Matrix-Vector Equations Geometric Algorithms Lecture 6

CAS CS 132

Practice Problem

Is the vector $\begin{vmatrix} 9 \\ 3 \\ 14 \end{vmatrix}$ in span $\left\{ \begin{vmatrix} 1 \\ 0 \\ 2 \end{vmatrix}, \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}, \begin{vmatrix} 3 \\ 2 \\ 4 \end{vmatrix} \right\}$?

Is the vector $\begin{bmatrix} 9\\3\\-14 \end{bmatrix}$ in span $\left\{ \begin{bmatrix} 1\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\2\\-4 \end{bmatrix} \right\}$? $\begin{array}{c} x, \begin{bmatrix} 1\\ 2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1\\ 1 \\ -1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 2\\ 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 2\\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2\\ 3 \\ -14 \end{bmatrix}$ $\begin{array}{c} 3 \\ -14 \end{bmatrix} = \begin{bmatrix} -14\\ -14 \end{bmatrix}$

solve the system of linear equations with the augmented matrix

solve the system of linear equations with the augmented matrix

$\begin{bmatrix} 1 & 1 & 3 & 9 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 4 \end{bmatrix}$

 $R_3 \leftarrow R_3 + 2R_1$

solve the system of linear equations with the augmented matrix

$\begin{bmatrix} 1 & 1 & 3 & 9 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

 $R_3 \leftarrow R_3 - R_1$

$\begin{bmatrix} 1 & 1 & 3 & 9 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

no solution \equiv not in the span

Objectives

- 2. define matrix-vector multiplication
- 3. Revisit span
- linear equations

1. motivate the study of matrix-vector equations

4. take stock of our perspectives on systems of

Keywords

matrix-vector multiplication the matrix equation inner-product row-column rule

Recap

to be equal?

equality what does it mean for two vectors

equality

addition

what does it
to be equal?
what does u +
mean?

what does it mean for two vectors to be equal?

what does $\mathbf{u} + \mathbf{v}$ (adding two vectors

equality addition scaling

to be equal?

mean?

a real number) mean?

what does it mean for two vectors

what does u + v (adding two vectors

what does av (multiplying a vector by

equality addition scaling

to be equal?

mean?

a real number) mean?

what does it mean for two vectors

what does u + v (adding two vectors

what does av (multiplying a vector by

What properties do they need to satisfy?

Recall: Vector Addition (Geometrically)

in \mathbb{R}^2 it's called the parallelogram rule

u + v is the fourth vertex
 of the parallelogram
 generated by 0, u and v

Vector Addition (Geometrically)

or the tip-to-tail rule

u + v result of putting the tail of v to the tip of u (or vice versa)

Vector Addition (Geometrically)

or the tip-to-tail rule

u + v result of putting the tail of v to the tip of u (or vice versa)

Vector Addition (Geometrically)

or the tip-to-tail rule

u + v result of putting the tail of v to the tip of u (or vice versa)

longer the same length shorter reversed

longer the same length shorter reversed

longer the same length if |a| = 1shorter reversed

longer the same length shorter reversed

longer the same length shorter reversed

Recall: Linear Combinations

Definition. a linear combination of vectors is a vector of the form where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are in \mathbb{R}

- $V_1, V_2, ..., V_n$
- $\alpha_1 \mathbf{v}_1 + \alpha_1 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n$

Recall: Linear Combinations

Definition. a linear combination of vectors $V_1, V_2, ..., V_n$ is a vector of the form $\alpha_1 \mathbf{v}_1 + \alpha_1 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n$ where $\alpha_1, \alpha_2, \dots, \alpha_n$ are in \mathbb{R} weights

Recall: Linear Combinations (Example)

Recall: Linear Combinations (Geometrically)

demo (from ILA)

Recall: The Fundamental Concern

Can **u** be written as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$?

That is, are there weights $\alpha_1, \alpha_2, ..., \alpha_n$ such that $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... \alpha_n \mathbf{v}_n = \mathbf{u}$?

