Linear Independence Geometric Algorithms Lecture 7

CAS CS 132

Practice Problem

Do these three vectors span all of \mathbb{R}^3 ?

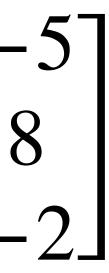
$$\mathbf{v}_1 = \begin{bmatrix} -4 \\ 4 \\ 2 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$$

; span all of \mathbb{R}^3 ? = $\begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix}$ $\mathbf{v}_3 = \begin{bmatrix} -5 \\ 8 \\ -2 \end{bmatrix}$

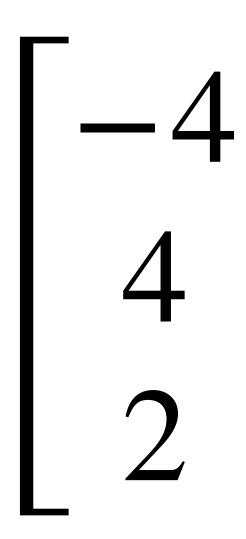
 $\left(\begin{array}{c} s \\ s \end{array} \right) \notin span \left\{ \begin{array}{c} s \\ s \end{array} \right\} \left[\begin{array}{c} s \\ s \end{array} \right] \left\{ \begin{array}{c} s \\ s \end{array} \right\} \left[\begin{array}{c} s \\ s \end{array} \right] \left\{ \begin{array}{c} s \\ s \end{array} \right] \left\{ \begin{array}{c} s \\ s \end{array} \right\} \left[\begin{array}{c} s \\ s \end{array} \right] \left\{ \begin{array}{c} s \\ s \end{array} \right] \left\{ \begin{array}{c} s \\ s \end{array} \right\} \left\{ \begin{array}{c} s \end{array} \right\} \left\{ \begin{array}{c} s \\ s \end{array} \right\} \left\{ \begin{array}{c} s \end{array} \right\} \left\{ \begin{array}{c} s \\ s \end{array} \right\} \left\{ \begin{array}{c} s \end{array} \right\} \left\{ \begin{array}{c} s \end{array} \right\} \left\{ \begin{array}{c} s \end{array} \right\} \left\{ \left\{ \begin{array}{c} s \end{array} \right\} \left\{ \left\{ \begin{array}{c} s \end{array} \right\} \left\{ \left\{ s \end{array} \right\} \left\{ \left\{ \begin{array}{c} s \end{array} \right\} \left\{ \left\{ s \end{array} \right\} \left\{ s \end{array} \right\} \left\{ \left\{ s \end{array} \right\} \left\{ \left\{ s \end{array} \right\} \left\{ s \end{array} \right\} \left\{ s \end{array} \right\} \left\{ \left\{ s \end{array} \right\} \left\{ s \end{array} \right\} \left\{ s \end{array} \right\} \left\{ \left\{$

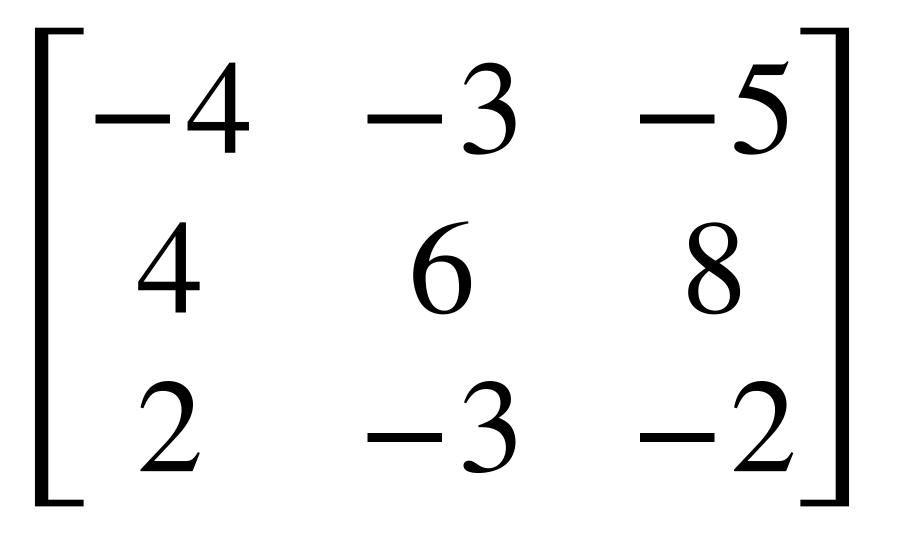
 $\begin{bmatrix} -4 \\ 4 \end{bmatrix}$ $\mathbf{v}_1 = \mathbf{v}_1$ $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 6 \end{bmatrix} \quad \mathbf{v}_3 =$ -4 -3 5 b, 0 (3) 3 bz LOO<u><u>b</u>;+b;+3(b2+b)</u>

