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Echelon Forms + 
Gaussian Elimination
Lecture 3



Practice Problem

Write a sequence of elementary row operations 
which transforms the left matrix to the right 
matrix without using the exchange operation.

1 2 3
4 5 6
7 8 9

∼
4 5 6
1 2 3
7 8 9



Solution
1 2 3
4 5 6
7 8 9

∼
4 5 6
1 2 3
7 8 9
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Objectives

1. Introduce echelon forms as a kind of matrix 
which "represents" solutions 

2. Learn how to "read off" a solution from an 
echelon form matrix 

3. Start discussing Gaussian elimination



Keywords

leading entries 

echelon form 

(row-)reduced echelon form (RREF) 

pivot positions 

pivot columns 

free variables 

basic variables 

general form solutions 

forward elimination 

back substitution



Recap



Recall: Linear Systems (General-form)
a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2

⋮
am1x1 + am2x2 + … + amnxn = bm



Recall: Linear Systems (General-form)
a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2

⋮
am1x1 + am2x2 + … + amnxn = bm

Does a system have a solution?

What are its solutions?
How many solutions are there?



Recall: Matrix Representations

a11 a12 … a1n b1
a21 a22 … a2n b2
⋮ ⋮ ⋱ ⋮ ⋮

am1 am2 … amn bm



Recall: Matrix Representations

a11 a12 … a1n b1
a21 a22 … a2n b2
⋮ ⋮ ⋱ ⋮ ⋮

am1 am2 … amn bm

augmented matrix



Recall: Linear Systems (Pictorially)



Recall: Number of Solutions

zero the system is inconsistent 

one  the system has a unique solution 

many the system has infinity solutions



Recall: Number of Solutions

zero the system is inconsistent 

one  the system has a unique solution 

many the system has infinity solutions

These are the only options



Motivating Questions

What matrices "represent solutions"? (which 
have solutions that are easy to "read off"?) 

How does the number of solutions affect the 
shape of these matrix? 

How do we use row operations to get to those 
matrices?



echelon forms

Motivating Questions

What matrices "represent solutions"? (which 
have solutions that are easy to "read off"?) 

How does the number of solutions affect the 
shape of these matrix? 

How do we use row operations to get to those 
matrices?



Unique Solution Case



Unique Solution Case

2 −3 5 11
2 −1 13 39
1 −1 5 14

∼ [
1 0 0 1
0 1 0 2
0 0 1 3]

x = 1
y = 2
z = 3



Unique Solution Case

2 −3 5 11
2 −1 13 39
1 −1 5 14

∼ [
1 0 0 1
0 1 0 2
0 0 1 3]

x = 1
y = 2
z = 3

Like all the 
examples we've seen 

so far



The Identity Matrix

[
1 0 0
0 1 0
0 0 1]



The Identity Matrix

[
1 0 0
0 1 0
0 0 1]

1s along the diagonal

0s elsewhere



Unique Solution Case

[
1 0 0 1
0 1 0 2
0 0 1 3]

coefficient matrix

a system of linear equations whose coefficient 
matrix is the identity matrix represents a 

unique solution  



No Solution Case



Example [
1 1 1 1
1 1 1 2
1 2 3 4]



No Solution Case

[
1 1 1 1
1 1 1 2
1 2 3 4] ∼ [

1 2 3 4
1 1 1 1
0 0 0 1]

8 = 1



No Solution Case

[
1 1 1 1
1 1 1 2
1 2 3 4] ∼ [

1 2 3 4
1 1 1 1
0 0 0 1]

two parallel 
planes



No Solution Case

[
1 1 1 1
1 1 1 2
1 2 3 4] ∼ [

1 2 3 4
1 1 1 1
0 0 0 1]

two parallel 
planes

row representing 0 = 1



No Solution Case

[
1 2 3 4
1 1 1 1
0 0 0 1]

row representing 0 = 1

a system with no solutions can be reduced to a 
matrix with the row 

0 0 … 0 1



Infinite Solution Case



Example [2 4 2 14
1 7 1 12],

R2 - R2 - 2 R1
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demo 
(plane intersection)