Recall: The Fundamental Connection

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{m1} & a_{m2} \end{bmatrix}$$

augmented matrix

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$ system of linear equations

$$\begin{array}{ccc} \dots & a_{1n} & b_1 \\ \dots & a_{2n} & b_2 \\ \hline & \vdots & \vdots \\ \dots & a_{mn} & b_m \end{array}$$

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{1m} \end{bmatrix} + x_{2} \begin{bmatrix} a_{21} \\ a_{21} \\ \vdots \\ a_{2m} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} a_{n1} \\ a_{n2} \\ \vdots \\ a_{nm} \end{bmatrix} =$$

vector equation

Recall: The Fundamental Connection

augmented matrix

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

system of linear equations

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{1m} \end{bmatrix} + x_{2} \begin{bmatrix} a_{21} \\ a_{21} \\ \vdots \\ a_{2m} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} a_{n1} \\ a_{n2} \\ \vdots \\ a_{nm} \end{bmatrix} =$$

vector equation

Recall: The Fundamental Connection

augmented matrix

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$ system of linear equations

$$x_{1}\begin{bmatrix}a_{11}\\a_{21}\\\vdots\\a_{1m}\end{bmatrix} + x_{2}\begin{bmatrix}a_{21}\\a_{21}\\\vdots\\a_{2m}\end{bmatrix} + \dots + x_{n}\begin{bmatrix}a_{n1}\\a_{n2}\\\vdots\\a_{nm}\end{bmatrix}$$

vector equation

where we left off...

Question (Conceptual)

What does it mean geometrically if $\mathbf{b} \notin \text{span}\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\}$?

demo (from ILA)

HOW TO: Inconsistency and Spans
HOW TO: Inconsistency and Spans

Question. find a vecto in span $\{a_1, a_2, ..., a_n\}$

Question. find a vector b which does not appear

HOW TO: Inconsistency and Spans

Question. find a vecto in span $\{a_1, a_2, ..., a_n\}$

Solution. Choose **b** so that $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n & \mathbf{b} \end{bmatrix}$

is the augmented matrix of an *inconsistent* system

Question. find a vector b which does not appear

... a_n b] x of an *inconsister*

HOW TO: Inconsistency and Spans

Question. find a vector b which does not appear in span $\{a_1, a_2, ..., a_n\}$ Solution. Choose b so that $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \ \mathbf{b}]$

is the augmented matrix of an inconsistent system

There is no way to write b as a linear combination

b_{z} - ا

Find a vector **not** in span $\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} 5\\3\\2 \end{bmatrix} \right\}$.

Motivation (Very Short)

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{m1} & a_{m2} \end{bmatrix}$$

augmented matrix

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$ system of linear equations

$$\begin{array}{ccc} \dots & a_{1n} & b_1 \\ \dots & a_{2n} & b_2 \\ \hline & \vdots & \vdots \\ \dots & a_{mn} & b_m \end{array}$$

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{1m} \end{bmatrix} + x_{2} \begin{bmatrix} a_{21} \\ a_{21} \\ \vdots \\ a_{2m} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} a_{n1} \\ a_{n2} \\ \vdots \\ a_{nm} \end{bmatrix} =$$

augmented matrix

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

system of linear equations

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{1m} \end{bmatrix} + x_{2} \begin{bmatrix} a_{21} \\ a_{21} \\ \vdots \\ a_{2m} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} a_{n1} \\ a_{n2} \\ \vdots \\ a_{nm} \end{bmatrix} =$$

augmented matrix

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$ system of linear equations

$$x_{1}\begin{bmatrix}a_{11}\\a_{21}\\\vdots\\a_{1m}\end{bmatrix} + x_{2}\begin{bmatrix}a_{21}\\a_{21}\\\vdots\\a_{2m}\end{bmatrix} + \dots + x_{n}\begin{bmatrix}a_{n1}\\a_{n2}\\\vdots\\a_{nm}\end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ a_{m1} & a_{m2} \end{bmatrix}$$

augmented matrix

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$ \vdots $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$ system of linear equations

$$\begin{array}{ccc} \dots & a_{1n} & b_1 \\ \dots & a_{2n} & b_2 \\ \ddots & \vdots & \vdots \\ \dots & a_{mn} & b_m \end{array}$$

Why not view these as a vector too?

$$x_{1} \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{1m} \end{bmatrix} + x_{2} \begin{bmatrix} a_{21} \\ a_{21} \\ \vdots \\ a_{2m} \end{bmatrix} + \dots + x_{n} \begin{bmatrix} a_{n1} \\ a_{n2} \\ \vdots \\ a_{nm} \end{bmatrix} =$$

Observation. a solution is, in essence, an ordered list of numbers

Observation. a solution is, in essence, an ordered list of numbers

so it can be represented as a vector

Observation. a solution is, in essence, an ordered list of numbers

Can we view a linear system as a single equation with matrices and vectors?

