
CAS CS 132

Echelon Forms + 
Gaussian Elimination
Lecture 3

Practice Problem

Write a sequence of elementary row operations
which transforms the left matrix to the right
matrix without using the exchange operation.

1 2 3
4 5 6
7 8 9

∼
4 5 6
1 2 3
7 8 9

Solution
1 2 3
4 5 6
7 8 9

∼
4 5 6
1 2 3
7 8 9

1 2 3 Pc - P2 + R ,
12 3 // 3 -//

(558]- L 579 I 000 OO D

ooo

R -

-
- 2 - E - G

- p
.

-

By - 97
OD

Bi - - R,
4 5 C R1 & P , -P ,

-> L 579 I -> [i]Do D

· D ·

Objectives

1. Introduce echelon forms as a kind of matrix
which "represents" solutions

2. Learn how to "read off" a solution from an
echelon form matrix

3. Start discussing Gaussian elimination

Keywords

leading entries

echelon form

(row-)reduced echelon form (RREF)

pivot positions

pivot columns

free variables

basic variables

general form solutions

forward elimination

back substitution

Recap

Recall: Linear Systems (General-form)
a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2

⋮
am1x1 + am2x2 + … + amnxn = bm

Recall: Linear Systems (General-form)
a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2

⋮
am1x1 + am2x2 + … + amnxn = bm

Does a system have a solution?

What are its solutions?
How many solutions are there?

Recall: Matrix Representations

a11 a12 … a1n b1
a21 a22 … a2n b2
⋮ ⋮ ⋱ ⋮ ⋮

am1 am2 … amn bm

Recall: Matrix Representations

a11 a12 … a1n b1
a21 a22 … a2n b2
⋮ ⋮ ⋱ ⋮ ⋮

am1 am2 … amn bm

augmented matrix

Recall: Linear Systems (Pictorially)

Recall: Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

Recall: Number of Solutions

zero the system is inconsistent

one the system has a unique solution

many the system has infinity solutions

These are the only options

Motivating Questions

What matrices "represent solutions"? (which
have solutions that are easy to "read off"?)

How does the number of solutions affect the
shape of these matrix?

How do we use row operations to get to those
matrices?

echelon forms

Motivating Questions

What matrices "represent solutions"? (which
have solutions that are easy to "read off"?)

How does the number of solutions affect the
shape of these matrix?

How do we use row operations to get to those
matrices?

Unique Solution Case

Unique Solution Case

2 −3 5 11
2 −1 13 39
1 −1 5 14

∼ [
1 0 0 1
0 1 0 2
0 0 1 3]

x = 1
y = 2
z = 3

Unique Solution Case

2 −3 5 11
2 −1 13 39
1 −1 5 14

∼ [
1 0 0 1
0 1 0 2
0 0 1 3]

x = 1
y = 2
z = 3

Like all the
examples we've seen

so far

The Identity Matrix

[
1 0 0
0 1 0
0 0 1]

The Identity Matrix

[
1 0 0
0 1 0
0 0 1]

1s along the diagonal

0s elsewhere

Unique Solution Case

[
1 0 0 1
0 1 0 2
0 0 1 3]

coefficient matrix

a system of linear equations whose coefficient
matrix is the identity matrix represents a

unique solution

No Solution Case

Example [
1 1 1 1
1 1 1 2
1 2 3 4]

No Solution Case

[
1 1 1 1
1 1 1 2
1 2 3 4] ∼ [

1 2 3 4
1 1 1 1
0 0 0 1]

