
Definition. a *pivot position* (i,j) in a matrix is the position of a leading entry in it's reduced echelon form

Definition. A variable is *basic* if its column has a pivot position (this is called a *pivot column*). It is *free* otherwise.

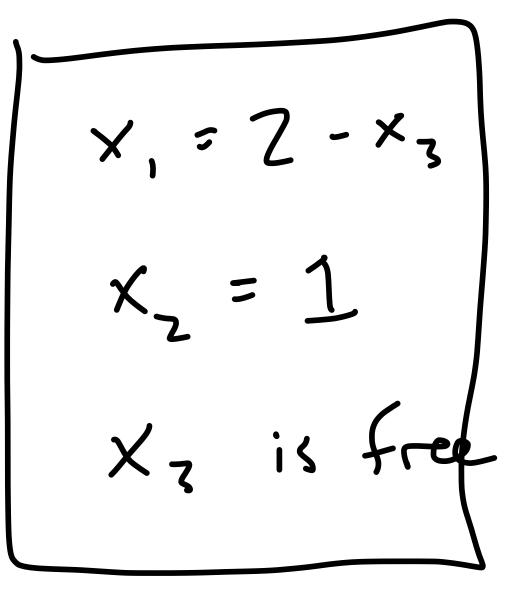


Solutions of Reduced Echelon Forms

the row *i* of a <u>pivot position</u> describes the <u>value of x_i in a solution</u> to the system, in terms of the free variables



| + メュニ て | x_1 = -98 |
|-----------|-----------|
| $x_2 = 1$ | $X_2 = 1$ |
| | X,=100 |



How-To: General Form Solution $r_1 = 2 - r_2$

 $\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$

$$x_1 = 2 - x_3$$

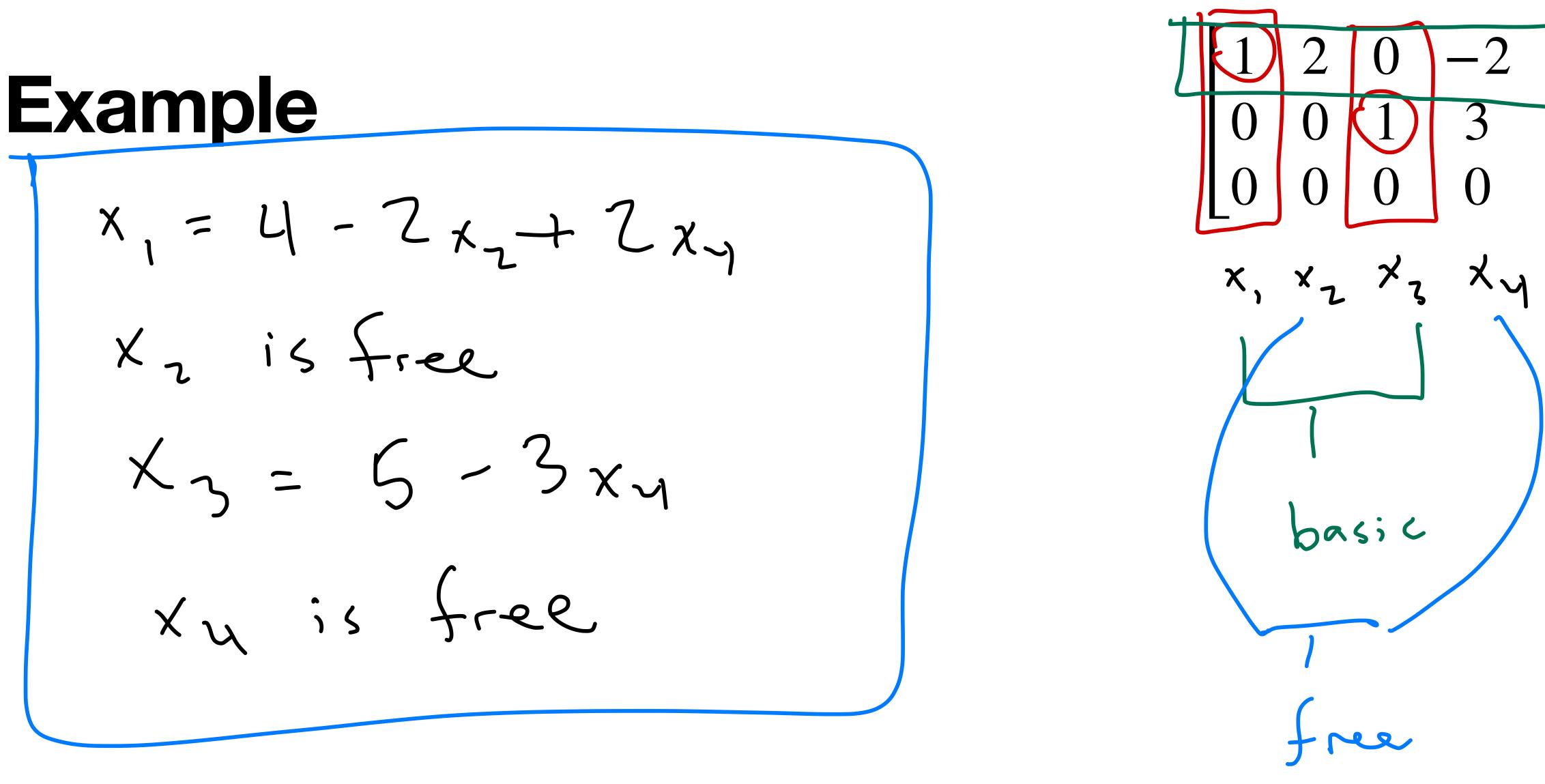
 $x_2 = 1$
 x_3 is free

How-To: General Form Solution $\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ $\begin{array}{c} x_1 = 2 - x_3 \\ x_2 = 1 \\ x_3 & \text{is free} \end{array}$

1. For each pivot position (i,j), isolate x_j in the equation in row i

How-To: General Form Solution $\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ $\begin{array}{c} x_1 = 2 - x_3 \\ x_2 = 1 \\ x_3 & \text{is free} \end{array}$

For each pivot position (i,j), isolate x_j in the equation in row i If x_i is not in a pivot column then write x_i is free