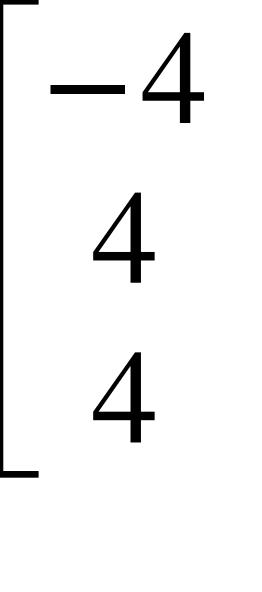
63+6,+3(62+6,)= 46,+362+5,-0

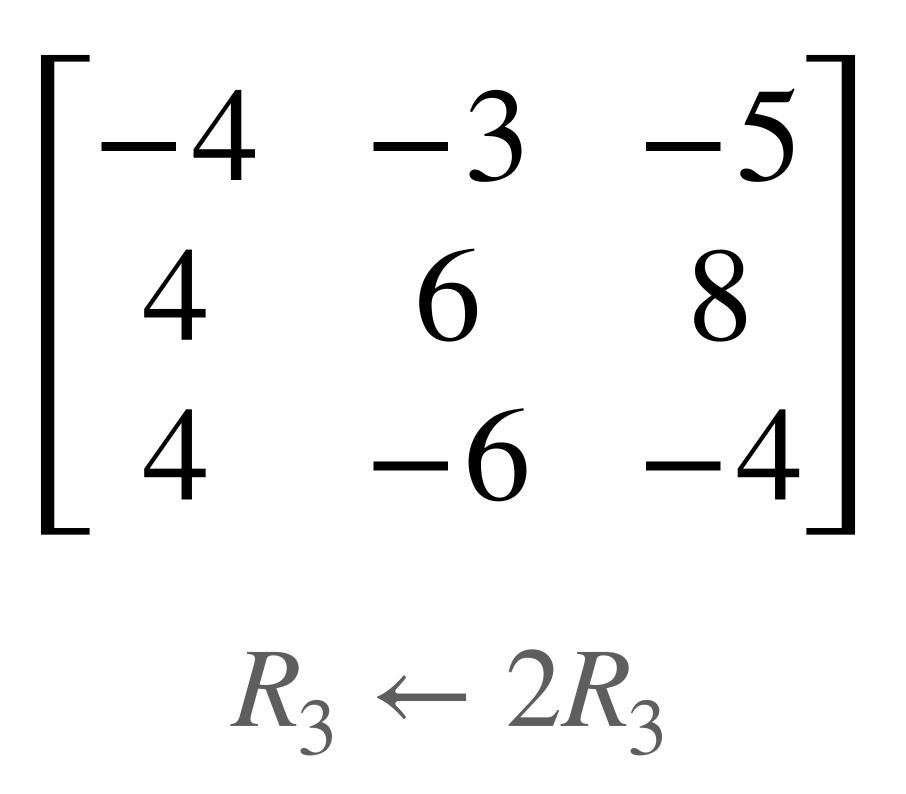


Consider the matrix

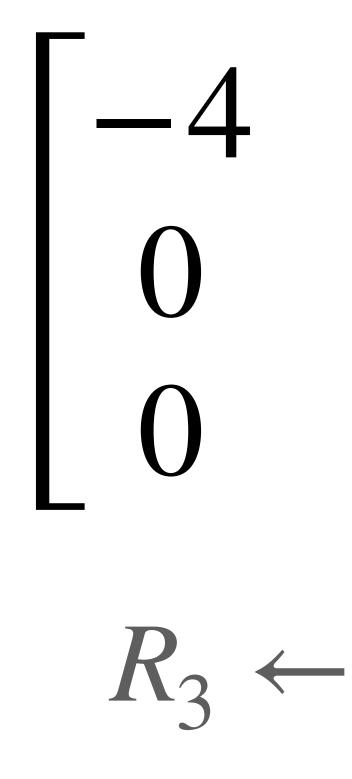








$\begin{bmatrix} -4 & -3 & -5 \\ 0 & 3 & 3 \\ 0 & -9 & -9 \end{bmatrix}$ $R_2 \leftarrow R_2 + R_1$ $R_3 \leftarrow R_3 + R_1$



$\begin{bmatrix} -4 & -3 & -5 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ $R_3 \leftarrow R_3 + 3R_2$

$\begin{bmatrix} -4 & -3 & -5 \\ 0 & 3 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ Third row has no pivot

Objectives

- 1. Recap on the notion of full span
- 2. Motivate the and define linear independence
- systems to network flows

3. See several perspectives on linear independence

4. If there's time: see an application of linear

Keywords

linear independence linear dependence homogenous systems of linear equations trivial and nontrivial solutions