8 = 1

No Solution Case

[
1 1 1 1
1 1 1 2
1 2 3 4] ∼ [

1 2 3 4
1 1 1 1
0 0 0 1]

two parallel
planes

No Solution Case

[
1 1 1 1
1 1 1 2
1 2 3 4] ∼ [

1 2 3 4
1 1 1 1
0 0 0 1]

two parallel
planes

row representing 0 = 1

No Solution Case

[
1 2 3 4
1 1 1 1
0 0 0 1]

row representing 0 = 1

a system with no solutions can be reduced to a
matrix with the row

0 0 … 0 1

Infinite Solution Case

Example [2 4 2 14
1 7 1 12],

R2 - R2 - 2 R1

[
2 4 2 12 I-> 2 x + 4y + 2z = 14

I 7 I
12

x + 74 + z = 12
-
1

-

I - I

- I~

R =
R . 12

L
24 214]-> x + 2y + z

= 7-

05 O ↳

& I &
R .
= P2/5

Y
I I

l · 50 E) -
x + z

= 5
R ,
FR

,

- 2 P2
10 -↳

- 217

[0101 I -> [0101 & y
= 1

demo
(plane intersection)

Infinite Solution Case

[2 4 2 14
1 7 1 12] ∼ [1 0 1 2

0 1 0 1]

Infinite Solution Case

[2 4 2 14
1 7 1 12] ∼ [1 0 1 2

0 1 0 1]
x1 + x3 = 2

x2 = 1

Infinite Solution Case

[2 4 2 14
1 7 1 12] ∼ [1 0 1 2

0 1 0 1]
x1 + x3 = 2

x2 = 1
a system with infinity solutions can be

reduced to a system which leaves a
variable unrestricted

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 2
x2 = 1
x3 = 0

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 1.5
x2 = 1
x3 = 0.5

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 20
x2 = 1
x3 = − 18

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 2 − x3
x2 = 1
x3 is free

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

Infinite Solution Case

x1 + x3 = 2
x2 = 1

x1 = 2 − x3
x2 = 1
x3 is free

general form

it doesn't matter
what is if we
want to satisfy
this system of

equations

x3

In Sum

none reduces to a system with the
 equation

one reduces to a system whose coefficient
 matrix is the identity matrix

infinity reduces to a system which leaves a
 variable unrestricted

0 = 1

In Sum

none reduces to a system with the
 equation

one reduces to a system whose coefficient
 matrix is the identity matrix

infinity reduces to a system which leaves a
 variable unrestricted

0 = 1

Ideally, we want one form that handles
all three cases

Echelon Form

The Picture (and a bit of history)

https://commons.wikimedia.org/wiki/File:Echelon_1_(PSF).png

Echelon Form (Pictorially)

 = nonzero, = anything

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 ◼ * * * * *
0 0 0 0 0 ◼ * * * *
0 0 0 0 0 0 0 0 ◼ *
0 0 0 0 0 0 0 0 0 0

◼ *

Leading Entries

Definition. the leading entry of a row is the
first nonzero value

1 2 3
0 −3 3
0 0 0
1 −1 10

no leading
entry

Echelon Form

Echelon Form
Definition. A matrix is in echelon form if

Echelon Form
Definition. A matrix is in echelon form if

1. The leading entry of each row appears to the
right of the leading entry above it

Echelon Form
Definition. A matrix is in echelon form if

1. The leading entry of each row appears to the
right of the leading entry above it

2. Every all-zeros row appears below any non-
zero rows

Echelon Form (Pictorially)

 = nonzero, = anything

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 ◼ * * * * *
0 0 0 0 0 ◼ * * * *
0 0 0 0 0 0 0 0 ◼ *
0 0 0 0 0 0 0 0 0 0

◼ *

Echelon Form (Pictorially)

 = nonzero, = anything

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 ◼ * * * * *
0 0 0 0 0 ◼ * * * *
0 0 0 0 0 0 0 0 ◼ *
0 0 0 0 0 0 0 0 0 0

◼ *

all-zero rows at
the bottom

next leading entry
to the right

Question

Is the identity matrix in echelon form?

Answer: Yes

the leading entries of each row appears to the
right of the leading entry above it

it has no all-zero rows

[
1 0 0
0 1 0
0 0 1]

Question

Is this matrix in echelon form?

[
2 3 −8
0 1 2
0 2 0]

Answer: No

The leading entry of the least row is not to
the right of the leading entry of the second
row

[
2 3 −8
0 1 2
0 2 0]

What's special about Echelon forms?