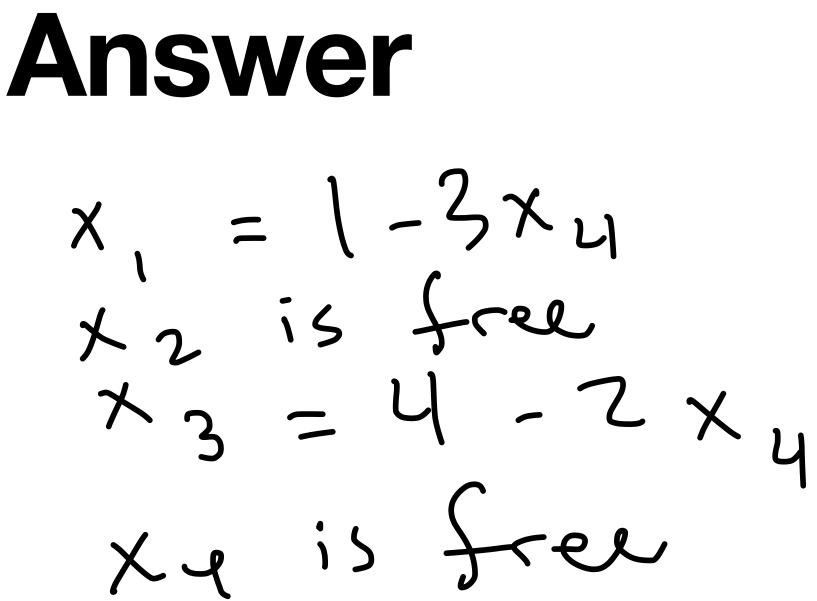
Question

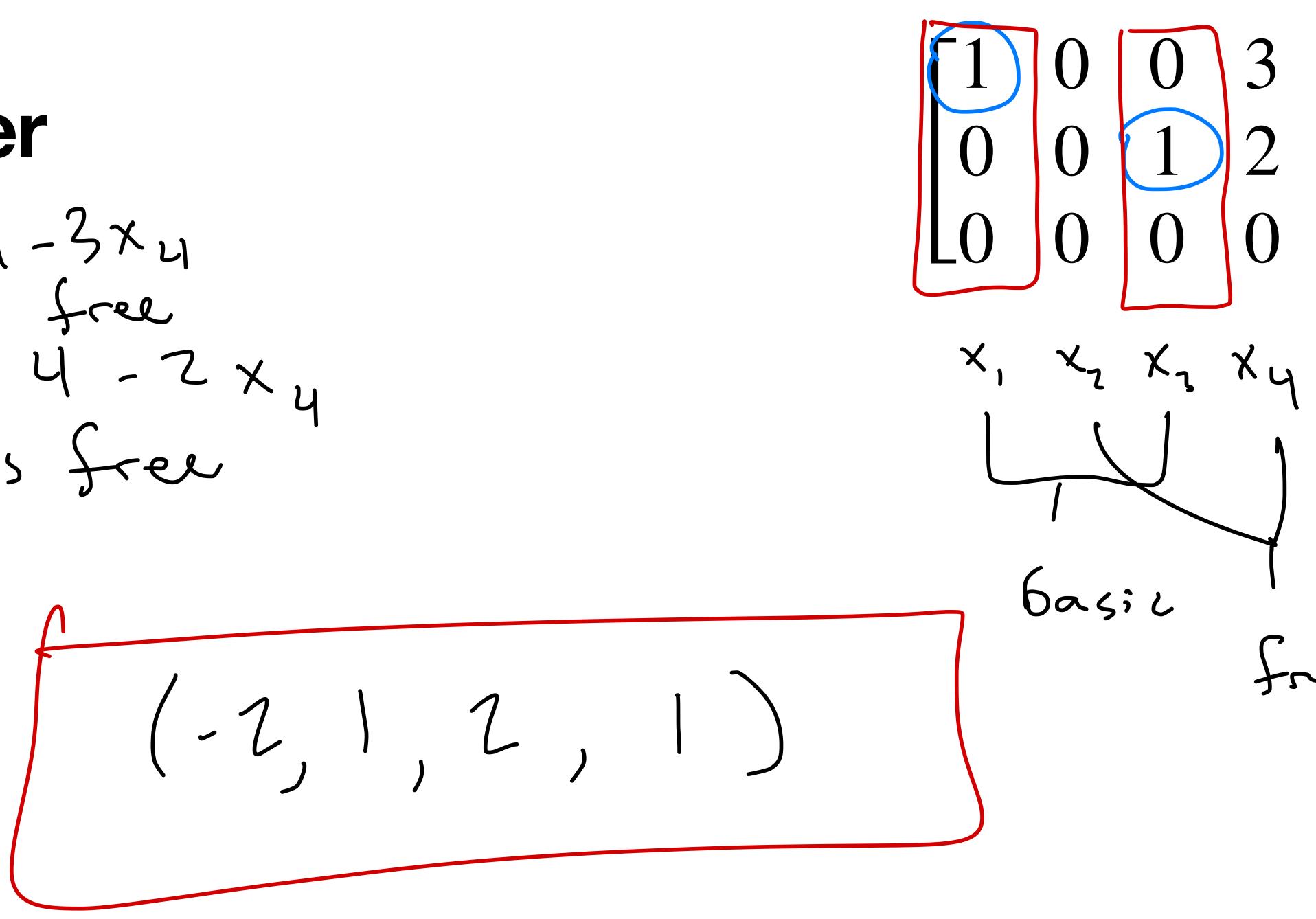
Circle the pivot positions, highlight the pivot rows. Which variables are free? Which are basic?

Write down a solution in general form for this reduced echelon form matrix.

Write down a particular solution given the general form.

$\begin{bmatrix} 1 & 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$





Defining the Gaussian Elimination (GE) Algorithm

eliminations + back-substitution

eliminations + back-substitution we've already done this

eliminations + back-substitution we've already done this the algorithm as <u>pseudocode</u>

but we'll take one step further and write down

- eliminations + back-substitution
- we've already done this
- but we'll take one step further and write down the algorithm as <u>pseudocode</u>
- **Keep in mind.** How do we turn our intuitions into a formal procedure?

The details of Gaussian elimination are tricky.

The details of Gaussian elimination are tricky. The goal is not to understand it entirely, but to get enough intuition to emulate it.

- to get enough intuition to emulate it.
- You should roughly use Gaussian Elimination when solving a system by hand.

The details of Gaussian elimination are tricky.

The goal is not to understand it entirely, but

demo (Step-throughs)

The Algorithm

Gaussian Elimination (Specification)

FUNCTION GE(A): **# INPUT:** m × n matrix A # OUTPUT: equivalent m × n RREF matrix

Gaussian Elimination (High Level)

FUNCTION fwd_elim(A):
 # INPUT: m × n matrix A
 # OUTPUT: equivalent m × n echelon form matrix

FUNCTION back_sub(A):
 # INPUT: m × n echelon form matrix A
 # OUTPUT: equivalent m × n RREF matrix

FUNCTION GE(A):
 RETURN back_sub(fwd_elim(A))

Elimination Stage

Elimination Stage (High Level)

Elimination Stage (High Level)

Input: matrix A of size $m \times n$ Output: echelon form of A

Elimination Stage (High Level)

Input: matrix A of size $m \times n$

Output: echelon form of A

leading entry and eliminate it from latter equations

starting at the top left and move down, find a

What if the first equation doesn't have the variable x_1 ?

What if the first equation doesn't have the variable x_1 ?

Swap rows with an equation that does.

What if the first equation doesn't have the variable x_1 ?

What if *none* of the equations have the variable *x*₁?

Swap rows with an equation that does.

- What if the first equation doesn't have the variable x_1 ?
- Swap rows with an equation that does.
- x_1 ?
- of the remaining equations.

What if *none* of the equations have the variable

Find the leftmost variable which appears in any

FUNCTION fwd_elim(A):

FUNCTION fwd_elim(A):

FOR [i from 1 to m]: # for each row from top to bottom

FUNCTION fwd_elim(A):

FOR [i from 1 to m]: # for each row from top to bottom

- **IF** [rows i...m are all-zeros]: # if remaining rows are zero

Elimination Stage (Pseudocode) FUNCTION fwd_elim(A): FOR [i from 1 to m]: # for each row from top to bottom **IF** [rows i...m are all-zeros]: # if remaining rows are zero **RETURN** A

FUNCTION fwd_elim(A):

FOR [i from 1 to m]: # for each row from top to bottom

RETURN A

ELSE:

- **IF** [rows i...m are all-zeros]: # if remaining rows are zero

FUNCTION fwd_elim(A):

- FOR [i from 1 to m]: # for each row from top to bottom
 - IF [rows i...m are all-zeros]: # if remaining rows are zero

RETURN A

ELSE:

(j, k) \leftarrow [position of leftmost entry in the rows i...m]

FUNCTION fwd_elim(A):

- FOR [i from 1 to m]: # for each row from top to bottom
 - IF [rows i...m are all-zeros]: # if remaining rows are zero

RETURN A

ELSE:

(j, k) \leftarrow [position of leftmost entry in the rows i...m] [swap row i and row j]

FUNCTION fwd_elim(A):

- FOR [i from 1 to m]: # for each row from top to bottom
 - IF [rows i...m are all-zeros]: # if remaining rows are zero
 RETURN A

