
CAS CS 132

Gaussian Elimination
(+ Numerics)
Geometric Algorithms
Lecture 4

Practice Problem

Write down the general forms solution of the
above linear system.

x + z = 1
x + y + 3z = 3
x − y − z = − 1

Solution
x + z = 1

x + y + 3z = 3
x − y − z = − 1

Objectives

1. (Finally) discuss Gaussian elimination

2. Think more carefully about number
representations

3. Look at the consequences of floating point
representations

4. Introduce NumPy and talk about best best
practices

Keywords

forward elimination

back substitution

floating point numbers

IEEE-754

relative error

numpy.isclose

ill-conditioned problems

Defining the Gaussian
Elimination (GE) Algorithm

At a High Level

At a High Level

eliminations + back-substitution

At a High Level

eliminations + back-substitution

we've already done this

At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down
the algorithm as pseudocode

At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down
the algorithm as pseudocode

Keep in mind. How do we turn our intuitions
into a formal procedure?

A Word of Warning

A Word of Warning

The details of Gaussian elimination are tricky.

A Word of Warning

The details of Gaussian elimination are tricky.

The goal is not to understand it entirely, but
to get enough intuition to emulate it.

A Word of Warning

The details of Gaussian elimination are tricky.

The goal is not to understand it entirely, but
to get enough intuition to emulate it.

You should roughly use Gaussian Elimination
when solving a system by hand.

demo
(step-throughs)

The Algorithm

Gaussian Elimination (Specification)

 FUNCTION GE(A):
 # INPUT: m × n matrix A
 # OUTPUT: equivalent m × n RREF matrix
 ...

Gaussian Elimination (High Level)
 FUNCTION fwd_elim(A):
 # INPUT: m × n matrix A
 # OUTPUT: equivalent m × n echelon form matrix
 ...

 FUNCTION back_sub(A):
 # INPUT: m × n echelon form matrix A
 # OUTPUT: equivalent m × n RREF matrix
 ...

 FUNCTION GE(A):
 RETURN back_sub(fwd_elim(A))

Elimination Stage

Elimination Stage (High Level)

Elimination Stage (High Level)

Input: matrix of size A m × n

Output: echelon form of A

Elimination Stage (High Level)

Input: matrix of size A m × n

Output: echelon form of A

starting at the top left and move down, find a
leading entry and eliminate it from latter
equations

Edge cases

Edge cases

What if the first equation doesn't have the
variable ?x1

Edge cases

What if the first equation doesn't have the
variable ?x1

Swap rows with an equation that does.

Edge cases

What if the first equation doesn't have the
variable ?x1

Swap rows with an equation that does.

What if none of the equations have the variable
?x1

Edge cases

What if the first equation doesn't have the
variable ?x1

Swap rows with an equation that does.

What if none of the equations have the variable
?x1

Find the leftmost variable which appears in any
of the remaining equations.

Elimination Stage (Pseudocode)

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

 [swap row i and row j]

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

 [swap row i and row j]

 FOR [l from i + 1 to m]: # for all remaining rows

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

 [swap row i and row j]

 FOR [l from i + 1 to m]: # for all remaining rows

 [zero out A[l, k] using a replacement operation]

Elimination Stage (Pseudocode)
 FUNCTION fwd_elim(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [rows i...m are all-zeros]: # if remaining rows are zero

 RETURN A

 ELSE:

 (j, k) ← [position of leftmost entry in the rows i...m]

 [swap row i and row j]

 FOR [l from i + 1 to m]: # for all remaining rows

 [zero out A[l, k] using a replacement operation]

 RETURN A

Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

leftmost
nonzero
entry

Elimination Stage (Example)

0 3 −6 6 4 −5
3 −7 8 −5 8 9
3 −9 12 −9 6 15

leftmost
nonzero
entry

Swap and R1 R3

Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

next entry
to zero

Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

next entry
to zero

R3 ← R3 − R1

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

leftmost
nonzero
entry

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

leftmost
nonzero
entry

swap with R2 R2

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry

to zero

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry

to zero

R3 ← R3 − 3R2
2

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

leftmost
nonzero
entry

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

leftmost
nonzero
entry

swap with R3 R3

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
done with elimination stage

going to back substitution stage

Back Substitution Stage

Back Substitution Stage (High Level)

Back Substitution Stage (High Level)

Input: matrix of size in echelon formA m × n

Output: reduced echelon form of A

Back Substitution Stage (High Level)

Input: matrix of size in echelon formA m × n

Output: reduced echelon form of A

scale pivot positions and eliminate the
variables for that column from the other
equations