Recap: Full Span

Recall: Span

Recall: Span

Definition. the span of a set of vectors is the set of all possible linear combinations of them

span{ $v_1, v_2, ..., v_n$ } = { $\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n : \alpha_1, \alpha_2, ..., \alpha_n$ are in \mathbb{R} }

Recall: Span

Definition. the span of a set of vectors is the set of all possible linear combinations of them

span{ $v_1, v_2, ..., v_n$ } = { $\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n : \alpha_1, \alpha_2, ..., \alpha_n$ are in \mathbb{R} }

 $\mathbf{u} \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ exactly when \mathbf{u} can be expressed as a linear combination of those vectors

Spans (with Matrices)

Definition. the *span* of the vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$ is: $span\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\} = \{ [\mathbf{a}_1 \ \mathbf{a}_2 \ ... \ \mathbf{a}_n] \mathbf{v} : \mathbf{v} \in \mathbb{R}^n \}$

Spans (with Matrices)

Definition. the *span* of the vectors $a_1, a_2, ..., a_n$ is:

 $span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \ v : v \in \mathbb{R}^n \}$

the span of the columns of a matrix A is the set of of vectors resulting from multiplying A by any vector

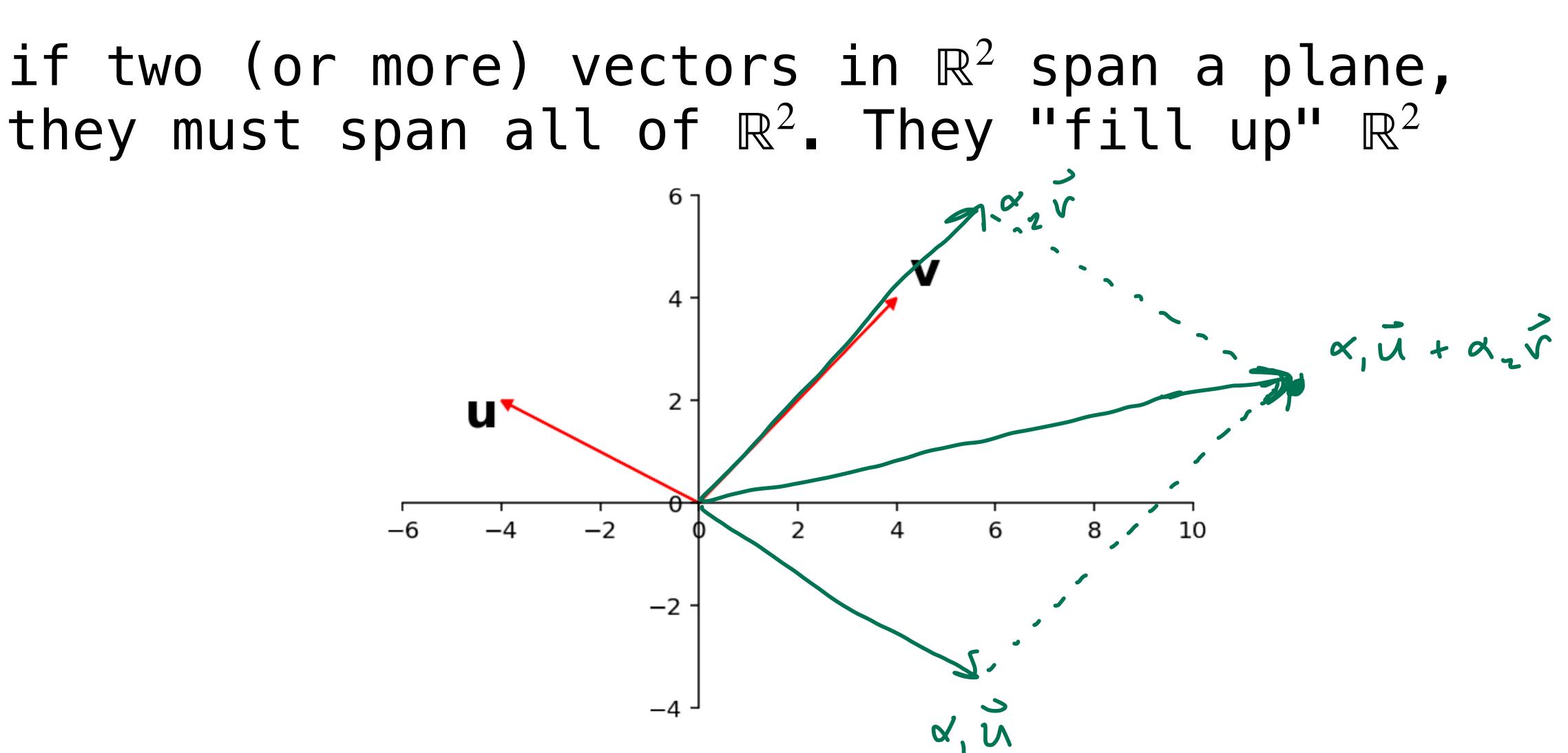
Spans (with Matrices)