ELSE:

(j, k) ← [position of leftmost entry in the rows i...m]
[swap row i and row j]
FOR [l from i + 1 to m]: # for all remaining rows

FUNCTION fwd_elim(A):

FOR [i from 1 to m]: # for each row from top to bottom
 IF [rows i...m are all-zeros]: # if remaining rows are zero

RETURN A

ELSE:

(j, k) ← [position of leftmost entry in the rows i...m]
[swap row i and row j]
FOR [l from i + 1 to m]: # for all remaining rows
[zero out A[l, k] using a replacement operation]

FUNCTION fwd_elim(A):

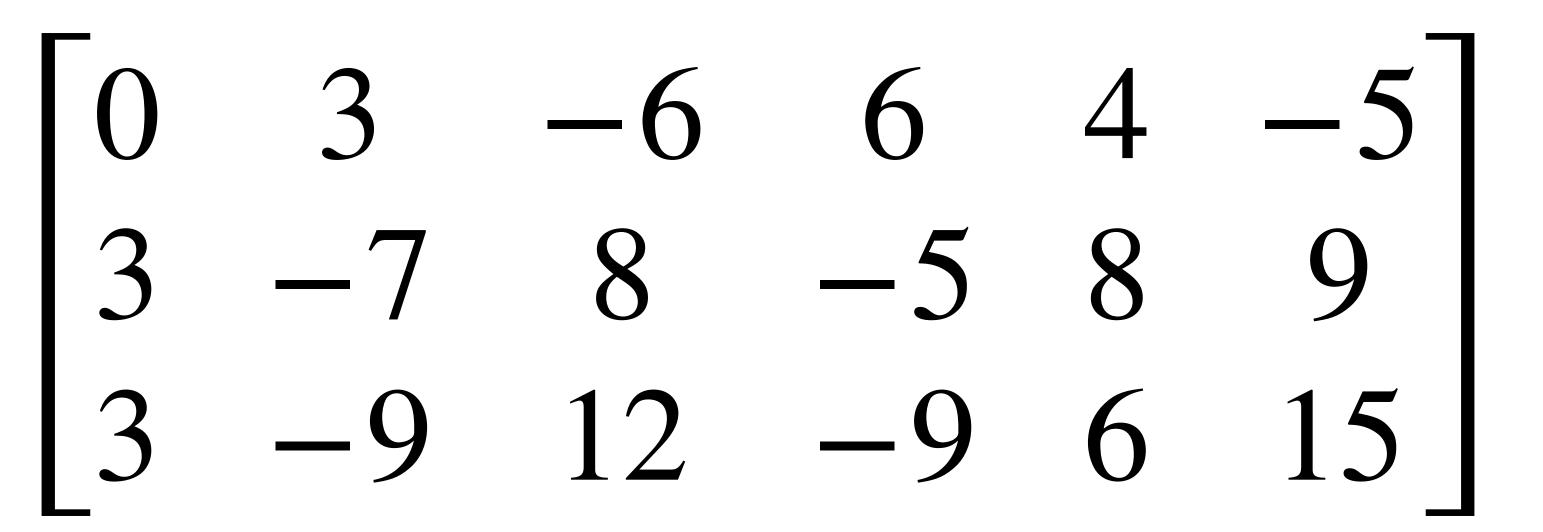
FOR [i from 1 to m]: # for each row from top to bottom **IF** [rows i...m are all-zeros]: # if remaining rows are zero

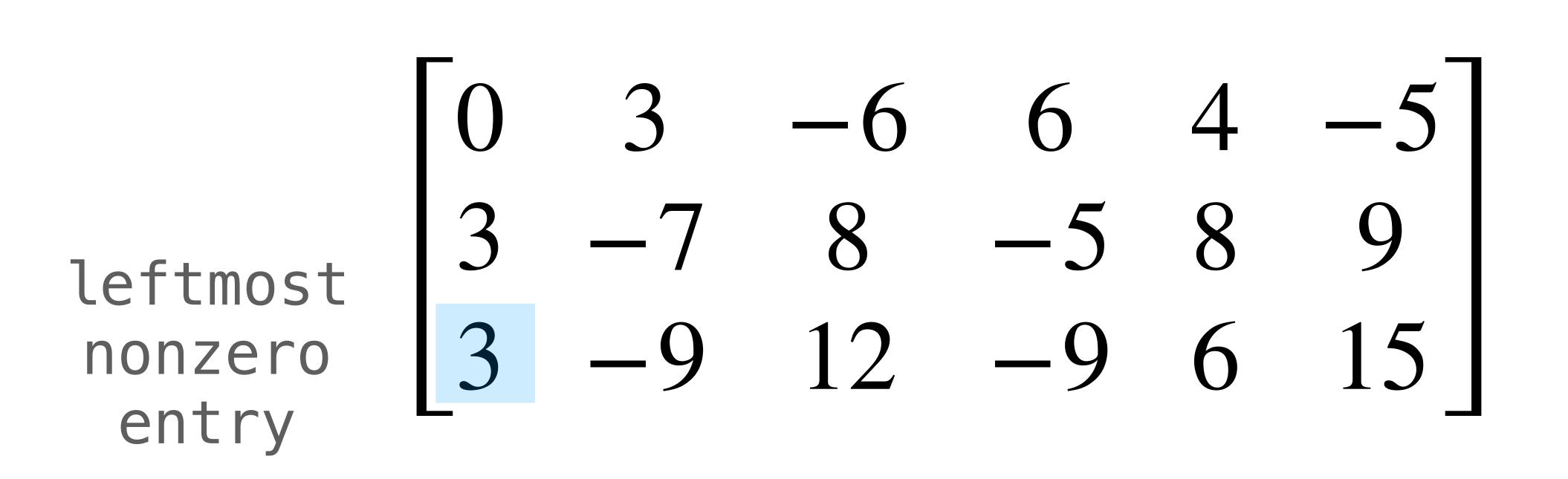
RETURN A

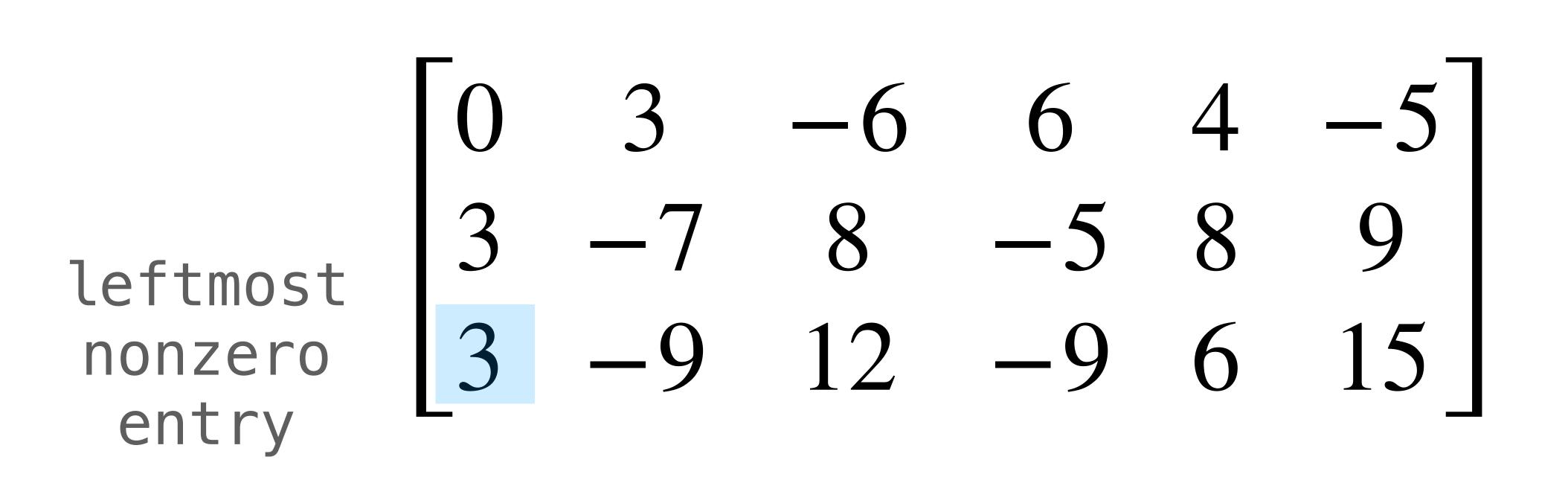
ELSE:

- $(j, k) \leftarrow [position of leftmost entry in the rows i...m]$
- [swap row i and row j]
- **FOR** [l from i + 1 to m]: # for all remaining rows [zero out A[l, k] using a replacement operation]

RETURN A







Swap R_1 and R_3

 $R_3 \leftarrow R_3 - R_1$

$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$

swap R_2 with R_2

 $R_3 \leftarrow R_3 - \frac{3R_2}{2}$

$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$ entry

$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$ entry

swap R_3 with R_3

$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

done with elimination stage going to back substitution stage

$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

Back Substitution Stage

Back Substitution Stage (High Level)

Back Substitution Stage (High Level)

Input: matrix A of size $m \times n$ in echelon form Output: reduced echelon form of A

Back Substitution Stage (High Level)

Input: matrix A of size $m \times n$ in echelon form **Output:** reduced echelon form of A scale pivot positions and eliminate the variables for that column from the other equations

FUNCTION back_sub(A):

FUNCTION back_sub(A):
 FOR [i from 1 to m]: # for each row from top to bottom

FUNCTION back_sub(A):
 FOR [i from 1 to m]: # for each row from top to bottom
 IF [row i has a leading entry]:

FUNCTION back_sub(A): FOR [i from 1 to m]: # for each row from top to bottom **IF** [row i has a leading entry]: j ← index of leading entry of row i

FUNCTION back_sub(A): **FOR** [i from 1 to m]: # for each row from top to bottom **IF** [row i has a leading entry]: j ← index of leading entry of row i $R_i(A) \leftarrow R_i(A) / A[i, j] \# divide by leading entry$

FUNCTION back_sub(A): **FOR** [i from 1 to m]: # for each row from top to bottom **IF** [row i has a leading entry]: j ← index of leading entry of row i $R_i(A) \leftarrow R_i(A) / A[i, j] \# divide by leading entry$

- FOR [k from 1 to i 1]: # for the rows above the current one

FUNCTION back_sub(A): **FOR** [i from 1 to m]: # for each row from top to bottom **IF** [row i has a leading entry]: j ← index of leading entry of row i $R_i(A) \leftarrow R_i(A) / A[i, j] \# divide by leading entry$ $R_k(A) \leftarrow R_k(A) - R[k, j] * R_i(A)$

- FOR [k from 1 to i 1]: # for the rows above the current one

 - # zero out R[k, j] above the leading entry

FUNCTION back_sub(A): **FOR** [i from 1 to m]: # for each row from top to bottom **IF** [row i has a leading entry]: j ← index of leading entry of row i $R_i(A) \leftarrow R_i(A) / A[i, j] \# divide by leading entry$ $R_k(A) \leftarrow R_k(A) - R[k, j] * R_i(A)$ # zero out R[k, j] above the leading entry

RETURN A

- FOR [k from 1 to i 1]: # for the rows above the current one

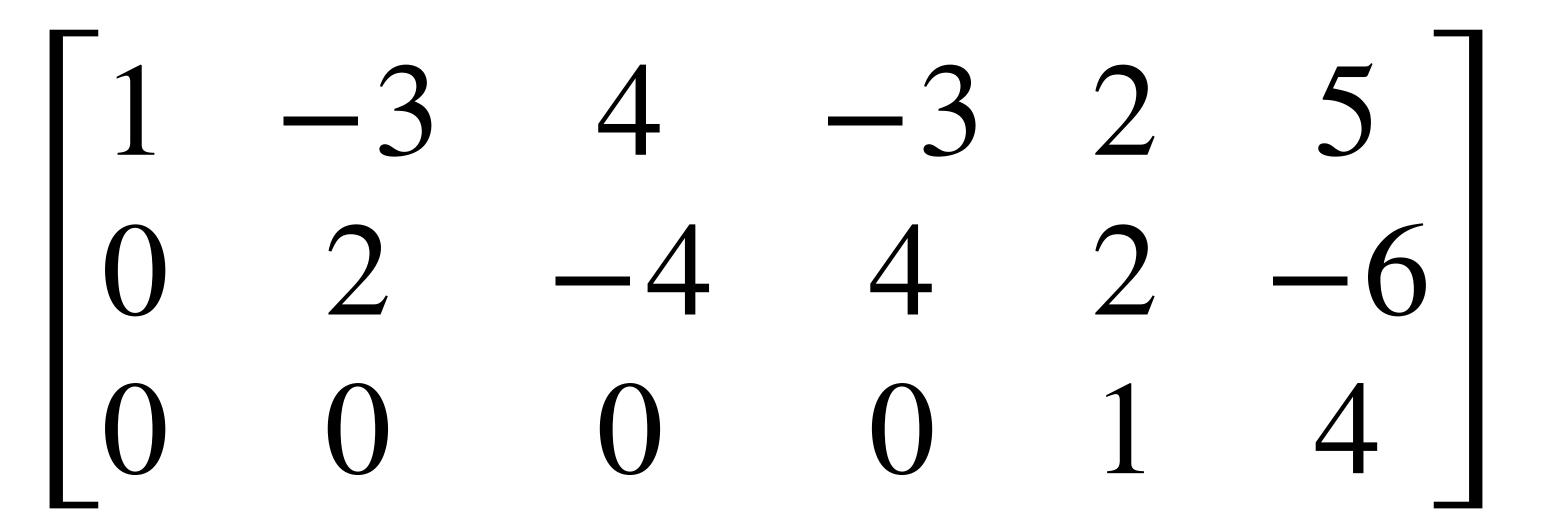
You will have to implement this part in HW2...

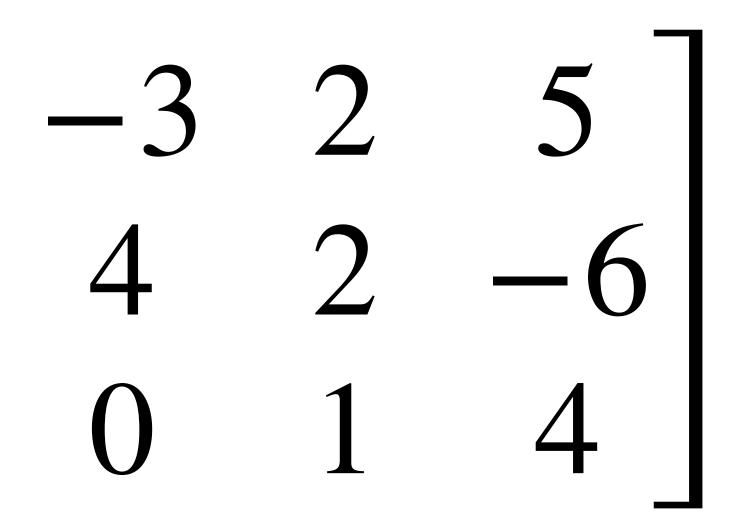
$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

$\begin{bmatrix} pivot \\ position \end{bmatrix} \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