How do matrices and vectors "interface"?

so it can be represented as a vector

Matrix-Vector "Interface"

a linear combination of the columns where $$\mathbf{s}$$ defines the weights

Why keeping track of matrix size is important

this only works if the number of columns of the matrix matches the number of *rows* of the vector

 $(m \times n)$ $(n \times 1)$ $(m \times 1)$

Why keeping track of matrix size is important

this only works if the number of columns of the matrix matches the number of rows of the vector

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = 1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + 3???$

(2×2) (3×1)

 $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ -4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 0 \\ 0 \\ 1 & 5 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 5 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 5 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 5 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + 3???$

$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

$(2 \times 2) (2 \times 1)$

Definition. Given a $(m \times n)$ matrix A with columns $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and a vector \mathbf{v} in \mathbb{R}^n , we define

Definition. Given a $(m \times n)$ matrix A with columns $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$, and a vector \mathbf{v} in \mathbb{R}^n , we define

$$A\mathbf{v} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$$

Definition. Given a $(m \times n)$ matrix A with columns $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and a vector v in \mathbb{R}^n , we define

Av is a linear combination of the columns of A with weights given by v

 $\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{bmatrix} = (1) \begin{pmatrix} 1 \\ 2 \\ 3 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ 2 \\ 3 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ 2 \\ 3 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ 5 \\ -1 \\ -1 \end{pmatrix} = (1) \begin{pmatrix} 1 \\ 2 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 4 \\ -1 \end{pmatrix}$ - 3 - 3

Algebraic Properties

The algebraic properties of matrix-vector multiplication are very important.

1. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$ 2. $A(c\mathbf{v}) = c(A\mathbf{v})$

Algebraic Properties

The algebraic properties of matrix-vector multiplication are very important.

1. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$ 2. $A(c\mathbf{v}) = c(A\mathbf{v})$

There are only two, please memorize them...

 $\begin{bmatrix} \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} u_{1} + v_{1} \\ u_{2} + v_{2} \\ u_{3} + v_{3} \end{bmatrix}$

by vector addition

by matrix vector multiplication

$(u_1 + v_1)\mathbf{a}_1 + (u_2 + v_2)\mathbf{a}_2 + (u_3 + v_3)\mathbf{a}_3$

Derivation of (1) for A in $\mathbb{R}^{n \times 3}$ (2+3)5 = 2(5)+ 3(5)

$u_1 a_1 + v_1 a_1 + u_2 a_2 + v_2 a_2 + u_3 a_3 + v_3 a_3$

by vector scaling (distribution)

$(u_1\mathbf{a}_1 + u_2\mathbf{a}_2 + u_3\mathbf{a}_3) + (v_1\mathbf{a}_1 + v_2\mathbf{a}_2 + v_3\mathbf{a}_3)$

by rearranging

by matrix vector multiplication

$\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$

equals

 $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} + \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$ J

fin

A Common Error

$Av \neq vA$

A Common Error

it is **important** that we write our matrixvectors multiplications with the matrix on the left

 $Av \neq vA$

A Common Error

it is **important** that we write our matrixvectors multiplications with the matrix on the left

 $Av \neq vA$

this may feel artificial now, since the RHS is meaningless to us now, but it won't be for long

Looking forward a bit

Remember. column vectors are matrices with 1 column

Eventually we'll be able to view all of these as <u>matrix operations</u>

Question

Compute the following matrix-vector multiplication

$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \\ 4 \end{bmatrix}$

 $5 \left(\begin{array}{c} 2 \\ -, \end{array} \right) + 5 \left(\begin{array}{c} -3 \\ -, \end{array} \right) + 4 \left(\begin{array}{c} 4 \\ 0 \end{array} \right) =$ $\begin{bmatrix} 10 \\ -5 \end{bmatrix} + \begin{bmatrix} -15 \\ -5 \end{bmatrix} + \begin{bmatrix} 16 \\ 0 \end{bmatrix} = \begin{bmatrix} 11 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 2 & -3 & 4 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 4 \end{bmatrix}$

$5\begin{bmatrix}2\\-1\end{bmatrix}+5\begin{bmatrix}-3\\1\end{bmatrix}+4\begin{bmatrix}4\\0\end{bmatrix}$

$\begin{bmatrix} 10 \\ -5 \end{bmatrix} + \begin{bmatrix} -15 \\ 5 \end{bmatrix} + \begin{bmatrix} 16 \\ 0 \end{bmatrix}$