Definition. the *span* of the vectors $a_1, a_2, ..., a_n$ is: $span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \ v : v \in \mathbb{R}^n \}$

> the span of the columns of a matrix A is the set of of vectors resulting from multiplying A by any vector

(we will soon start thinking of A as a way of *transforming* vectors)

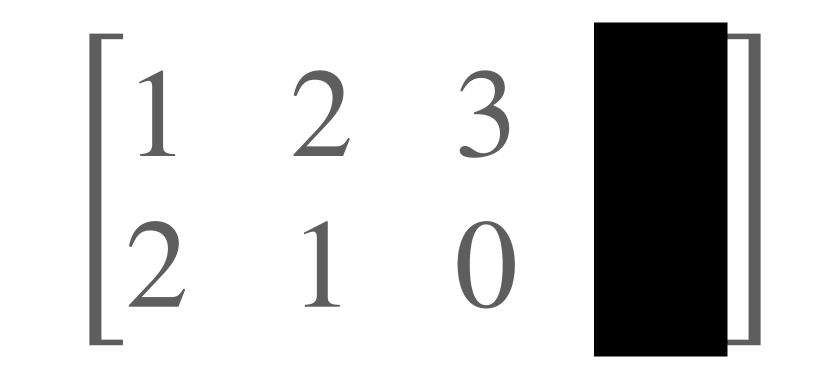
Spanning all of \mathbb{R}^2



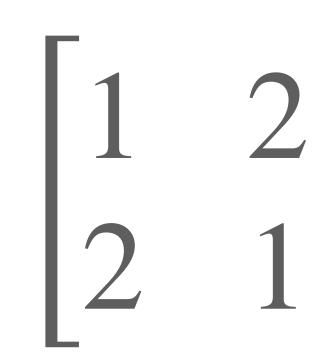
What about \mathbb{R}^n ?

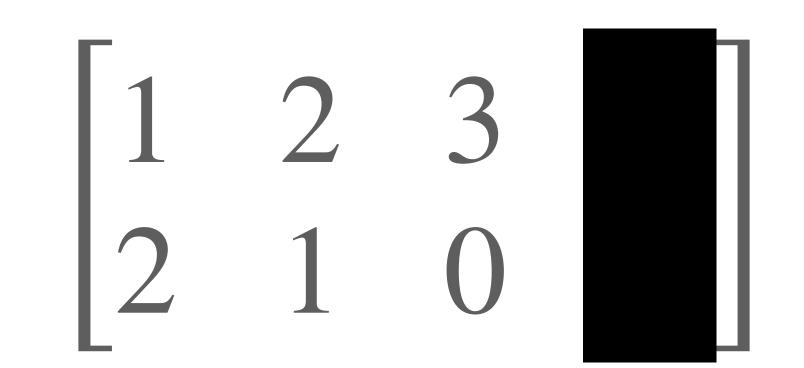
When do a set of vectors span all of \mathbb{R}^n ? When do a set of vectors "fill up" \mathbb{R}^n ?

suppose I give you the augmented matrix of a linear system but I cover up the last column