Back Substitution (Psuedocode)

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

 (A) ← (A) / A[i, j] # divide by leading entryRi Ri

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

 (A) ← (A) / A[i, j] # divide by leading entryRi Ri

 FOR [k from 1 to i - 1]: # for the rows above the current one

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

 (A) ← (A) / A[i, j] # divide by leading entryRi Ri

 FOR [k from 1 to i - 1]: # for the rows above the current one

 (A) ← (A) - R[k, j] * (A)
 # zero out R[k, j] above the leading entry

Rk Rk Ri

Back Substitution (Psuedocode)

 FUNCTION back_sub(A):

 FOR [i from 1 to m]: # for each row from top to bottom

 IF [row i has a leading entry]:

 j ← index of leading entry of row i

 (A) ← (A) / A[i, j] # divide by leading entryRi Ri

 FOR [k from 1 to i - 1]: # for the rows above the current one

 (A) ← (A) - R[k, j] * (A)
 # zero out R[k, j] above the leading entry

Rk Rk Ri

 RETURN A

You will have to implement
this part in HW2...

Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

R1 ← R1 / 3

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot
position

R2 ← R2 / 2

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

R1 ← R1 + 3R2

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4pivot

position

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4pivot

position

R3 ← R3 / 1

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry
to zero

R2 ← R2 − R1

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

next entry
to zero

Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

next entry
to zero

R1 ← R1 − 5R3

Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

done with back substitution phase

Question

Write down the general form solution from the
given RREF.

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

Solution [
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4]

Solution

x1 = (−24) + 2x3 − 3x4
x2 = (−7) + 2x3 − 2x4
x3 is free
x4 is free
x5 = 4

How-To: Solving a System of Linear Equations

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

Gaussian elimination

Numerics

demo
(mini-GE)

Significant Figures (Sig Figs)

Significant Figures (Sig Figs)

Have you ever been docked points in a science
class for having incorrect sig figs?

Significant Figures (Sig Figs)

Have you ever been docked points in a science
class for having incorrect sig figs?

when you use a ruler, you can't do better than
, so we can't say anything about nanometer

differences
±1!!

Significant Figures (Sig Figs)

Have you ever been docked points in a science
class for having incorrect sig figs?

when you use a ruler, you can't do better than
, so we can't say anything about nanometer

differences
±1!!

we run into a similar problem with decimal numbers
in programs

Number Representations

Number Representations

your computer is a collection of fixed size
registers

Number Representations

your computer is a collection of fixed size
registers

each register holds a sequence of bits

Number Representations

your computer is a collection of fixed size
registers

each register holds a sequence of bits

The Goal. represent numbers so they fit in
those registers

Number Representations

your computer is a collection of fixed size
registers

each register holds a sequence of bits

The Goal. represent numbers so they fit in
those registers

this is, of course, a lie an abstraction

Number Representations

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Number Representations

Question. How do we slice up our fixed sequence
to represent numbers?

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Number Representations

Question. How do we slice up our fixed sequence
to represent numbers?

things to consider:
• simple idea (easy to understand)
• maximize coverage (not too redundant)
• simple numeric operations (easy to use)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unsigned Integers

binary value (we should know this by now)

e.g. 10001010 represents

1(27) + 0(26) + 0(25) + 0(24) + 0(23) + 1(22) + 0(21) + 1(20)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

value

Signed Integers

sign bit + binary value

e.g. 10001010 represents

−1 × (0(26) + 0(25) + 0(24) + 0(23) + 1(22) + 0(21) + 1(20))

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

valuesign

Floating-Point Numbers (Some Figures)

Floating-Point Numbers (Some Figures)

floats in python use 64 bits

Floating-Point Numbers (Some Figures)

floats in python use 64 bits

That's possible values1.8 × 1019

Floating-Point Numbers (Some Figures)

floats in python use 64 bits

That's possible values1.8 × 1019

We can't represent everything. We'll have to
choose and then round

Floating-Point Numbers (Some Figures)

floats in python use 64 bits

That's possible values1.8 × 1019

We can't represent everything. We'll have to
choose and then round

Question. Which ones should we represent?

Floating-Point Numbers (An Idea)

Floating-Point Numbers (An Idea)

Integers work because they are discrete and
evenly spaced

Floating-Point Numbers (An Idea)

Integers work because they are discrete and
evenly spaced

What if we evenly discretize a range of values?

Floating-Point Numbers (An Idea)

Integers work because they are discrete and
evenly spaced

What if we evenly discretize a range of values?

i.e., represent

..., -0.001, 0, 0.0001, 0.002, 0.003, 0.004,...

