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Practice Problem

Write down the general forms solution of the 
above linear system.

x + z = 1
x + y + 3z = 3
x − y − z = − 1



Solution
x + z = 1

x + y + 3z = 3
x − y − z = − 1



Objectives

1. (Finally) discuss Gaussian elimination 

2. Think more carefully about number 
representations 

3. Look at the consequences of floating point 
representations 

4. Introduce NumPy and talk about best best 
practices



Keywords

forward elimination 

back substitution 

floating point numbers 

IEEE-754 

relative error 

numpy.isclose 

ill-conditioned problems



Defining the Gaussian 
Elimination (GE) Algorithm
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At a High Level

eliminations + back-substitution

we've already done this

but we'll take one step further and write down 
the algorithm as pseudocode

Keep in mind. How do we turn our intuitions 
into a formal procedure?
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A Word of Warning

The details of Gaussian elimination are tricky.

The goal is not to understand it entirely, but 
to get enough intuition to emulate it.

You should roughly use Gaussian Elimination 
when solving a system by hand.



demo 
(step-throughs)



The Algorithm



Gaussian Elimination (Specification)

  FUNCTION GE(A): 
    # INPUT: m × n matrix A 
    # OUTPUT: equivalent m × n RREF matrix 
    ...



Gaussian Elimination (High Level)
  FUNCTION fwd_elim(A): 
    # INPUT: m × n matrix A 
    # OUTPUT: equivalent m × n echelon form matrix 
    ... 

  FUNCTION back_sub(A): 
    # INPUT: m × n echelon form matrix A 
    # OUTPUT: equivalent m × n RREF matrix 
    ... 

  FUNCTION GE(A): 
    RETURN back_sub(fwd_elim(A))
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Elimination Stage (High Level)
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Output: echelon form of A



Elimination Stage (High Level)

Input: matrix  of size A m × n

Output: echelon form of A

starting at the top left and move down, find a 
leading entry and eliminate it from latter 
equations
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Edge cases

What if the first equation doesn't have the 
variable ?x1

Swap rows with an equation that does.

What if none of the equations have the variable 
?x1

Find the leftmost variable which appears in any 
of the remaining equations.
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  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:

        (j, k) ← [position of leftmost entry in the rows i...m]

        [swap row i and row j]

        FOR [l from i + 1 to m]: # for all remaining rows
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  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:

        (j, k) ← [position of leftmost entry in the rows i...m]

        [swap row i and row j]

        FOR [l from i + 1 to m]: # for all remaining rows

          [zero out A[l, k] using a replacement operation]



Elimination Stage (Pseudocode)
  FUNCTION fwd_elim(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [rows i...m are all-zeros]: # if remaining rows are zero

        RETURN A

      ELSE:

        (j, k) ← [position of leftmost entry in the rows i...m]

        [swap row i and row j]

        FOR [l from i + 1 to m]: # for all remaining rows

          [zero out A[l, k] using a replacement operation]

    RETURN A
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Elimination Stage (Example)

3 −9 12 −9 6 15
3 −7 8 −5 8 9
0 3 −6 6 4 −5

next entry 
to zero

R3 ← R3 − R1
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3 −9 12 −9 6 15
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Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry 

to zero



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 3 −6 6 4 −5next entry 

to zero

R3 ← R3 − 3R2
2
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Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4



Elimination Stage (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4
done with elimination stage 

going to back substitution stage



Back Substitution Stage



Back Substitution Stage (High Level)



Back Substitution Stage (High Level)

Input: matrix  of size  in echelon formA m × n

Output: reduced echelon form of A



Back Substitution Stage (High Level)

Input: matrix  of size  in echelon formA m × n

Output: reduced echelon form of A

scale pivot positions and eliminate the 
variables for that column from the other 
equations
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  FUNCTION back_sub(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [row i has a leading entry]:

        j ← index of leading entry of row i

        (A) ← (A) / A[i, j] # divide by leading entryRi Ri
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Back Substitution (Psuedocode)

  FUNCTION back_sub(A):

    FOR [i from 1 to m]: # for each row from top to bottom

      IF [row i has a leading entry]:

        j ← index of leading entry of row i

        (A) ← (A) / A[i, j] # divide by leading entryRi Ri

        FOR [k from 1 to i - 1]: # for the rows above the current one

          (A) ← (A) - R[k, j] * (A) 
          # zero out R[k, j] above the leading entry

Rk Rk Ri

    RETURN A



You will have to implement 
this part in HW2...
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Gaussian Elimination (Example)

3 −9 12 −9 6 15
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot 
position

R1 ← R1 / 3
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Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 2 −4 4 2 −6
0 0 0 0 1 4

pivot 
position

R2 ← R2 / 2
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Gaussian Elimination (Example)

1 −3 4 −3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry 
to zero

R1 ← R1 + 3R2
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Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4pivot 

position

R3 ← R3 / 1
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Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
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next entry 
to zero



Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 1 −3
0 0 0 0 1 4

next entry 
to zero

R2 ← R2 − R1
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Gaussian Elimination (Example)

1 0 −2 3 5 −4
0 1 −2 2 0 −7
0 0 0 0 1 4

next entry 
to zero

R1 ← R1 − 5R3



Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4 ]



Gaussian Elimination (Example)

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4 ]

done with back substitution phase



Question

Write down the general form solution from the 
given RREF.