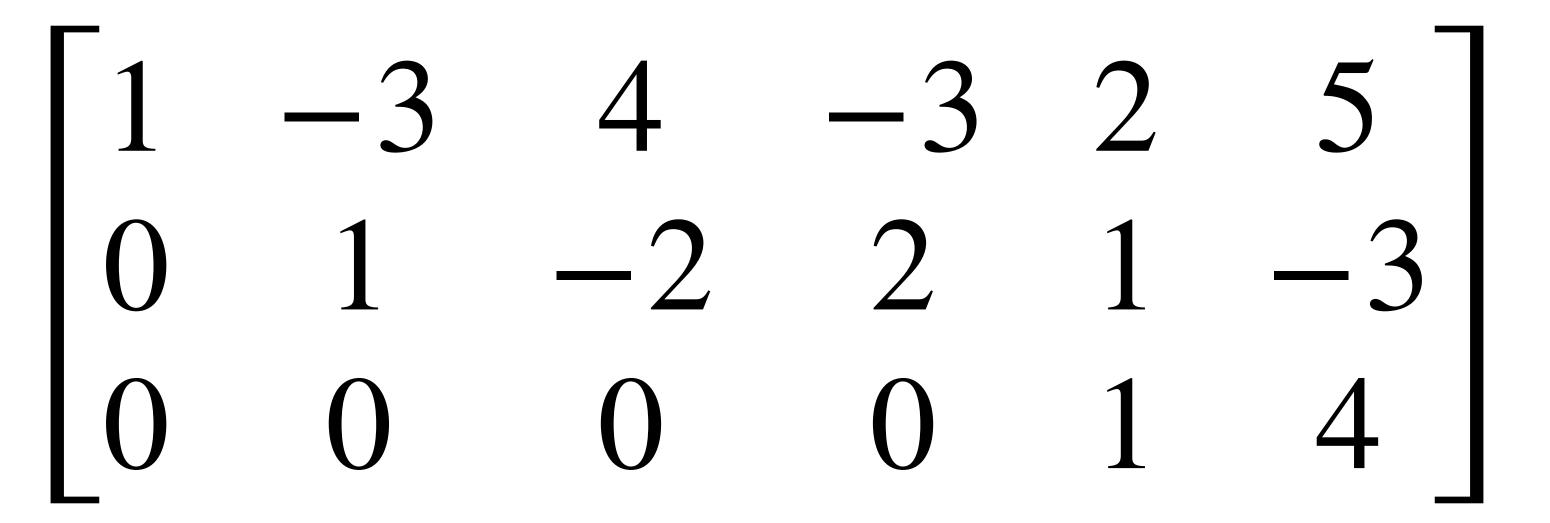
$\begin{bmatrix} pivot \\ position \end{bmatrix} \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

 $R_1 \leftarrow R_1 / 3$

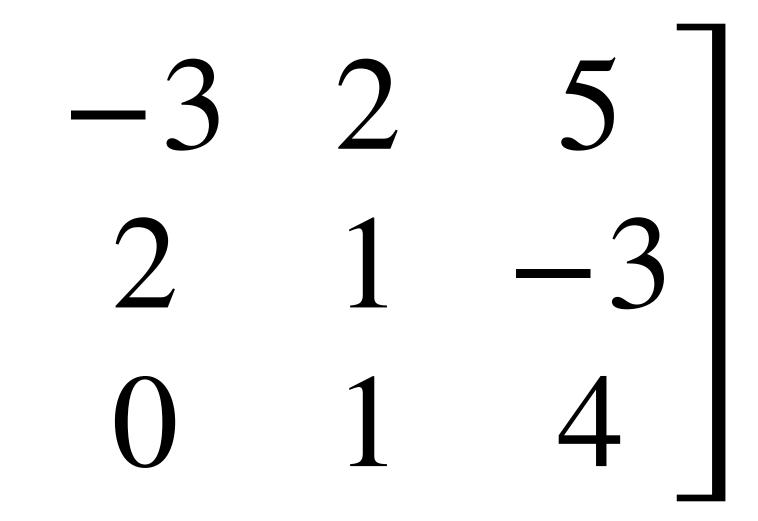




 $R_2 \leftarrow R_2 / 2$

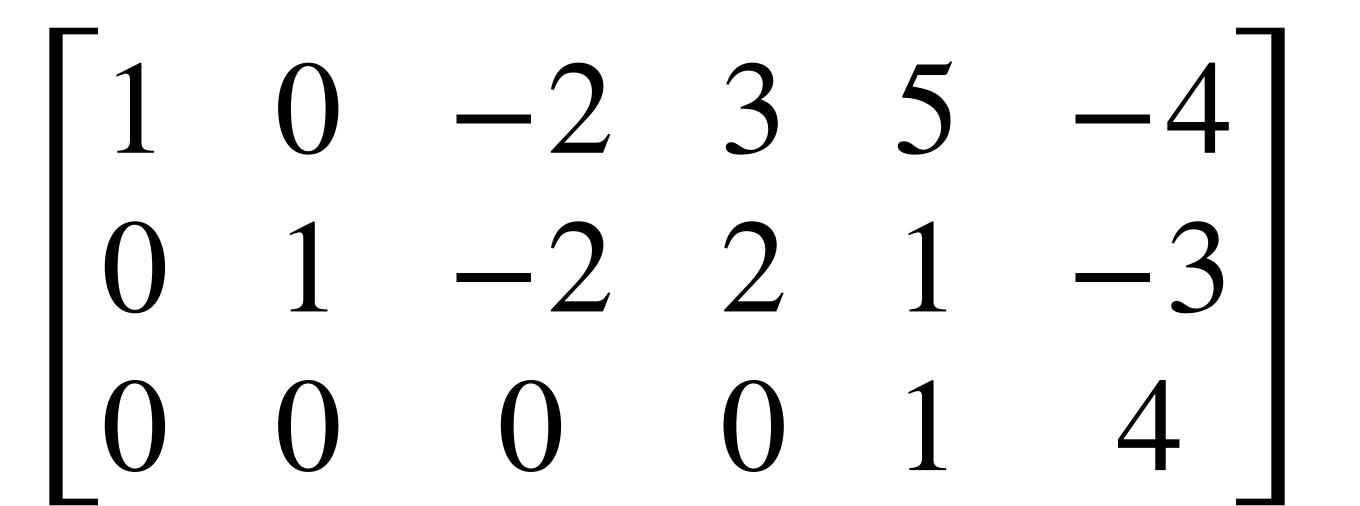


$\begin{bmatrix} next entry \\ to zero \end{bmatrix} \begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