[11] 0]

$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} ? \\ ? \end{bmatrix}$

5(2) + 5(-3) + 4(4) = 11

$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} ? \\ ? \end{bmatrix}$

$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 11 \\ ? \end{bmatrix}$

5(-1) + 5(1) + 4(0) = 0

$\begin{bmatrix} 2 & -3 & 4 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 11 \\ 0 \end{bmatrix}$

$$v_m = a_{m1}s_1 + a_{m2}s_2$$

Row-Column Rule

Inner product: [*a*₁

$$\begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_{1i}s_i \\ \sum_{i=1}^n a_{2i}s_i \\ \vdots \\ \sum_{i=1}^n a_{mi}s_i \end{bmatrix}$$

$$= \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} = \sum_{i=1}^n a_is_i$$

Inner Product

Definition. The inner product of vectors u and v in \mathbb{R}^n is defined the

Row-Column Rule

Inner product: [*a*₁

$$\begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n a_{1i}s_i \\ \sum_{i=1}^n a_{2i}s_i \\ \vdots \\ \sum_{i=1}^n a_{mi}s_i \end{bmatrix}$$

$$= \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} = \sum_{i=1}^n a_is_i$$

Row-Column Rule

The *i*th entry of the As is the inner product of the *i*th row of A and s

Example

The Matrix Equation

Recall: Vector Equations $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{b}$

Recall: Vector Equations $x_1 a_1 + x_2 a_2 + \dots + x_n a_n = b$

Question. Can b be written as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$?

Recall: Vector Equations $x_1 a_1 + x_2 a_2 + \dots + x_n a_n = b$

Question. Can b be written as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$? The Idea. think of the weights as unknowns

Recall: Vector Equations $x_1 a_1 + x_2 a_2 + \dots + x_n a_n = b$

Question. Can b be written as a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$?

The Idea. think of the weights as unknowns

we can use the same idea for matrix-vector multiplication

The Matrix Equation

$A\mathbf{x} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n] \mathbf{x} = \mathbf{b}$
The Matrix Equation

$A\mathbf{x} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n] \mathbf{x} = \mathbf{b}$

Can b be written as a l columns of *A*?

Can b be written as a linear combination of the

The Matrix Equation

columns of A?

vector multiplication as an unknown

$A\mathbf{x} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n] \mathbf{x} = \mathbf{b}$

- Can b be written as a linear combination of the
- The Idea. write the "vector part" of our matrix-

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Question. Does Ax = b have a solution?
- Question. Is Ax = b consistent?
- **Question.** write down a solution to the equation $A\mathbf{x} = \mathbf{b}$

HOW TO: The Matrix Equation Question. write down a solution to the equation $A\mathbf{x} = \mathbf{b}$

 $A\mathbf{x} = \mathbf{b}$

Solution. we can write this as:

Question. write down a solution to the equation

Question. write down a solution to the equation $A\mathbf{x} = \mathbf{b}$

Solution. we can write this as: (matrix equation)

 $[a_1 \ a_2 \dots \ a_n] \mathbf{x} = \mathbf{b}$

- $A\mathbf{x} = \mathbf{b}$
- Solution. we can write this as:
- (matrix equation)
- (vector equation)

Question. write down a solution to the equation

 $[a_1 \ a_2 \dots \ a_n] \mathbf{x} = \mathbf{b}$ $x_1 a_1 + x_2 a_2 + \dots x_n a_n = b$

- $A\mathbf{x} = \mathbf{b}$
- Solution. we can write this as:
- (matrix equation)
- (vector equation)
- (augmented matrix)

Question. write down a solution to the equation

 $[a_1 \ a_2 \dots \ a_n] \mathbf{x} = \mathbf{b}$ $x_1 a_1 + x_2 a_2 + \dots x_n a_n = b$ $[a_1 \ a_2 \ \dots \ a_n \ b]$

- $A\mathbf{x} = \mathbf{b}$
- Solution. we can write this as:
- (matrix equation)
- (vector equation)
- (augmented matrix)

Question. write down a solution to the equation

 $[a_1 \ a_2 \dots \ a_n] \mathbf{x} = \mathbf{b}$

 $x_1 a_1 + x_2 a_2 + \dots x_n a_n = b$

 $[a_1 \ a_2 \ \dots \ a_n \ b]$

!!they all have the same solution set!!