Infinite Solution Case

[2 4 2 14
1 7 1 12] ∼ [1 0 1 2

0 1 0 1]



Infinite Solution Case

[2 4 2 14
1 7 1 12] ∼ [1 0 1 2

0 1 0 1]
x1 + x3 = 2

x2 = 1



Infinite Solution Case

[2 4 2 14
1 7 1 12] ∼ [1 0 1 2

0 1 0 1]
x1 + x3 = 2

x2 = 1
a system with infinity solutions can be 

reduced to a system which leaves a 
variable unrestricted 



Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 2
x2 = 1
x3 = 0

it doesn't matter 
what  is if we 
want to satisfy 
this system of 

equations

x3



Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 1.5
x2 = 1
x3 = 0.5

it doesn't matter 
what  is if we 
want to satisfy 
this system of 

equations

x3



Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 20
x2 = 1
x3 = − 18

it doesn't matter 
what  is if we 
want to satisfy 
this system of 

equations

x3



Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 2 − x3
x2 = 1
x3 is free

it doesn't matter 
what  is if we 
want to satisfy 
this system of 

equations

x3



Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 2 − x3
x2 = 1
x3 is free

general form

it doesn't matter 
what  is if we 
want to satisfy 
this system of 

equations

x3



In Sum

none      reduces to a system with the 
          equation  

one       reduces to a system whose coefficient 
          matrix is the identity matrix 

infinity  reduces to a system which leaves a 
          variable unrestricted 

0 = 1



In Sum

none      reduces to a system with the 
          equation  

one       reduces to a system whose coefficient 
          matrix is the identity matrix 

infinity  reduces to a system which leaves a 
          variable unrestricted 

0 = 1

Ideally, we want one form that handles 
all three cases



Echelon Form



The Picture (and a bit of history)

https://commons.wikimedia.org/wiki/File:Echelon_1_(PSF).png



Echelon Form (Pictorially)

 

 = nonzero,  = anything

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 ◼ * * * * *
0 0 0 0 0 ◼ * * * *
0 0 0 0 0 0 0 0 ◼ *
0 0 0 0 0 0 0 0 0 0

◼ *



Leading Entries

Definition. the leading entry of a row is the 
first nonzero value 

1 2 3
0 −3 3
0 0 0
1 −1 10

no leading 
entry



Echelon Form



Echelon Form
Definition. A matrix is in echelon form if



Echelon Form
Definition. A matrix is in echelon form if

1. The leading entry of each row appears to the 
right of the leading entry above it



Echelon Form
Definition. A matrix is in echelon form if

1. The leading entry of each row appears to the 
right of the leading entry above it

2. Every all-zeros row appears below any non-
zero rows



Echelon Form (Pictorially)

 

 = nonzero,  = anything

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 ◼ * * * * *
0 0 0 0 0 ◼ * * * *
0 0 0 0 0 0 0 0 ◼ *
0 0 0 0 0 0 0 0 0 0

◼ *



Echelon Form (Pictorially)

 

 = nonzero,  = anything

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 ◼ * * * * *
0 0 0 0 0 ◼ * * * *
0 0 0 0 0 0 0 0 ◼ *
0 0 0 0 0 0 0 0 0 0

◼ *

all-zero rows at 
the bottom

next leading entry 
to the right



Question

Is the identity matrix in echelon form?



Answer: Yes

 

the leading entries of each row appears to the 
right of the leading entry above it 

it has no all-zero rows

[
1 0 0
0 1 0
0 0 1]



Question

Is this matrix in echelon form? 

[
2 3 −8
0 1 2
0 2 0 ]



Answer: No

 

The leading entry of the least row is not to 
the right of the leading entry of the second 
row

[
2 3 −8
0 1 2
0 2 0 ]



What's special about Echelon forms?

Theorem. Let  be the augmented matrix of an 
inconsistent linear system. If  and  is in 
echelon form then  has the row 

A
A ∼ B B

B

[0 0 … 0 0 ◼]



What's special about Echelon forms?