Question

Discuss the advantages and disadvantages of
this approach

Floating-Point Numbers (IEEE-754)

image source

Floating-Point Numbers (IEEE-754)

like scientific notation, but binary

image source

Floating-Point Numbers (IEEE-754)

like scientific notation, but binary

the equation:

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

image source

Floating-Point Numbers (IEEE-754)

like scientific notation, but binary

the equation:

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

it's an accepted standard, not perfect, but it works well
image source

Question

Any ideas why this is better/worse?

And why not have a sign bit for the exponent?

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Step Size

image source

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Step Size

Definition. step size is the space between two
floating-point representations

step size increases with magnitude

image source

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Step Size

Definition. step size is the space between two
floating-point representations

for fixed exponent two numbers are at leastn

0.00…001 × 2n = 2−52 × 2n

away (why?)

step size increases with magnitude

image source

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Step Size

Definition. step size is the space between two
floating-point representations

for fixed exponent two numbers are at leastn

0.00…001 × 2n = 2−52 × 2n

away (why?)

step size increases with magnitude

Step size doubles for each exponent
image source

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Things to Keep in Mind

Things to Keep in Mind

IEEE-754 defines a subset of decimal numbers

Things to Keep in Mind

IEEE-754 defines a subset of decimal numbers

operations on floating point numbers attempt to
give you the closest to the actual value,
though there will be errors.

Things to Keep in Mind

IEEE-754 defines a subset of decimal numbers

operations on floating point numbers attempt to
give you the closest to the actual value,
though there will be errors.

we can assume when we write down a number like
'0.3' we get the closest IEEE-754 value

Relative Error
Observation. is tiny error for but
massive for

±0.001 1020

10−20

Relative Error
Observation. is tiny error for but
massive for

±0.001 1020

10−20

Relative Error.

.))).1 = .))
2*1

Relative Error
Observation. is tiny error for but
massive for

±0.001 1020

10−20

Relative Error.

.))).1 = .))
2*1

IEEE-754 keeps relative error small

Relative Error (Calculation)
(fix an exponent)n

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Relative Error (Calculation)

error is determined by step-size

.)) ≤ 2−52 × 2n

(fix an exponent)n

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Relative Error (Calculation)
(fix an exponent)n

the smallest number we can represent at least
 1.0 × 2n

2*1 ≥ 1.0 × 2n

(why do we care about a lower bound on val?)

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Relative Error (Calculation)
(fix an exponent)n

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Relative Error (Calculation)

the relative error is small

2*1 ≥ 1.0 × 2n

.)) ≤ 2−52 × 2n

(fix an exponent)n

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Relative Error (Calculation)

the relative error is small

2*1 ≥ 1.0 × 2n

.)) ≤ 2−52 × 2n

.))).1 = .))
2*1 ≤ 2−52 × 2n

1.0 × 2n = 2−52 ≈ 10−16

(fix an exponent)n

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

Relative Error (Calculation)

the relative error is small

2*1 ≥ 1.0 × 2n

.)) ≤ 2−52 × 2n

.))).1 = .))
2*1 ≤ 2−52 × 2n

1.0 × 2n = 2−52 ≈ 10−16

(fix an exponent)n

(−1)$%&' × (1 + ()*+,%-'
252) × 2./0-'.',−(210−1)

16 digits of accuracy
Not bad, but also not great

≈

demo
(example from the notes)

The Takeaways

The Takeaways

operations on floating-point numbers are not
exact

The Takeaways

operations on floating-point numbers are not
exact

properties like (associativity) may
not hold

(ab)c = a(bc)

The Takeaways

operations on floating-point numbers are not
exact

properties like (associativity) may
not hold

(ab)c = a(bc)

it's a trade-off for large range and low
relative error

The Takeaways

operations on floating-point numbers are not
exact

properties like (associativity) may
not hold

(ab)c = a(bc)

it's a trade-off for large range and low
relative error

What do we do about it?

Best Practices

1. don't compare floating points for equality

2. be aware of ill-conditioned problems

3. be aware of small differences

Principle 1: Closeness

Principle 1: Closeness

When doing floating-point calculations in a
program, define an error margin and use that
for equality checking

Principle 1: Closeness

When doing floating-point calculations in a
program, define an error margin and use that
for equality checking

In Practice.

 Replace x == y
 with numpy.isclose(x, y)

demo

Principle 2: Ill-Conditioned Problems

Principle 2: Ill-Conditioned Problems

Make sure your problem is not sensitive to
small errors.