Theorem. Let be the augmented matrix of an
inconsistent linear system. If and is in
echelon form then has the row

A
A ∼ B B

B

[0 0 … 0 0 ◼]

What's special about Echelon forms?

Theorem. Let be the augmented matrix of an
inconsistent linear system. If and is in
echelon form then has the row

A
A ∼ B B

B

[0 0 … 0 0 ◼]

If all we care about is consistency then we just
need to find an echelon form

Example x − 2z = 4
−x + y + 5z = − 3
x + 2y + 4z = 71 D - I 4 Pz - Pe + Ri

l -1 - D

5
-
I I R3 - F 3-R ,

-

1 t /
+0

12

my t
-

-V

7 L L -

7 D
- 2 H Ps - P3 -ZPz

[01 3 I I-->
2.

%03O
-I

- I

It i
P- -R ,

* 2

(
10 - 2 4

I- G 26 I

00 o I

The Problem with Echelon Forms

If our system is consistent, we can't get a
solution quite yet.

The Problem with Echelon Forms

If our system is consistent, we can't get a
solution quite yet.

We need to simplify our matrix a bit more until it
"represents" a solution

[
12573

I
X

,

+ 2 +
2
+ 5x3 + 7xy = 3

+ 2 + 2xy + 5 x2
= 8

01250
xn = I

① D 012

Reduced Echelon Form

Row-Reduced Echelon Form (RREF)

Definition. A matrix is in (row-)reduced echelon form if

1. The leading entry of each row appears to the right of
the leading entry above it

2. Every all-zeros row appears below any non-zero rows

3. The leading entries of non-zero rows are 1

4. the leading entries are the only non-zero entries of
their columns

Reduced Echelon Form (Pictorially)

0 1 * 0 0 0 * * 0 *
0 0 0 1 0 0 * * 0 *
0 0 0 0 1 0 * * 0 *
0 0 0 0 0 1 * * 0 *
0 0 0 0 0 0 0 0 1 *
0 0 0 0 0 0 0 0 0 0

Reduced Echelon Form (Pictorially)

0 1 * 0 0 0 * * 0 *
0 0 0 1 0 0 * * 0 *
0 0 0 0 1 0 * * 0 *
0 0 0 0 0 1 * * 0 *
0 0 0 0 0 0 0 0 1 *
0 0 0 0 0 0 0 0 0 0

other column
entries are 0

leading entries are 1

Reduced Echelon Form (A Simple Example)

x1 + x3 = 2
x2 = 1%?]

Reduced Echelon Form (A Simple Example)

x1 + x3 = 2
x2 = 1

x1 = 2 − x3
x2 = 1
x3 is free

The Fundamental Points

The Fundamental Points

Point 1. we can "read off" the solutions of a
system of linear equations from its RREF

The Fundamental Points

Point 1. we can "read off" the solutions of a
system of linear equations from its RREF

Point 2. every matrix is row equivalent to a
unique matrix in reduced echelon form

How-To: Solving a System of Linear Equations

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF
Our next topic

demo
(a.rref())

What's special about RREF?
Every leading variable can
be written in terms of only
non-leading variables.

0 1 * 0 0 0 * * 0 *
0 0 0 1 0 0 * * 0 *
0 0 0 0 1 0 * * 0 *
0 0 0 0 0 1 * * 0 *
0 0 0 0 0 0 0 0 1 *
0 0 0 0 0 0 0 0 0 0

[1 0 1 2
0 1 0 1]

x
,
+ xy

=2 X = 2 - x 3

X
z
=1 X2 = I

X
,
+ +

= 2 x
,
2 - + 3 * = I

#
->

xs = 1 x3 = 1 xz =#

Example
0 1 2 0 0 0 3 −1 0 2
0 0 0 1 0 0 4 5 0 20
0 0 0 0 1 0 0 0 0 16
0 0 0 0 0 1 12 3 0 −4
0 0 0 0 0 0 0 0 1 −8
0 0 0 0 0 0 0 0 0 0

* X2x1 X nx5 Ye Xz 40 Ya

-x22 - 2x2 -

x z + Xo

Why we care about Reduced Echelon Forms?