- Question. write down a $A\mathbf{x} = \mathbf{b}$
- Solution.

use Gaussian elimination (or other means) to convert $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \ \mathbf{b}]$ to reduced echelon form

then read off a solution from the reduced echelon form

Question. write down a solution to the equation

Full Span

Recall: Span

Recall: Span

Definition. the span of a set of vectors is the set of all possible linear combinations of them

span{ $v_1, v_2, ..., v_n$ } = { $\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n : \alpha_1, \alpha_2, ..., \alpha_n$ are in \mathbb{R} }

Recall: Span

Definition. the span of a set of vectors is the set of all possible linear combinations of them

span{ $v_1, v_2, ..., v_n$ } = { $\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n : \alpha_1, \alpha_2, ..., \alpha_n$ are in \mathbb{R} }

 $\mathbf{u} \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ exactly when \mathbf{u} can be expressed as a linear combination of those vectors

Spans (with Matrices)

Definition. the *span* of the vectors $a_1, a_2, ..., a_n$ is: $span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \mathbf{v} : \mathbf{v} \in \mathbb{R}^n \}$

Spans (with Matrices)

Definition. the *span* of the vectors $a_1, a_2, ..., a_n$ is:

 $span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \ v : v \in \mathbb{R}^n \}$

the span of the columns of a matrix A is the set of of vectors resulting from multiplying A by any vector

Spans (with Matrices)

Definition. the *span* of the vectors $a_1, a_2, ..., a_n$ is: $span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \ v : v \in \mathbb{R}^n \}$

> the span of the columns of a matrix A is the set of of vectors resulting from multiplying A by any vector

(we will soon start thinking of A as a way of *transforming* vectors)

if two (or more) vectors in \mathbb{R}^2 span a plane, they must span all of $\mathbb{R}^2.$ They "fill up" \mathbb{R}^2

if two (or more) vectors in \mathbb{R}^2 span a plane, they must span all of $\mathbb{R}^2.$ They "fill up" \mathbb{R}^2

if two (or more) vectors in \mathbb{R}^2 span a plane, they must span all of $\mathbb{R}^2.$ They "fill up" \mathbb{R}^2

What about \mathbb{R}^n ?

When do a set of vectors span all of \mathbb{R}^n ? When do a set of vectors "fill up" \mathbb{R}^n ?

A Few Questions

Can two vectors in \mathbb{R}^3 span all of \mathbb{R}^3 ? \mathbb{R}^3 ?

Is it required that five vectors \mathbb{R}^3 span all of

suppose I give you the augmented matrix of a linear system but I cover up the last column

then we reduce it to echelon form

then we reduce it to echelon form

 $R_2 \leftarrow R_2 - 2R_1$

then we reduce it to echelon form

then we reduce it to echelon form

$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$

Does it have a solution?

then we reduce it to echelon form

$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$

Yes. It doesn't have an inconsistent row

what about this system?

what about this system?

 $R_2 \leftarrow R_2 - 2R_1$

what about this system?

what about this system?

 1
 1
 2

 0
 0
 0

it depends...

Pivots and Spanning \mathbb{R}^m

Pivots and Spanning \mathbb{R}^m

if it doesn't matter what the last column is, then every choice must be possible

Pivots and Spanning \mathbb{R}^m $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$

then every choice must be possible

combination of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$

- if it doesn't matter what the last column is,
- every vector in \mathbb{R}^2 can be written as a linear

Spanning \mathbb{R}^m

- logically equivalent
- **1.** For every **b** in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has a solution
- **2.** The columns of A span \mathbb{R}^m
- **3.** A has a pivot position in every row

Theorem. For any $m \times n$ matrix, the following are

Spanning \mathbb{R}^m

- logically equivalent
- **1.** For every **b** in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has a solution
- **2.** The columns of A span \mathbb{R}^m
- 3. A has a pivot position in every row

Theorem. For any $m \times n$ matrix, the following are

HOW TO: Spanning \mathbb{R}^m

 \mathbb{R}^m span all if \mathbb{R}^m ?

and check if every row has a pivot

Question. Does the set of vectors a_1, a_2, \dots, a_n from

Solution. Reduce $[a_1 \ a_2 \ \dots \ a_n]$ to echelon form

HOW TO: Spanning \mathbb{R}^m

 \mathbb{R}^m span all if \mathbb{R}^m ?