Theorem. Let  be the augmented matrix of an 
inconsistent linear system. If  and  is in 
echelon form then  has the row 

A
A ∼ B B

B

[0 0 … 0 0 ◼]

If all we care about is consistency then we just 
need to find an echelon form
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The Problem with Echelon Forms

If our system is consistent, we can't get a 
solution quite yet.



The Problem with Echelon Forms

If our system is consistent, we can't get a 
solution quite yet.

We need to simplify our matrix a bit more until it 
"represents" a solution

[
12573

I
X

,

+ 2 +
2
+ 5x3 + 7xy = 3

+ 2 + 2xy + 5 x2
= 8

01250
xn = I

① D 012



Reduced Echelon Form



Row-Reduced Echelon Form (RREF)

Definition. A matrix is in (row-)reduced echelon form if 

1. The leading entry of each row appears to the right of 
the leading entry above it 

2. Every all-zeros row appears below any non-zero rows 

3. The leading entries of non-zero rows are 1 

4. the leading entries are the only non-zero entries of 
their columns



Reduced Echelon Form (Pictorially)

0 1 * 0 0 0 * * 0 *
0 0 0 1 0 0 * * 0 *
0 0 0 0 1 0 * * 0 *
0 0 0 0 0 1 * * 0 *
0 0 0 0 0 0 0 0 1 *
0 0 0 0 0 0 0 0 0 0



Reduced Echelon Form (Pictorially)

0 1 * 0 0 0 * * 0 *
0 0 0 1 0 0 * * 0 *
0 0 0 0 1 0 * * 0 *
0 0 0 0 0 1 * * 0 *
0 0 0 0 0 0 0 0 1 *
0 0 0 0 0 0 0 0 0 0

other column 
entries are 0

leading entries are 1



Reduced Echelon Form (A Simple Example)

x1 + x3 = 2
x2 = 1%? ]



Reduced Echelon Form (A Simple Example)

x1 + x3 = 2
x2 = 1

x1 = 2 − x3
x2 = 1
x3 is free



The Fundamental Points



The Fundamental Points

Point 1. we can "read off" the solutions of a 
system of linear equations from its RREF



The Fundamental Points

Point 1. we can "read off" the solutions of a 
system of linear equations from its RREF

Point 2. every matrix is row equivalent to a 
unique matrix in reduced echelon form



How-To: Solving a System of Linear Equations



How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix



How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix



How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF



How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF
Our next topic



demo 
(a.rref())



What's special about RREF?
Every leading variable can 
be written in terms of only 
non-leading variables.

0 1 * 0 0 0 * * 0 *
0 0 0 1 0 0 * * 0 *
0 0 0 0 1 0 * * 0 *
0 0 0 0 0 1 * * 0 *
0 0 0 0 0 0 0 0 1 *
0 0 0 0 0 0 0 0 0 0

[1 0 1 2
0 1 0 1]

x
,
+ xy

=2 X = 2 - x 3

X
z
=1 X2 = I

X
,
+ +

= 2 x
,
2 - + 3 * = I

#
->

xs = 1 x3 = 1 xz =#



Example
0 1 2 0 0 0 3 −1 0 2
0 0 0 1 0 0 4 5 0 20
0 0 0 0 1 0 0 0 0 16
0 0 0 0 0 1 12 3 0 −4
0 0 0 0 0 0 0 0 1 −8
0 0 0 0 0 0 0 0 0 0

* X2x1 X nx5 Ye Xz 40 Ya

-x22 - 2x2 -

x z + Xo



Why we care about Reduced Echelon Forms?



Why we care about Reduced Echelon Forms?

the goal of back-substitution is to reduce an 
echelon form matrix to a reduced echelon form



Why we care about Reduced Echelon Forms?

the goal of back-substitution is to reduce an 
echelon form matrix to a reduced echelon form

the goal of Gaussian elimination is to reduce 
an augmented matrix to a reduced echelon form



Why we care about Reduced Echelon Forms?

the goal of back-substitution is to reduce an 
echelon form matrix to a reduced echelon form

the goal of Gaussian elimination is to reduce 
an augmented matrix to a reduced echelon form

reduced echelon forms describe solutions to 
linear equations



General-Form Solutions



What's Left?