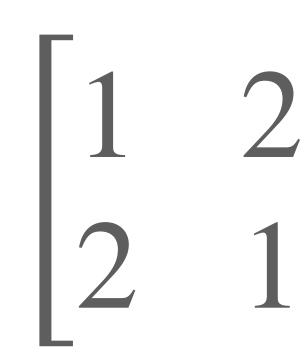


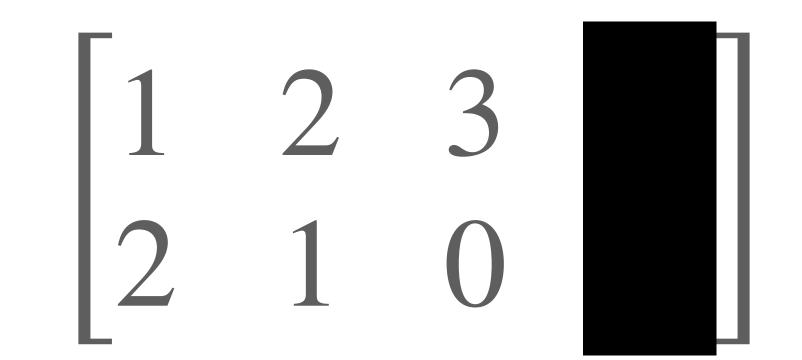
then we reduce it to echelon form





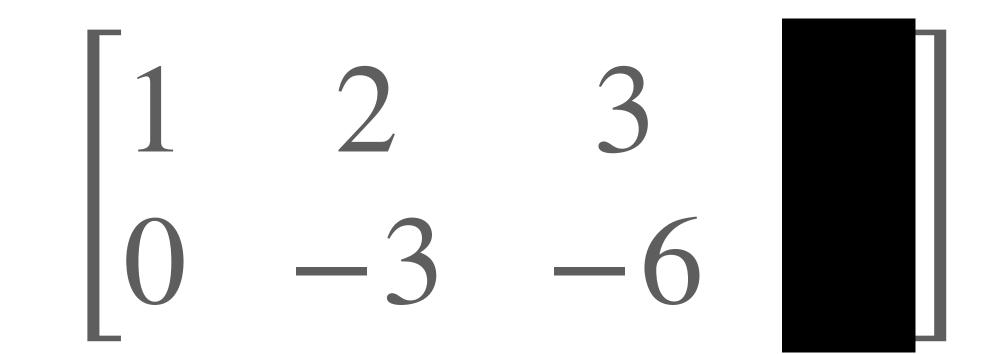
then we reduce it to echelon form





 $R_2 \leftarrow R_2 - 2R_1$

then we reduce it to echelon form

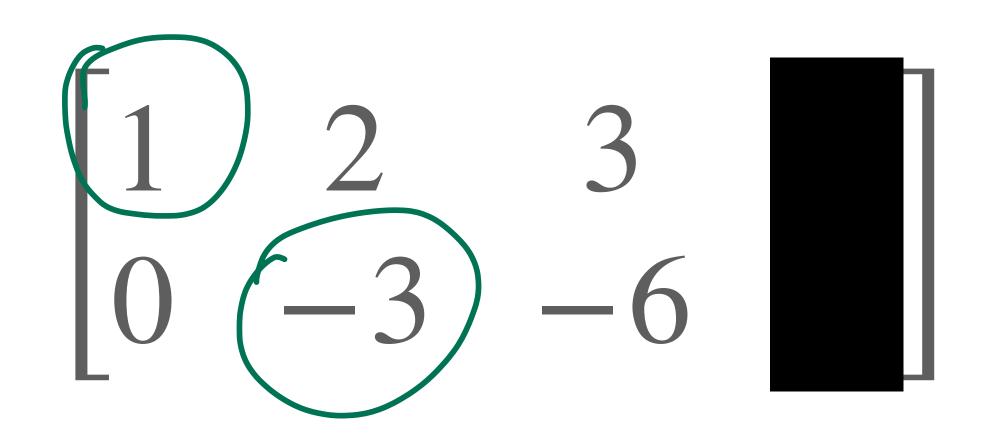


then we reduce it to echelon form

$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$

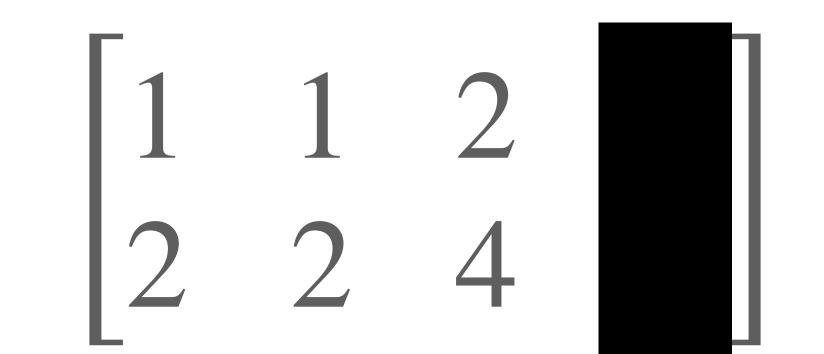
Does it have a solution?

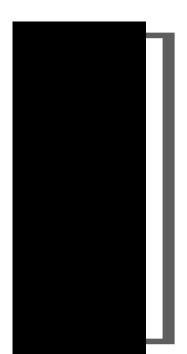
then we reduce it to echelon form



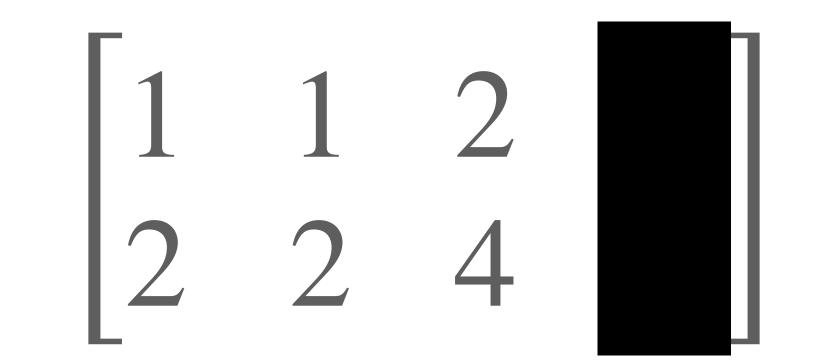
Yes. It doesn't have an inconsistent row

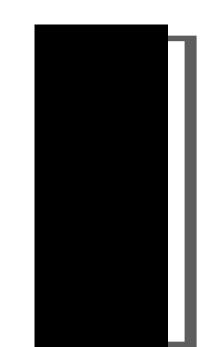
what about this system?