[
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4 ]



Solution [
1 0 −2 3 0 −24
0 1 −2 2 0 −7
0 0 0 0 1 4 ]



Solution

x1 = (−24) + 2x3 − 3x4
x2 = (−7) + 2x3 − 2x4
x3 is free
x4 is free
x5 = 4



How-To: Solving a System of Linear Equations
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How-To: Solving a System of Linear Equations

1. Write your system as an augmented matrix

2. Find the RREF of that matrix

3. Read off the solution from the RREF

Gaussian elimination



Numerics



demo 
(mini-GE)
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Significant Figures (Sig Figs)

Have you ever been docked points in a science 
class for having incorrect sig figs?

when you use a ruler, you can't do better than 
, so we can't say anything about nanometer 

differences
±1!!

we run into a similar problem with decimal numbers 
in programs
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Number Representations

your computer is a collection of fixed size 
registers

each register holds a sequence of bits

The Goal. represent numbers so they fit in 
those registers

this is, of course, a lie an abstraction
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Number Representations

Question. How do we slice up our fixed sequence 
to represent numbers?

things to consider:
• simple idea (easy to understand)
• maximize coverage (not too redundant)
• simple numeric operations (easy to use)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Unsigned Integers

binary value (we should know this by now) 

e.g. 10001010 represents 

1(27) + 0(26) + 0(25) + 0(24) + 0(23) + 1(22) + 0(21) + 1(20)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

value



Signed Integers

sign bit + binary value 

e.g. 10001010 represents 

−1 × (0(26) + 0(25) + 0(24) + 0(23) + 1(22) + 0(21) + 1(20))

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

valuesign
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Floating-Point Numbers (Some Figures)

floats in python use 64 bits

That's  possible values1.8 × 1019

We can't represent everything. We'll have to 
choose and then round

Question. Which ones should we represent?
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Floating-Point Numbers (An Idea)

Integers work because they are discrete and 
evenly spaced

What if we evenly discretize a range of values?

i.e., represent

..., -0.001, 0, 0.0001, 0.002, 0.003, 0.004,...



Question

Discuss the advantages and disadvantages of 
this approach
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Floating-Point Numbers (IEEE-754)

like scientific notation, but binary

the equation:

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)

it's an accepted standard, not perfect, but it works well
image source



Question

Any ideas why this is better/worse? 

And why not have a sign bit for the exponent?

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)



Step Size

image source

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)



Step Size

Definition. step size is the space between two 
floating-point representations

step size increases with magnitude
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Step Size

Definition. step size is the space between two 
floating-point representations

for fixed exponent  two numbers are at leastn

0.00…001 × 2n = 2−52 × 2n

away (why?)

step size increases with magnitude

image source

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)



Step Size

Definition. step size is the space between two 
floating-point representations

for fixed exponent  two numbers are at leastn

0.00…001 × 2n = 2−52 × 2n

away (why?)

step size increases with magnitude

Step size doubles for each exponent
image source

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)
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Things to Keep in Mind

IEEE-754 defines a subset of decimal numbers

operations on floating point numbers attempt to 
give you the closest to the actual value, 
though there will be errors.

we can assume when we write down a number like 
'0.3' we get the closest IEEE-754 value
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massive for 

±0.001 1020

10−20
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Relative Error
Observation.  is tiny error for  but 
massive for 

±0.001 1020

10−20

Relative Error. 

.))).1 = .))
2*1

IEEE-754 keeps relative error small



Relative Error (Calculation)
(fix an exponent )n

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)



Relative Error (Calculation)

error is determined by step-size 

.)) ≤ 2−52 × 2n

(fix an exponent )n

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)



Relative Error (Calculation)
(fix an exponent )n

the smallest number we can represent at least
 1.0 × 2n

2*1 ≥ 1.0 × 2n

(why do we care about a lower bound on val?)

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)
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Relative Error (Calculation)

the relative error is small

2*1 ≥ 1.0 × 2n

.)) ≤ 2−52 × 2n

(fix an exponent )n

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)



Relative Error (Calculation)

the relative error is small

2*1 ≥ 1.0 × 2n

.)) ≤ 2−52 × 2n

.))).1 = .))
2*1 ≤ 2−52 × 2n

1.0 × 2n = 2−52 ≈ 10−16

(fix an exponent )n

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)



Relative Error (Calculation)

the relative error is small

2*1 ≥ 1.0 × 2n

.)) ≤ 2−52 × 2n

.))).1 = .))
2*1 ≤ 2−52 × 2n

1.0 × 2n = 2−52 ≈ 10−16

(fix an exponent )n

(−1)$%&' × (1 + ()*+,%-'
252 ) × 2./0-'.',−(210−1)



16 digits of accuracy 
Not bad, but also not great

≈



demo 
(example from the notes)
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The Takeaways

operations on floating-point numbers are not 
exact

properties like  (associativity) may 
not hold

(ab)c = a(bc)

it's a trade-off for large range and low 
relative error

What do we do about it?