What's Left?

We know how to use an RREF to see if a system 
is inconsistent.



What's Left?

We know how to use an RREF to see if a system 
is inconsistent.

We know how to use an RREF to read of a unique 
solution, if there is one.



What's Left?

We know how to use an RREF to see if a system 
is inconsistent.

We know how to use an RREF to read of a unique 
solution, if there is one.

But how do we characterize all solutions in the 
infinite solution case?



Basic and Free Variables



Basic and Free Variables
Definition. a pivot position  in a matrix is the 
position of a leading entry in it's reduced echelon form

(i, j)



Basic and Free Variables
Definition. a pivot position  in a matrix is the 
position of a leading entry in it's reduced echelon form

(i, j)

Definition. A variable is basic if its column has a pivot 
position (this is called a pivot column). It is free 
otherwise.



Basic and Free Variables
Definition. a pivot position  in a matrix is the 
position of a leading entry in it's reduced echelon form

(i, j)

Definition. A variable is basic if its column has a pivot 
position (this is called a pivot column). It is free 
otherwise.

[1 0 1 2
0 1 0 1]



Basic and Free Variables
Definition. a pivot position  in a matrix is the 
position of a leading entry in it's reduced echelon form

(i, j)

Definition. A variable is basic if its column has a pivot 
position (this is called a pivot column). It is free 
otherwise.

[1 0 1 2
0 1 0 1]

 is basicx1

 is basicx2

 is freex3

X
,

X
-

Y
3

x
,
+ 0x2 + xz = 2



Solutions of Reduced Echelon Forms

the row  of a pivot position describes the 
value of  in a solution to the system, in 
terms of the free variables 

   

i
xi

[1 0 1 2
0 1 0 1]

X
,
+ xz = I

-> x
,
= 2 -

x3Of*- xz = 1

x3 is f



How-To: General Form Solution
x1 = 2 − x3
x2 = 1
x3 is free

[1 0 1 2
0 1 0 1]



How-To: General Form Solution

1. For each pivot position , isolate  in 
the equation in row 

(i, j) xj
i

x1 = 2 − x3
x2 = 1
x3 is free

[1 0 1 2
0 1 0 1]



How-To: General Form Solution

1. For each pivot position , isolate  in 
the equation in row 

(i, j) xj
i

2. If  is not in a pivot column then write xi

xi is free

x1 = 2 − x3
x2 = 1
x3 is free

[1 0 1 2
0 1 0 1]



Example
1 2 0 −2 4
0 0 1 3 5
0 0 0 0 0

O

x
,
2x - 2x = 4 first

x2 + 3xn
= 5

X
, x3

X- = D
*
1
= 4 - 2x + 2x4

X
,
=
5

x2 is free

X, =
H

#Xa - -
x
3
= 5 - 3x4

xy is free



Question

Circle the pivot positions, highlight the pivot rows. 

Which variables are free? Which are basic? 

Write down a solution in general form for this reduced 
echelon form matrix. 

Write down a particular solution given the general form.

[
1 0 0 3 1
0 0 1 2 4
0 0 0 0 0]



Answer [
1 0 0 3 1
0 0 1 2 4
0 0 0 0 0]O

Xi = 1 - 3x4
B

X2 is free
x
, x2 xy

*H

x1 = 4 - 2xn Xi =
-I

Xy isfree Xz =*-3 = I

Xy = 1



Defining the Gaussian 
Elimination (GE) Algorithm



At a High Level



At a High Level

eliminations + back-substitution



At a High Level

eliminations + back-substitution

we've already done this



At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down 
the algorithm as pseudocode



At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down 
the algorithm as pseudocode

Keep in mind. How do we turn our intuitions 
into a formal procedure?