Why we care about Reduced Echelon Forms?

the goal of back-substitution is to reduce an
echelon form matrix to a reduced echelon form

Why we care about Reduced Echelon Forms?

the goal of back-substitution is to reduce an
echelon form matrix to a reduced echelon form

the goal of Gaussian elimination is to reduce
an augmented matrix to a reduced echelon form

Why we care about Reduced Echelon Forms?

the goal of back-substitution is to reduce an
echelon form matrix to a reduced echelon form

the goal of Gaussian elimination is to reduce
an augmented matrix to a reduced echelon form

reduced echelon forms describe solutions to
linear equations

General-Form Solutions

What's Left?

What's Left?

We know how to use an RREF to see if a system
is inconsistent.

What's Left?

We know how to use an RREF to see if a system
is inconsistent.

We know how to use an RREF to read of a unique
solution, if there is one.

What's Left?

We know how to use an RREF to see if a system
is inconsistent.

We know how to use an RREF to read of a unique
solution, if there is one.

But how do we characterize all solutions in the
infinite solution case?

Basic and Free Variables

Basic and Free Variables
Definition. a pivot position in a matrix is the
position of a leading entry in it's reduced echelon form

(i, j)

Basic and Free Variables
Definition. a pivot position in a matrix is the
position of a leading entry in it's reduced echelon form

(i, j)

Definition. A variable is basic if its column has a pivot
position (this is called a pivot column). It is free
otherwise.

Basic and Free Variables
Definition. a pivot position in a matrix is the
position of a leading entry in it's reduced echelon form

(i, j)

Definition. A variable is basic if its column has a pivot
position (this is called a pivot column). It is free
otherwise.

[1 0 1 2
0 1 0 1]

Basic and Free Variables
Definition. a pivot position in a matrix is the
position of a leading entry in it's reduced echelon form

(i, j)

Definition. A variable is basic if its column has a pivot
position (this is called a pivot column). It is free
otherwise.

[1 0 1 2
0 1 0 1]

 is basicx1

 is basicx2

 is freex3

X
,

X
-

Y
3

x
,
+ 0x2 + xz = 2

Solutions of Reduced Echelon Forms

the row of a pivot position describes the
value of in a solution to the system, in
terms of the free variables

i
xi

[1 0 1 2
0 1 0 1]

X
,
+ xz = I

-> x
,
= 2 -

x3Of*- xz = 1

x3 is f

How-To: General Form Solution
x1 = 2 − x3
x2 = 1
x3 is free

[1 0 1 2
0 1 0 1]

How-To: General Form Solution

1. For each pivot position , isolate in
the equation in row

(i, j) xj
i

x1 = 2 − x3
x2 = 1
x3 is free

[1 0 1 2
0 1 0 1]

How-To: General Form Solution

1. For each pivot position , isolate in
the equation in row

(i, j) xj
i

2. If is not in a pivot column then write xi

xi is free

x1 = 2 − x3
x2 = 1
x3 is free

[1 0 1 2
0 1 0 1]

Example
1 2 0 −2 4
0 0 1 3 5
0 0 0 0 0

O

x
,
2x - 2x = 4 first

x2 + 3xn
= 5

X
, x3

X- = D
*
1
= 4 - 2x + 2x4

X
,
=
5

x2 is free

X, =
H

#Xa - -
x
3
= 5 - 3x4

xy is free

Question

Circle the pivot positions, highlight the pivot rows.

Which variables are free? Which are basic?

Write down a solution in general form for this reduced
echelon form matrix.

Write down a particular solution given the general form.

[
1 0 0 3 1
0 0 1 2 4
0 0 0 0 0]

Answer [
1 0 0 3 1
0 0 1 2 4
0 0 0 0 0]O

Xi = 1 - 3x4
B

X2 is free
x
, x2 xy

*H

x1 = 4 - 2xn Xi =
-I

Xy isfree Xz =*-3 = I

Xy = 1

Defining the Gaussian
Elimination (GE) Algorithm

At a High Level

At a High Level

eliminations + back-substitution

At a High Level

eliminations + back-substitution

we've already done this

At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down
the algorithm as pseudocode

At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down
the algorithm as pseudocode

Keep in mind. How do we turn our intuitions
into a formal procedure?