Best Practices

1. don't compare floating points for equality 

2. be aware of ill-conditioned problems 

3. be aware of small differences



Principle 1: Closeness



Principle 1: Closeness
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program, define an error margin and use that 
for equality checking



Principle 1: Closeness

When doing floating-point calculations in a 
program, define an error margin and use that 
for equality checking

In Practice.

    Replace    x == y
    with       numpy.isclose(x, y)



demo
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small errors.



Principle 2: Ill-Conditioned Problems

Make sure your problem is not sensitive to 
small errors.

In Practice. for example, don't divide by 
numbers much smaller than your error tolerance



demo
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when looking that the small differences of 
large numbers.



Principle 3: Small Differences

Make sure you understand your error tolerance 
when looking that the small differences of 
large numbers.

In Practice. Don't expect  to be small when 
 and  are "close" but very large.

a − b
a b



demo



One Last Note: Special Numbers

0      (we can't already represent 0?) 

nan    stands for not a number, .e.g, sqrt(-2) 

inf    symbolic infinity, behaves as expected 



NumPy
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NumPy

NumPy is a library for doing linear algebra in 
Python.

Its fast and very widely used.

We will primarily be using numpy (and scipy) 
instead of sympy in this course.



NumPy vs. Sympy

NumPy is fast 

NumPy is approximate 

NumPy is widely used 
in applications

Sympy is slow 

Sympy is exact 

Sympy is a teaching 
tool (and useful in 
symbolic computation 
research)



NumPy vs. Sympy

numpy.array(...) 

a[i] #row access 

a[:,j] #col access 

a.shape[0] 

a.shape[1]

Matrix(...) 

a[i,:] #row access 

a[:,j] #col access 

a.rows 

a.cols



demo



Extra Topic: 
Analyzing Gaussian Elimination
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Analyzing the Algorithm

We will not use  notation!O( ⋅ )

For numerics, we care about number of FLoating-
oint OPerations (FLOPs):

  >> addition 
  >> subtraction 
  >> multiplication 
  >> division 
  >> square root

 vs.  is very different 
when 

2n n
n ∼ 1020



Dominant Terms



Dominant Terms

that said, we don't care about exact bounds



Dominant Terms

that said, we don't care about exact bounds

A function  is asymptotically equivalent to 
 if

f(n)
g(n)

lim
i→∞

f(i)
g(i) = 1



Dominant Terms

that said, we don't care about exact bounds

A function  is asymptotically equivalent to 
 if

f(n)
g(n)

lim
i→∞

f(i)
g(i) = 1

for polynomials, they are equivalent to their 
dominant term



Dominant Terms

the dominant term of a polynomial is the monomial with the 
highest degree 

 

 dominates the function even though the coefficient for  
is so large

lim
i→∞

3x3 + 100000x2

3x3 = 1

3x3 x2



Parameters

 : number of variables 

 : number of equations (we will assume ) 

 : number of rows in the augmented matrix

n

m m = n

n + 1



The Cost of a Row Operation

 
 multiplications for the scaling 

 additions for the row additions

Ri ← Ri + aRj
n + 1

n + 1

Tally:  FLOPS2(n + 1)



Cost of First Iteration of Elimination

 

repeated row operations for each row except the 
first

R2 ← R2 + a2R1
R3 ← R3 + a3R1

⋮
Rn ← Rn + anR1

Tally:  FLOPS≈ 2n(n + 1)



Rough Cost of Elimination

repeating this last process at most  times 
gives us a dominant term  

we can give a better estimation... 

n
2n3

Tally:  FLOPS≈ 2n2(n + 1)



Cost of Elimination

0 ◼ * * * * * * * *
0 0 0 ◼ * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 * * * * * *
0 0 0 0 0 0 0 0 0 0

At iteration , we're 
only interested in 
rows after  

And to the right of 
column 

i

i

i



Cost of Elimination

Iteration 1:  
Iteraiton 2:  
Iteration 3:  
         

2n(n + 1)
2(n − 1)n
2(n − 2)(n − 1)

⋮

Tally:  FLOPS∼ (2/3)n3

n

∑
k=1

2k(k + 1) ≈ 2n(n + 1)(2n + 1)
6 ∼ (2/3)n3

+



Cost of Back Substitution

(Let's assume no free variables) 

for each pivot, we only need to: 

  >> zero out a position in 1 row (0 FLOPS) 
  >> add a value to the last row (1 FLOP) 

at most 1 FLOP per row per pivot  ∼ n2

Tally:  FLOPS∼ (2/3)n3



Cost of Gaussian Elimination

Tally:  FLOPS∼ (2/3)n3

(dominated by elimination) 



Summary

floating point numbers are represented in your 
computer 

floating point operations are not exact 

this can have unintended consequences 

we get 16 digits of accuracy