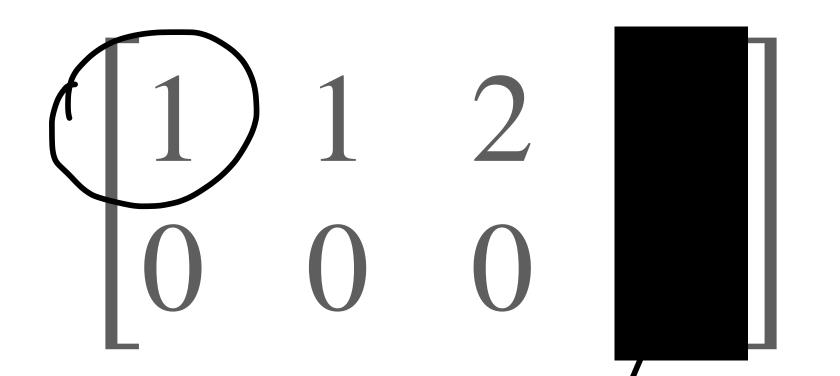
what about this system?

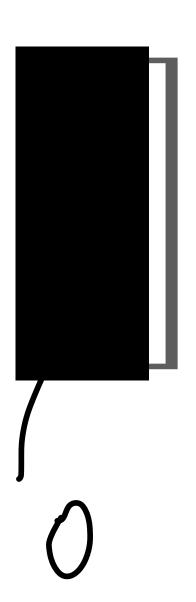




 $R_2 \leftarrow R_2 - 2R_1$

what about this system?





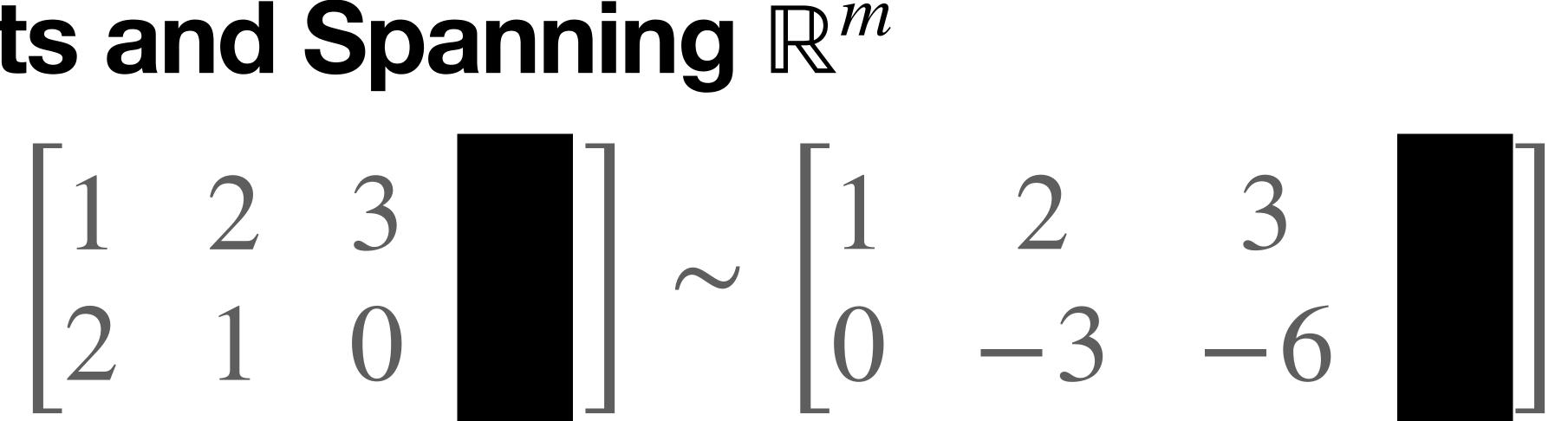
what about this system?

 1
 1
 2

 0
 0
 0

it depends...