A Word of Warning



A Word of Warning

The details of Gaussian elimination are tricky.



A Word of Warning

The details of Gaussian elimination are tricky.

The goal is not to understand it entirely, but 
to get enough intuition to emulate it.



A Word of Warning

The details of Gaussian elimination are tricky.

The goal is not to understand it entirely, but 
to get enough intuition to emulate it.

You should roughly use Gaussian Elimination 
when solving a system by hand.



demo 
(Step-throughs)



The Algorithm



Gaussian Elimination (Specification)

  FUNCTION GE(A): 
    # INPUT: m × n matrix A 
    # OUTPUT: equivalent m × n RREF matrix 
    ...



Gaussian Elimination (High Level)
  FUNCTION fwd_elim(A): 
    # INPUT: m × n matrix A 
    # OUTPUT: equivalent m × n echelon form matrix 
    ... 

  FUNCTION back_sub(A): 
    # INPUT: m × n echelon form matrix A 
    # OUTPUT: equivalent m × n RREF matrix 
    ... 

  FUNCTION GE(A): 
    RETURN back_sub(fwd_elim(A))



Elimination Stage



Elimination Stage (High Level)



Elimination Stage (High Level)

Input: matrix  of size A m × n

Output: echelon form of A



Elimination Stage (High Level)

Input: matrix  of size A m × n

Output: echelon form of A

starting at the top left and move down, find a 
leading entry and eliminate it from latter 
equations



Edge cases



Edge cases

What if the first equation doesn't have the 
variable ?x1



Edge cases

What if the first equation doesn't have the 
variable ?x1

Swap rows with an equation that does.



Edge cases

What if the first equation doesn't have the 
variable ?x1

Swap rows with an equation that does.

What if none of the equations have the variable 
?x1



Edge cases

What if the first equation doesn't have the 
variable ?x1

Swap rows with an equation that does.

What if none of the equations have the variable 
?x1

Find the leftmost variable which appears in any 
of the remaining equations.



Elimination Stage (Pseudocode)



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:

        (j, k) ← [position of leftmost entry in the rows i...m]



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:

        (j, k) ← [position of leftmost entry in the rows i...m]

        [swap row i and row j]



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:

        (j, k) ← [position of leftmost entry in the rows i...m]

        [swap row i and row j]

        FOR [l from i + 1 to m]: # for all remaining rows



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:

        (j, k) ← [position of leftmost entry in the rows i...m]

        [swap row i and row j]

        FOR [l from i + 1 to m]: # for all remaining rows

          [zero out A[l, k] using a replacement operation]



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:

        (j, k) ← [position of leftmost entry in the rows i...m]

        [swap row i and row j]

        FOR [l from i + 1 to m]: # for all remaining rows

          [zero out A[l, k] using a replacement operation]

    RETURN A



Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15



Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

leftmost 
nonzero 
entry



Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

leftmost 
nonzero 
entry

Swap  and R1 R3



Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5



Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

next entry 
to zero



Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

next entry 
to zero

R3 ← R3 − R1



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

leftmost 
nonzero 
entry



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

leftmost 
nonzero 
entry

swap  with R2 R2



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry 

to zero



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry 

to zero

R3 ← R3 − 3R2
2



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

leftmost 
nonzero 
entry



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

leftmost 
nonzero 
entry

swap  with R3 R3



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
done with elimination stage 

going to back substitution stage



Back Substitution Stage



Back Substitution Stage (High Level)



Back Substitution Stage (High Level)

Input: matrix  of size  in echelon formA m × n

Output: reduced echelon form of A



Back Substitution Stage (High Level)

Input: matrix  of size  in echelon formA m × n

Output: reduced echelon form of A

scale pivot positions and eliminate the 
variables for that column from the other 
equations



Back Substitution (Psuedocode)



Back Substitution (Psuedocode)

  FUNCTION back_sub(A):



Back Substitution (Psuedocode)

  FUNCTION back_sub(A):