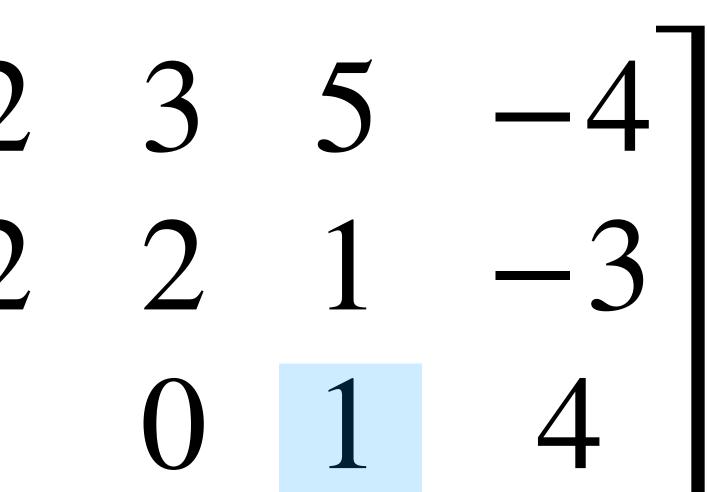


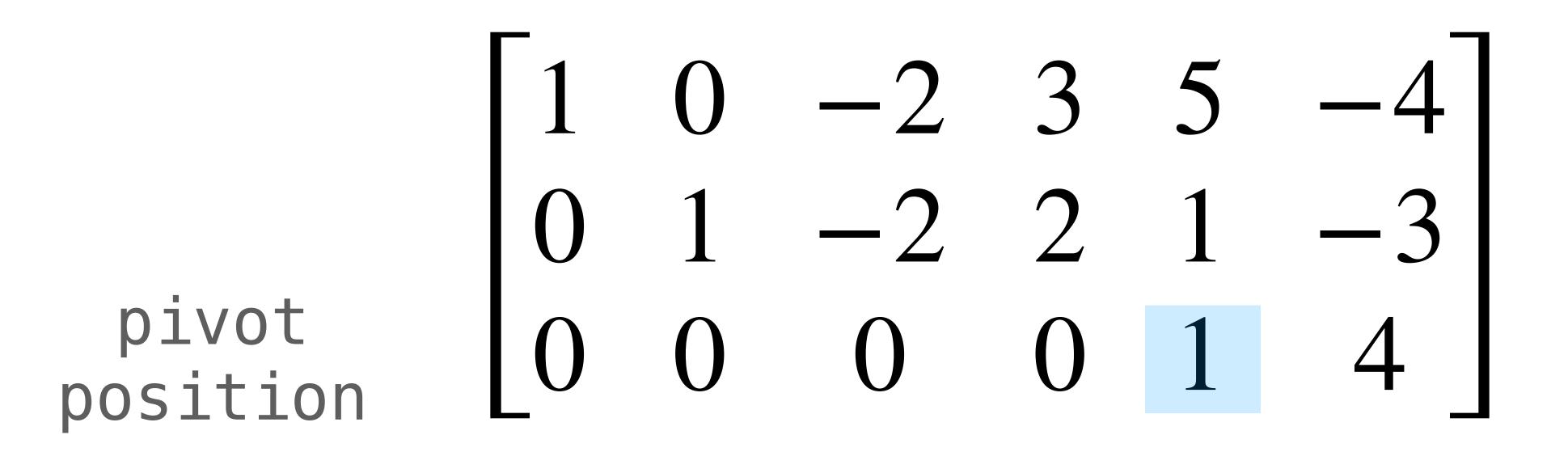
$\begin{bmatrix} next entry \\ to zero \end{bmatrix} \begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

 $R_1 \leftarrow R_1 + 3R_2$

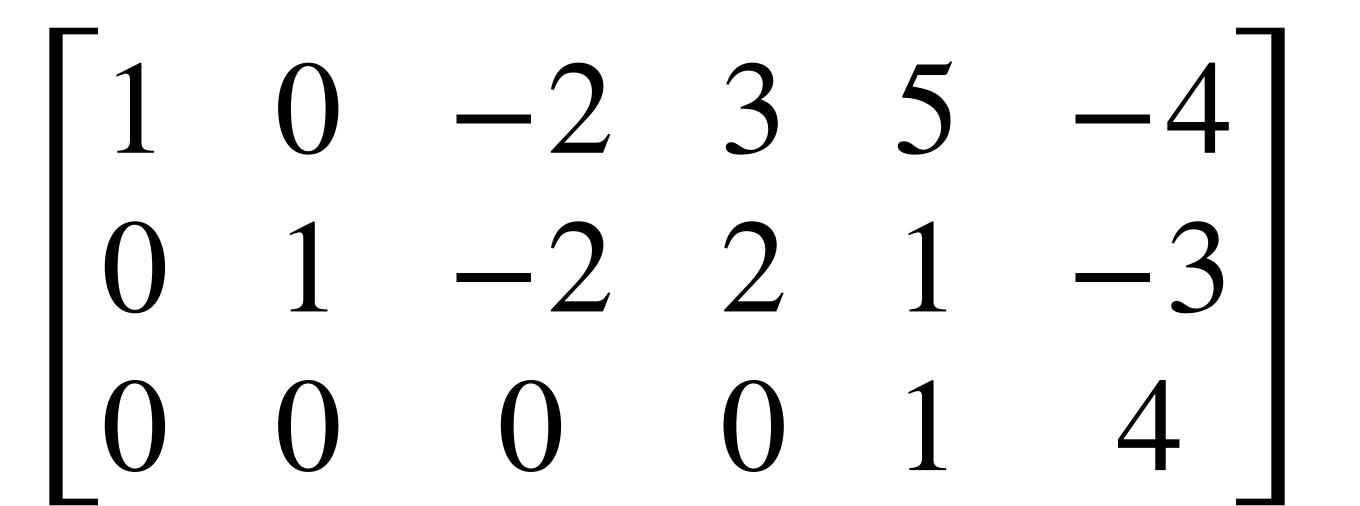


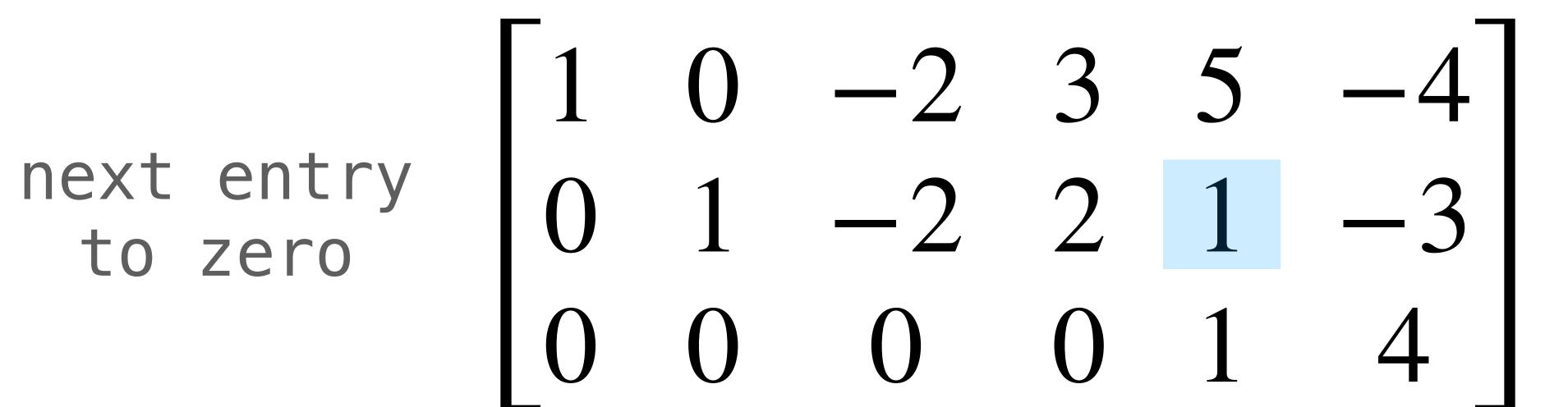
$\begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