A Word of Warning

A Word of Warning

The details of Gaussian elimination are tricky.

A Word of Warning

The details of Gaussian elimination are tricky.

The goal is not to understand it entirely, but
to get enough intuition to emulate it.

A Word of Warning

The details of Gaussian elimination are tricky.

The goal is not to understand it entirely, but
to get enough intuition to emulate it.

You should roughly use Gaussian Elimination
when solving a system by hand.

demo
(Step-throughs)

The Algorithm

Gaussian Elimination (Specification)

 FUNCTION GE(A):
 # INPUT: m × n matrix A
 # OUTPUT: equivalent m × n RREF matrix
 ...

Gaussian Elimination (High Level)
 FUNCTION fwd_elim(A):
 # INPUT: m × n matrix A
 # OUTPUT: equivalent m × n echelon form matrix
 ...

 FUNCTION back_sub(A):
 # INPUT: m × n echelon form matrix A
 # OUTPUT: equivalent m × n RREF matrix
 ...

 FUNCTION GE(A):
 RETURN back_sub(fwd_elim(A))

Elimination Stage

Elimination Stage (High Level)

Elimination Stage (High Level)

Input: matrix of size A m × n

Output: echelon form of A

Elimination Stage (High Level)

Input: matrix of size A m × n

Output: echelon form of A

starting at the top left and move down, find a
leading entry and eliminate it from latter
equations

Edge cases

Edge cases

What if the first equation doesn't have the
variable ?x1

Edge cases

What if the first equation doesn't have the
variable ?x1

Swap rows with an equation that does.

Edge cases

What if the first equation doesn't have the
variable ?x1

Swap rows with an equation that does.

What if none of the equations have the variable
?x1

Edge cases

What if the first equation doesn't have the
variable ?x1

Swap rows with an equation that does.

What if none of the equations have the variable
?x1

Find the leftmost variable which appears in any
of the remaining equations.

Elimination Stage (Pseudocode)

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

 [swap row i and row j]

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

 [swap row i and row j]

 FOR [l from i + 1 to m]: # for all remaining rows

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

 [swap row i and row j]

 FOR [l from i + 1 to m]: # for all remaining rows

 [zero out A[l, k] using a replacement operation]

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

 [swap row i and row j]

 FOR [l from i + 1 to m]: # for all remaining rows

 [zero out A[l, k] using a replacement operation]

 RETURN A

Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

leftmost
nonzero
entry

Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

leftmost
nonzero
entry

Swap and R1 R3

Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

next entry
to zero

Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

next entry
to zero

R3 ← R3 − R1

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

leftmost
nonzero
entry

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

leftmost
nonzero
entry

swap with R2 R2

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry

to zero

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry

to zero

R3 ← R3 − 3R2
2

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

leftmost
nonzero
entry

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

leftmost
nonzero
entry

swap with R3 R3

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
done with elimination stage

going to back substitution stage

Back Substitution Stage

Back Substitution Stage (High Level)

Back Substitution Stage (High Level)

Input: matrix of size in echelon formA m × n

Output: reduced echelon form of A

Back Substitution Stage (High Level)

Input: matrix of size in echelon formA m × n

Output: reduced echelon form of A

scale pivot positions and eliminate the
variables for that column from the other
equations

Back Substitution (Psuedocode)

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

 (A) ← (A) / A[i, j] # divide by leading entryRi Ri

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

 (A) ← (A) / A[i, j] # divide by leading entryRi Ri

 FOR [k from 1 to i - 1]: # for the rows above the current one

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

 (A) ← (A) / A[i, j] # divide by leading entryRi Ri

 FOR [k from 1 to i - 1]: # for the rows above the current one

 (A) ← (A) - R[k, j] * (A)
 # zero out R[k, j] above the leading entry

Rk Rk Ri

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

 (A) ← (A) / A[i, j] # divide by leading entryRi Ri

 FOR [k from 1 to i - 1]: # for the rows above the current one

 (A) ← (A) - R[k, j] * (A)
 # zero out R[k, j] above the leading entry

Rk Rk Ri

 RETURN A

You will have to implement
this part in HW2...

Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

R1 ← R1 / 3

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

R2 ← R2 / 2

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

R1 ← R1 + 3R2

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4pivot

position

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4pivot

position

R3 ← R3 / 1

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

R2 ← R2 − R1

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

next entry
to zero

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

next entry
to zero

R1 ← R1 − 5R3

Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

done with back substitution phase

Gaussian Elimination (Example)

x1 = (−24) + 2x3 − 3x4
x2 = (−7) + 2x3 − 2x4
x3 is free
x4 is free
x5 = 4

Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

How-To: Solving a System of Linear Equations

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

Gaussian elimination

Extra Topic:
Analyzing the Algorithm

Analyzing the Algorithm

Analyzing the Algorithm

We will not use notation!O(⋅)

Analyzing the Algorithm

We will not use notation!O(⋅)

For numerics, we care about number of FLoating-
oint OPerations (FLOPs):

 >> addition
 >> subtraction
 >> multiplication
 >> division
 >> square root

Analyzing the Algorithm

We will not use notation!O(⋅)

For numerics, we care about number of FLoating-
oint OPerations (FLOPs):

 >> addition
 >> subtraction
 >> multiplication
 >> division
 >> square root

 vs. is very different
when

2n n
n ∼ 1020

Dominant Terms

Dominant Terms

that said, we don't care about exact bounds

Dominant Terms

that said, we don't care about exact bounds

A function is asymptotically equivalent to
 if

f(n)
g(n)

lim
i→∞

f(i)
g(i) = 1

Dominant Terms

that said, we don't care about exact bounds

A function is asymptotically equivalent to
 if

f(n)
g(n)

lim
i→∞

f(i)
g(i) = 1

for polynomials, they are equivalent to their
dominant term

Dominant Terms

the dominant term of a polynomial is the monomial with the
highest degree

 dominates the function even though the coefficient for
is so large

lim
i→∞

3x3 + 100000x2

3x3 = 1

3x3 x2

Parameters

 : number of variables

 : number of equations (we will assume)

 : number of rows in the augmented matrix

n

m m = n

n + 1

The Cost of a Row Operation

 multiplications for the scaling

 additions for the row additions

Ri ← Ri + aRj
n + 1

n + 1

Tally: FLOPS2(n + 1)

Cost of First Iteration of Elimination

repeated row operations for each row except the
first

R2 ← R2 + a2R1
R3 ← R3 + a3R1

⋮
Rn ← Rn + anR1

Tally: FLOPS≈ 2n(n + 1)

Rough Cost of Elimination

repeating this last process at most times
gives us a dominant term

we can give a better estimation...

n
2n3

Tally: FLOPS≈ 2n2(n + 1)

Cost of Elimination

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 0 0 0 0 0 0

At iteration , we're
only interested in
rows after

And to the right of
column

i

i

i

Cost of Elimination

Iteration 1:
Iteraiton 2:
Iteration 3:

2n(n + 1)
2(n − 1)n
2(n − 2)(n − 1)

⋮

Tally: FLOPS∼ (2/3)n3

n

∑
k=1

2k(k + 1) ≈ 2n(n + 1)(2n + 1)
6 ∼ (2/3)n3

+

Cost of Back Substitution

(Let's assume no free variables)

for each pivot, we only need to:

 >> zero out a position in 1 row (0 FLOPS)
 >> add a value to the last row (1 FLOP)

at most 1 FLOP per row per pivot ∼ n2

Tally: FLOPS∼ (2/3)n3

Cost of Gaussian Elimination

Tally: FLOPS∼ (2/3)n3

(dominated by elimination)

Summary

Echelon form "represent solutions"

General form solutions can be used to describe
the infinite solution sets

Gaussian elimination uses forward elimination
and back-substitution to solve linear equations
in general