Pivots and Spanning \mathbb{R}^m



Pivots and Spanning \mathbb{R}^m

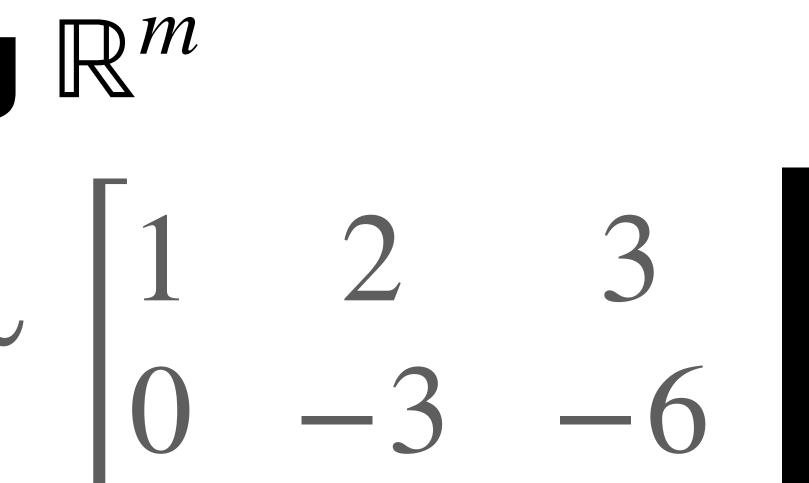
if it doesn't matter what the last column is, then every choice must be possible



Pivots and Spanning \mathbb{R}^m $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$

then every choice must be possible

combination of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, and $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$



- if it doesn't matter what the last column is,
- every vector in \mathbb{R}^2 can be written as a linear

Spanning \mathbb{R}^m

- logically equivalent
- **1.** For every **b** in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has a solution
- **2.** The columns of A span \mathbb{R}^m
- **3.** A has a pivot position in every row

Theorem. For any $m \times n$ matrix, the following are

Spanning \mathbb{R}^m

- logically equivalent
- **1.** For every **b** in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has a solution
- **2.** The columns of A span \mathbb{R}^m
- 3. A has a pivot position in every row

Theorem. For any $m \times n$ matrix, the following are

HOW TO: Spanning \mathbb{R}^m

 \mathbb{R}^m span all if \mathbb{R}^m ?

and check if every row has a pivot

Question. Does the set of vectors a_1, a_2, \dots, a_n from

Solution. Reduce $[a_1 \ a_2 \ \dots \ a_n]$ to echelon form

HOW TO: Spanning \mathbb{R}^m

 \mathbb{R}^m span all if \mathbb{R}^m ?

Solution. Reduce $[a_1 \ a_2 \ \dots \ a_n]$ to echelon form and check if every row has a pivot

!! We only need the echelon form !!

Question. Does the set of vectors a_1, a_2, \dots, a_n from

Example

Do $\begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 2023 \end{bmatrix}$ span all of \mathbb{R}^3 ?

(2))2032023

Not spanning \mathbb{R}^m

 $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

Not spanning \mathbb{R}^m $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

in this case the choice matters

Not spanning \mathbb{R}^m

in this case the choice matters we can't make the last column [0 0 0 🔲 for nonzero