Solution. Reduce $[a_1 \ a_2 \ \dots \ a_n]$ to echelon form and check if every row has a pivot

!! We only need the echelon form !!

Question. Does the set of vectors a_1, a_2, \dots, a_n from

Question

Do $\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 2023 \end{bmatrix}$ span all of \mathbb{R}^3 ?

Answer: No

the matrix

cannot have more than 2 pivot positions

$\begin{bmatrix} 2 & 0 \\ 2 & 1 \\ 3 & 2023 \end{bmatrix}$ in 2 pivot positions

Not spanning \mathbb{R}^m $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix}$

$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

Not spanning \mathbb{R}^m $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

in this case the choice matters

Not spanning \mathbb{R}^m

in this case the choice matters we can't make the last column [0 0 0 🔲 for nonzero

$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

Not spanning \mathbb{R}^m

in this case the choice matters

we can't make the last column [0 0 0 \blacksquare] for nonzero

but we can make the last column <u>parameters</u> to find equations that must hold

$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

Not spanning \mathbb{R}^m $\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 2 & 2 & 4 & b_2 \end{bmatrix}$

$\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 2 & 2 & 4 & b_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 0 & 0 & b_2 - 2b_1 \end{bmatrix}$

Not spanning \mathbb{R}^m $\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 2 & 2 & 4 & b_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 0 & 0 & b_2 - 2b_1 \end{bmatrix}$ as long as $(-2)b_1 + b_2 = 0$, the system is consistent

Not spanning \mathbb{R}^m

this gives use a <u>linear equation</u> which describes the span of

Question (Understanding Check)

True or **False**, the echelon form of any matrix has at most one row of the form $[0 \ 0 \ \dots \ 0 \ \blacksquare]$ where \blacksquare is nonzero.

Answer: True

* * * * * * * * * * leading * * * * entry not * to the * * * * right 0 0 0 ()0 0 0 0 0 0 0 0 0 this is not in echelon form

Question (More Challenging)

Give a linear equation for the span of the vectors $\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$.

$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$ 0

 $R_2 \leftarrow R_2 - 2R_1$

 $R_3 \leftarrow R_3 - (1/2)R_2$

 $R_3 \leftarrow R_3 - (1/2)R_2$

 $0 = b_3 + (1/2)(b_2 - 2b_1)$

$b_1 - (1/2)b_2 - b_3 = 0$

$x_1 - (1/2)x_2 - x_3 = 0$

Taking Stock

Four Representations

a_{11}	<i>a</i> ₁₂	• • •	a_{1n}	b_1
<i>a</i> ₂₁	a_{22}	• • •	a_{2n}	b_2
• •	•	•	•	• •
a_{m1}	a_{m2}	• • •	a _{mn}	b_m

augmented matrix

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$ system of linear equations

matrix equation

$$x_{1}\begin{bmatrix}a_{11}\\a_{21}\\\vdots\\a_{1m}\end{bmatrix} + x_{2}\begin{bmatrix}a_{21}\\a_{21}\\\vdots\\a_{2m}\end{bmatrix} + \dots + x_{n}\begin{bmatrix}a_{n1}\\a_{n2}\\\vdots\\a_{nm}\end{bmatrix} = \begin{bmatrix}b_{1}\\b_{2}\\\vdots\\a_{m}\end{bmatrix}$$

vector equation

Four Representations

a_{11}	<i>a</i> ₁₂	• • •	a_{1n}	b_1
<i>a</i> ₂₁	a_{22}	• • •	a_{2n}	b_2
• •	•	•	•	• •
a_{m1}	a_{m2}	• • •	a _{mn}	b_m

augmented matrix

they all have the same solution sets

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$ system of linear equations

matrix equation

 $x_{1} \begin{vmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{1m} \end{vmatrix} + x_{2} \begin{vmatrix} a_{21} \\ a_{21} \\ \vdots \\ a_{2m} \end{vmatrix} + \dots + x_{n} \begin{vmatrix} a_{n1} \\ a_{n2} \\ \vdots \\ a_{nm} \end{vmatrix} = \begin{vmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{nm} \end{vmatrix}$ $\begin{bmatrix} u \\ 1m \end{bmatrix} \begin{bmatrix} u \\ 2m \end{bmatrix} \begin{bmatrix} u \\ m \end{bmatrix}$

vector equation

Summary

Matrix and vectors can be multiplied together to get new vectors

The matrix equation is another representation of systems of linear equations

Looking forward: Matrices transform vectors