    FOR [i from 1 to m]: # for each row from top to bottom



Back Substitution (Psuedocode)

  FUNCTION back_sub(A):
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  FUNCTION back_sub(A):
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Back Substitution (Psuedocode)

  FUNCTION back_sub(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [row i has a leading entry]:

        j ← index of leading entry of row i

        (A) ← (A) / A[i, j] # divide by leading entryRi Ri

        FOR [k from 1 to i - 1]: # for the rows above the current one

          (A) ← (A) - R[k, j] * (A) 
          # zero out R[k, j] above the leading entry

Rk Rk Ri

    RETURN A



You will have to implement 
this part in HW2...
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Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot 
position

R1 ← R1 / 3
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Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot 
position

R2 ← R2 / 2
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Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry 
to zero

R1 ← R1 + 3R2
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Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4pivot 

position

R3 ← R3 / 1
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Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry 
to zero

R2 ← R2 − R1
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Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

next entry 
to zero

R1 ← R1 − 5R3



Gaussian Elimination (Example)

[
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Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4 ]

done with back substitution phase



Gaussian Elimination (Example)

x1 = (−24) + 2x3 − 3x4
x2 = (−7) + 2x3 − 2x4
x3 is free
x4 is free
x5 = 4



Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4 ]
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How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

Gaussian elimination



Extra Topic: 
Analyzing the Algorithm
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Analyzing the Algorithm

We will not use  notation!O( ⋅ )

For numerics, we care about number of FLoating-
oint OPerations (FLOPs):

  >> addition 
  >> subtraction 
  >> multiplication 
  >> division 
  >> square root

 vs.  is very different 
when 

2n n
n ∼ 1020
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Dominant Terms

that said, we don't care about exact bounds

A function  is asymptotically equivalent to 
 if

f(n)
g(n)

lim
i→∞

f(i)
g(i) = 1

for polynomials, they are equivalent to their 
dominant term



Dominant Terms

the dominant term of a polynomial is the monomial with the 
highest degree 

 

 dominates the function even though the coefficient for  
is so large

lim
i→∞

3x3 + 100000x2

3x3 = 1

3x3 x2



Parameters

 : number of variables 

 : number of equations (we will assume ) 

 : number of rows in the augmented matrix

n

m m = n

n + 1



The Cost of a Row Operation

 
 multiplications for the scaling 

 additions for the row additions

Ri ← Ri + aRj
n + 1

n + 1

Tally:  FLOPS2(n + 1)



Cost of First Iteration of Elimination

 

repeated row operations for each row except the 
first

R2 ← R2 + a2R1
R3 ← R3 + a3R1

⋮
Rn ← Rn + anR1

Tally:  FLOPS≈ 2n(n + 1)



Rough Cost of Elimination

repeating this last process at most  times 
gives us a dominant term  

we can give a better estimation... 

n
2n3

Tally:  FLOPS≈ 2n2(n + 1)



Cost of Elimination

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 0 0 0 0 0 0

At iteration , we're 
only interested in 
rows after  

And to the right of 
column 

i

i

i



Cost of Elimination

Iteration 1:  
Iteraiton 2:  
Iteration 3:  
         

2n(n + 1)
2(n − 1)n
2(n − 2)(n − 1)

⋮

Tally:  FLOPS∼ (2/3)n3

n

∑
k=1

2k(k + 1) ≈ 2n(n + 1)(2n + 1)
6 ∼ (2/3)n3

+



Cost of Back Substitution

(Let's assume no free variables) 

for each pivot, we only need to: 

  >> zero out a position in 1 row (0 FLOPS) 
  >> add a value to the last row (1 FLOP) 

at most 1 FLOP per row per pivot  ∼ n2

Tally:  FLOPS∼ (2/3)n3



Cost of Gaussian Elimination

Tally:  FLOPS∼ (2/3)n3

(dominated by elimination) 



Summary

Echelon form "represent solutions" 

General form solutions can be used to describe 
the infinite solution sets 

Gaussian elimination uses forward elimination 
and back-substitution to solve linear equations 
in general