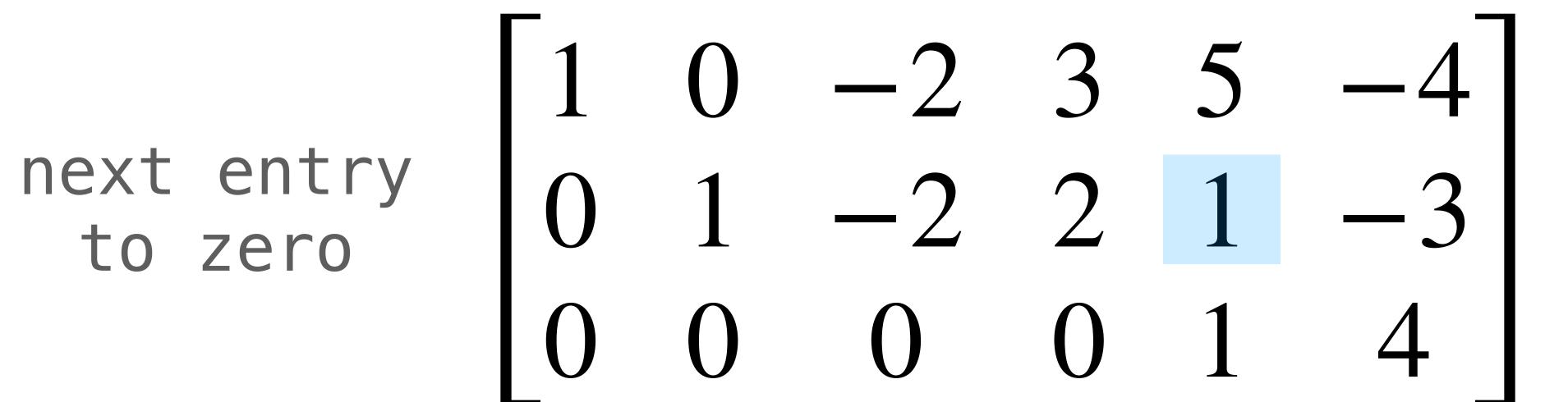




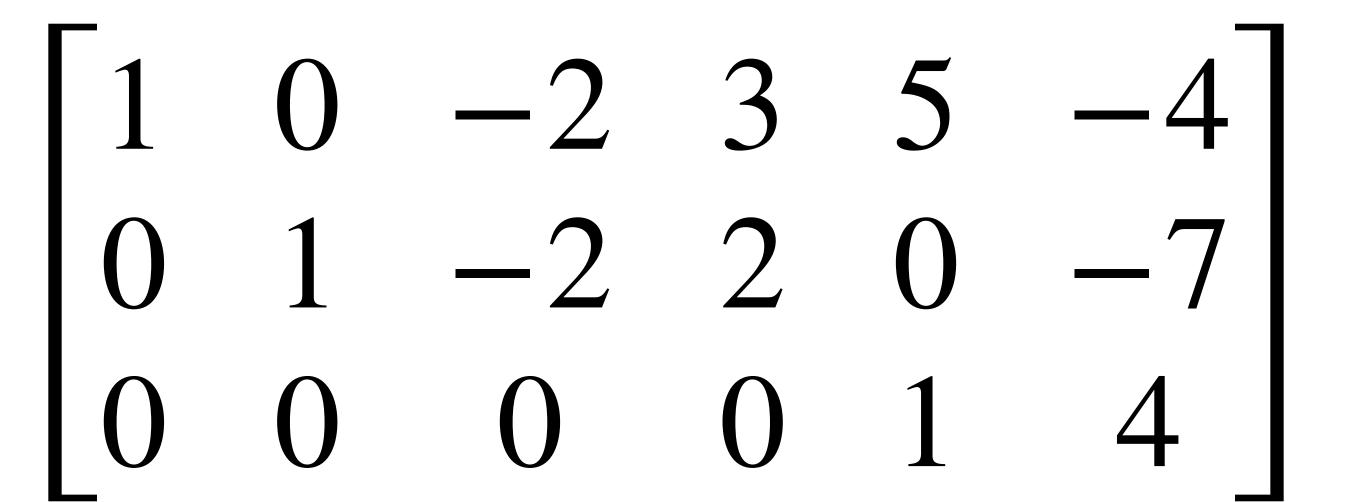
 $R_3 \leftarrow R_3 / 1$

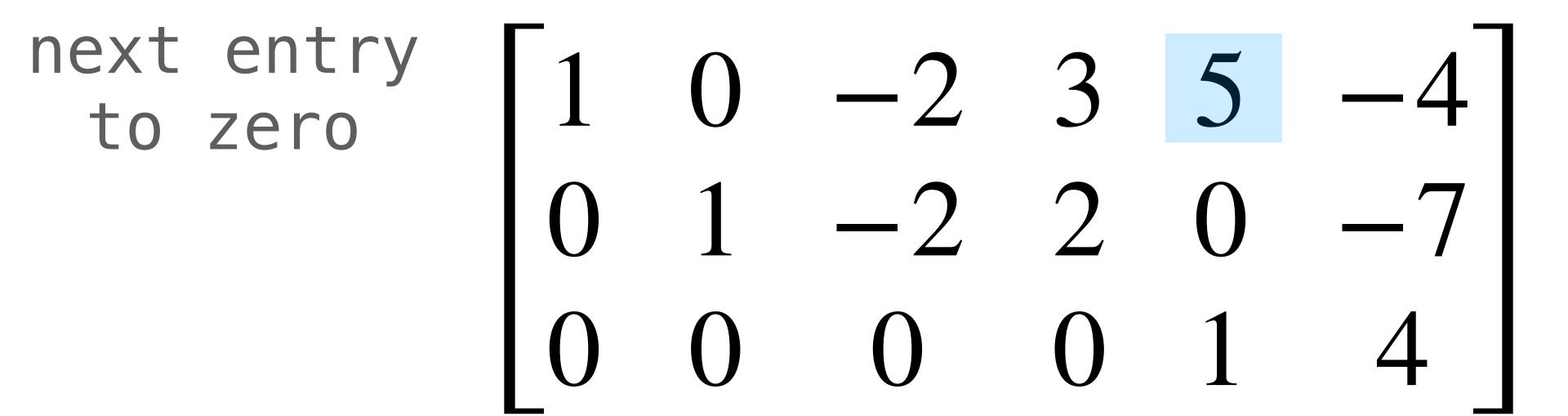


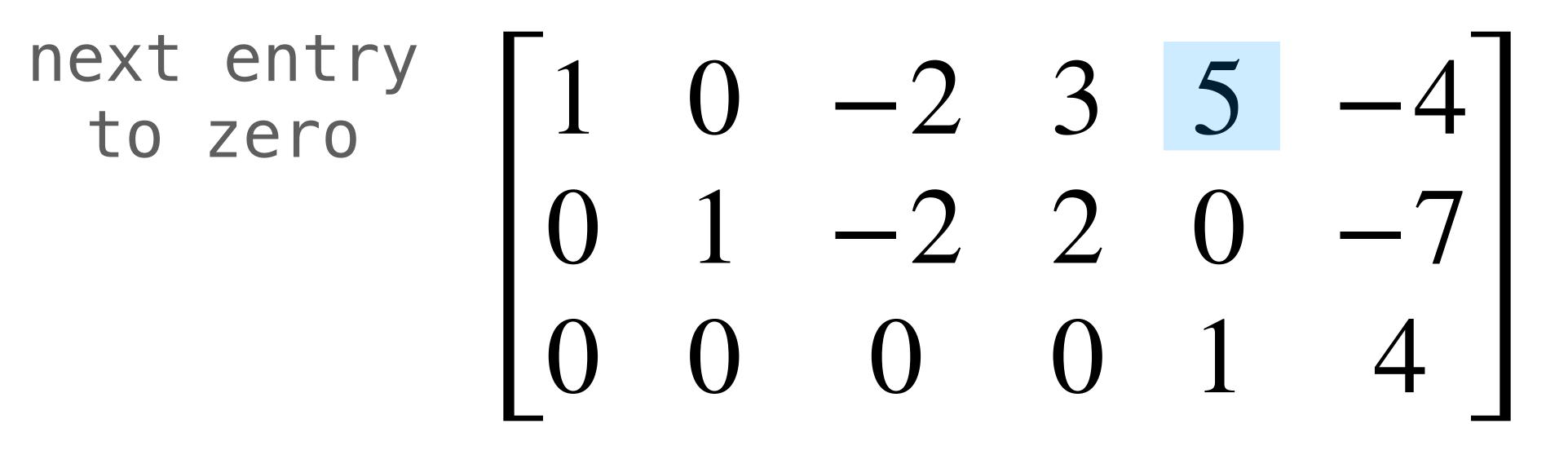




 $R_2 \leftarrow R_2 - R_1$







 $R_1 \leftarrow R_1 - 5R_3$

$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

done with back substitution phase

 x_3 is free x_{Δ} is free $x_5 = 4$

 $x_1 = (-24) + 2x_3 - 3x_4$ $x_2 = (-7) + 2x_3 - 2x_4$

$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

1. Write your system as an augmented matrix

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

1. Write your system as an augmented matrix

2. Find the RREF of that matrix **Gaussian elimination**

3. Read off the solution from the RREF

Extra Topic: Analyzing the Algorithm

We will not use $O(\cdot)$ notation!