Principle 2: Ill-Conditioned Problems

Make sure your problem is not sensitive to
small errors.

In Practice. for example, don't divide by
numbers much smaller than your error tolerance

demo

Principle 3: Small Differences

Principle 3: Small Differences

Make sure you understand your error tolerance
when looking that the small differences of
large numbers.

Principle 3: Small Differences

Make sure you understand your error tolerance
when looking that the small differences of
large numbers.

In Practice. Don't expect to be small when
 and are "close" but very large.

a − b
a b

demo

One Last Note: Special Numbers

0 (we can't already represent 0?)

nan stands for not a number, .e.g, sqrt(-2)

inf symbolic infinity, behaves as expected

NumPy

NumPy

NumPy

NumPy is a library for doing linear algebra in
Python.

NumPy

NumPy is a library for doing linear algebra in
Python.

Its fast and very widely used.

NumPy

NumPy is a library for doing linear algebra in
Python.

Its fast and very widely used.

We will primarily be using numpy (and scipy)
instead of sympy in this course.

NumPy vs. Sympy

NumPy is fast

NumPy is approximate

NumPy is widely used
in applications

Sympy is slow

Sympy is exact

Sympy is a teaching
tool (and useful in
symbolic computation
research)

NumPy vs. Sympy

numpy.array(...)

a[i] #row access

a[:,j] #col access

a.shape[0]

a.shape[1]

Matrix(...)

a[i,:] #row access

a[:,j] #col access

a.rows

a.cols

demo

Extra Topic:
Analyzing Gaussian Elimination

Analyzing the Algorithm

Analyzing the Algorithm

We will not use notation!O(⋅)

Analyzing the Algorithm

We will not use notation!O(⋅)

For numerics, we care about number of FLoating-
oint OPerations (FLOPs):

 >> addition
 >> subtraction
 >> multiplication
 >> division
 >> square root

Analyzing the Algorithm

We will not use notation!O(⋅)

For numerics, we care about number of FLoating-
oint OPerations (FLOPs):

 >> addition
 >> subtraction
 >> multiplication
 >> division
 >> square root

 vs. is very different
when

2n n
n ∼ 1020

Dominant Terms

Dominant Terms

that said, we don't care about exact bounds

Dominant Terms

that said, we don't care about exact bounds

A function is asymptotically equivalent to
 if

f(n)
g(n)

lim
i→∞

f(i)
g(i) = 1

Dominant Terms

that said, we don't care about exact bounds

A function is asymptotically equivalent to
 if

f(n)
g(n)

lim
i→∞

f(i)
g(i) = 1

for polynomials, they are equivalent to their
dominant term

Dominant Terms

the dominant term of a polynomial is the monomial with the
highest degree

 dominates the function even though the coefficient for
is so large

lim
i→∞

3x3 + 100000x2

3x3 = 1

3x3 x2

Parameters

 : number of variables

 : number of equations (we will assume)

 : number of rows in the augmented matrix

n

m m = n

n + 1

The Cost of a Row Operation

 multiplications for the scaling

 additions for the row additions

Ri ← Ri + aRj
n + 1

n + 1

Tally: FLOPS2(n + 1)

Cost of First Iteration of Elimination

repeated row operations for each row except the
first

R2 ← R2 + a2R1
R3 ← R3 + a3R1

⋮
Rn ← Rn + anR1

Tally: FLOPS≈ 2n(n + 1)

Rough Cost of Elimination

repeating this last process at most times
gives us a dominant term

we can give a better estimation...

n
2n3

Tally: FLOPS≈ 2n2(n + 1)

Cost of Elimination

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 0 0 0 0 0 0

At iteration , we're
only interested in
rows after

And to the right of
column

i

i

i

Cost of Elimination

Iteration 1:
Iteraiton 2:
Iteration 3:

2n(n + 1)
2(n − 1)n
2(n − 2)(n − 1)

⋮

Tally: FLOPS∼ (2/3)n3

n

∑
k=1

2k(k + 1) ≈ 2n(n + 1)(2n + 1)
6 ∼ (2/3)n3

+

Cost of Back Substitution

(Let's assume no free variables)

for each pivot, we only need to:

 >> zero out a position in 1 row (0 FLOPS)
 >> add a value to the last row (1 FLOP)

at most 1 FLOP per row per pivot ∼ n2

Tally: FLOPS∼ (2/3)n3

Cost of Gaussian Elimination

Tally: FLOPS∼ (2/3)n3

(dominated by elimination)

Summary

floating point numbers are represented in your
computer

floating point operations are not exact

this can have unintended consequences

we get 16 digits of accuracy