- We will not use $O(\cdot)$ notation! For numerics, we care about number of **FL**oatingoint **OP**erations (FLOPs):
 - >> addition
 - >> subtraction
 - >> multiplication
 - >> division
 - >> square root

- We will not use $O(\cdot)$ notation! For numerics, we care about number of **FL**oatingoint **OP**erations (FLOPs):
 - >> addition
 - >> subtraction
 - >> multiplication
 - >> division
 - >> square root

2n vs. n is very different when $n \sim 10^{20}$

that said, we don't care about exact bounds

that said, we don't care about exact bounds g(n) if

A function f(n) is asymptotically equivalent to

 $\lim_{i \to \infty} \frac{f(i)}{g(i)} = 1$

that said, we don't care about exact bounds g(n) if

for polynomials, they are equivalent to their dominant term

A function f(n) is asymptotically equivalent to

 $\lim_{i \to \infty} \frac{f(i)}{g(i)} = 1$

highest degree

 $i \rightarrow \infty$

 $3x^3$ dominates the function even though the coefficient for x^2 is so large

the dominant term of a polynomial is the monomial with the

$\lim_{i \to \infty} \frac{3x^3 + 100000x^2}{3x^3} = 1$

Parameters

- *n* : number of variables

m : number of equations (we will assume m = n) n+1 : number of rows in the augmented matrix

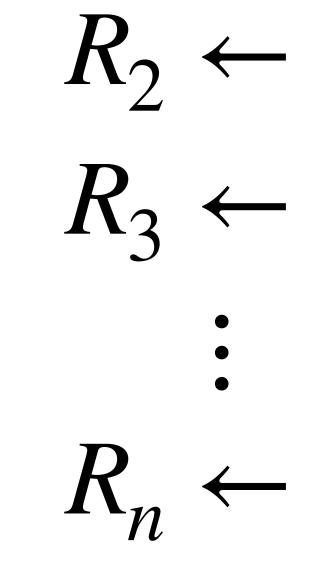
The Cost of a Row Operation

n+1 multiplications for the scaling n+1 additions for the row additions

Tally: 2(n + 1) FLOPS

$R_i \leftarrow R_i + aR_i$

Cost of First Iteration of Elimination



repeated row operation first

Tally: $\approx 2n(n+1)$ FLOPS

 $R_2 \leftarrow R_2 + a_2 R_1$ $R_3 \leftarrow R_3 + a_3 R_1$

- $R_n \leftarrow R_n + a_n R_1$
- repeated row operations for each row except the

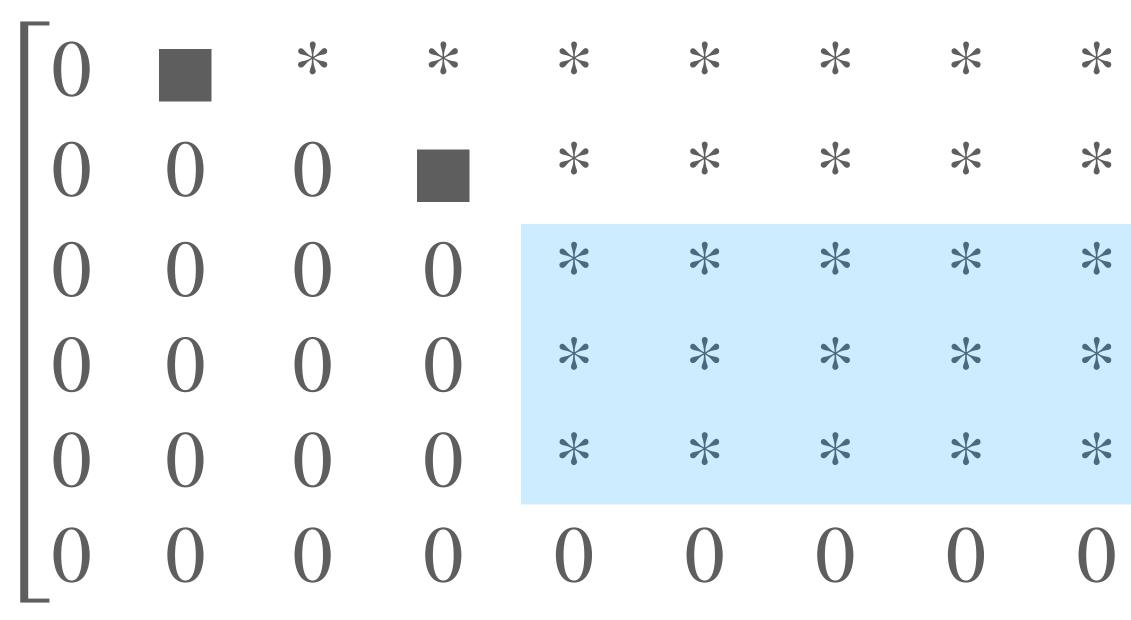
Rough Cost of Elimination

repeating this last process at most *n* times gives us a dominant term $2n^3$

we can give a better estimation...

Tally: $\approx 2n^2(n+1)$ FLOPS

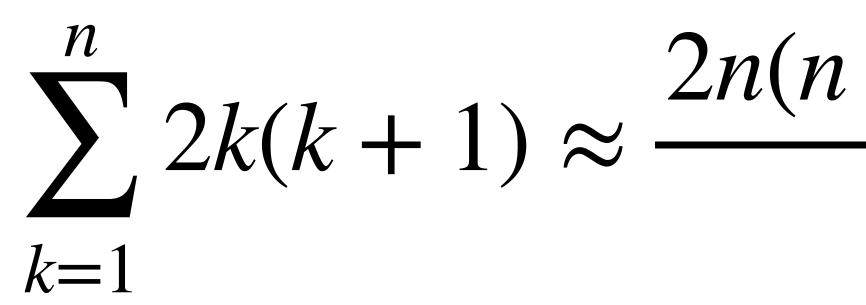
Cost of Elimination



At iteration *i*, we're * only interested in * rows after *i* * * And to the right of * column *i* 0

Cost of Elimination

Iteration 1: 2n(n + 1)Iteraiton 2: 2(n - 1)nIteration 3: 2(n - 2)(n



Tally: $\sim (2/3)n^3$ FLOPS

$$\frac{11}{2} \frac{2n(n+1)}{2(n-1)n}$$

$$\frac{12}{3} \frac{2(n-1)n}{2(n-2)(n-1)} + \frac{12n(n-1)}{6} \sim (2/3)n^3$$

Cost of Back Substitution

- (Let's assume no free variables)
- for each pivot, we only need to:
 - >> zero out a position in 1 row (0 FLOPS)
 >> add a value to the last row (1 FLOP)
 - at most 1 FLOP per row per pivot $\sim n^2$

Tally: ~ $(2/3)n^3$ FLOPS

Cost of Gaussian Elimination

Tally: $\sim (2/3)n^3$ FLOPS

(dominated by elimination)

Summary

Echelon form "represent solutions"

the infinite solution sets

in general

- General form solutions can be used to describe
- Gaussian elimination uses forward elimination and back-substitution to solve linear equations