$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$

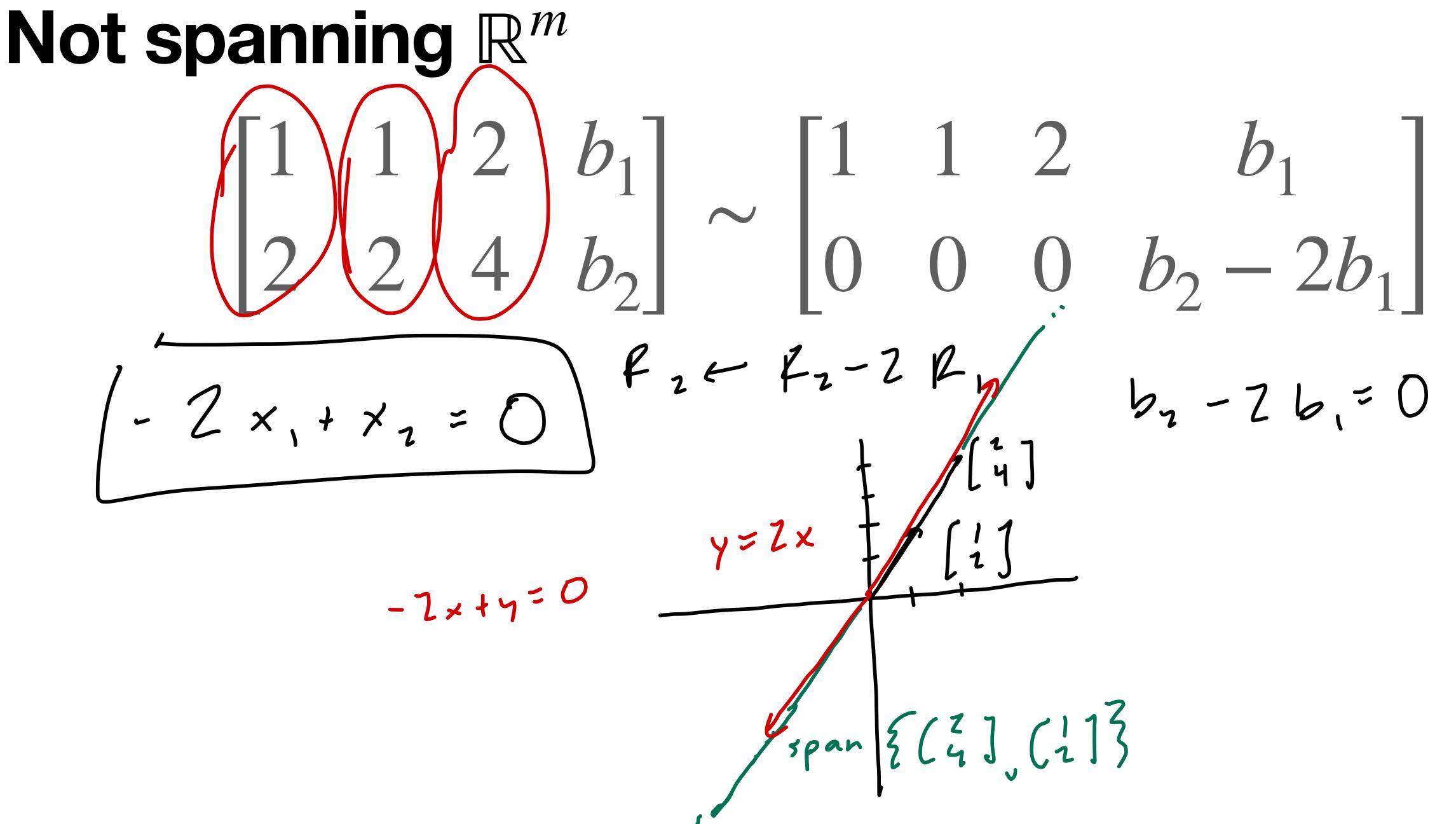
Not spanning \mathbb{R}^m

in this case the choice matters

we can't make the last column $[0 \ 0 \ \blacksquare]$ for nonzero

but we can make the last column <u>parameters</u> to find equations that must hold

$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$



Not spanning \mathbb{R}^m $\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 2 & 2 & 4 & b_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 0 & 0 & b_2 - 2b_1 \end{bmatrix}$ as long as $(-2)b_1 + b_2 = 0$, the system is consistent

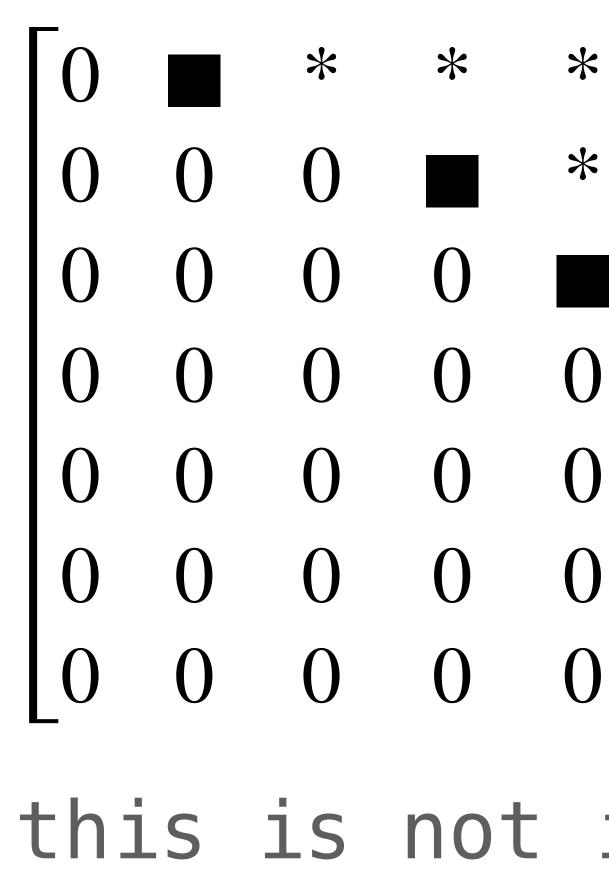
Not spanning \mathbb{R}^m $\mathbb{R}_2 \leftarrow \mathbb{P}_2 - \mathbb{Z}\mathbb{P}_1$ $\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 2 & 2 & 4 & b_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 0 & 0 & b_2 - 2b_1 \end{bmatrix}$ as long as $(-2)b_1 + b_2 = 0$, the system is consistent

this gives use a linear equation which describes the span of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$

Question (Understanding Check)

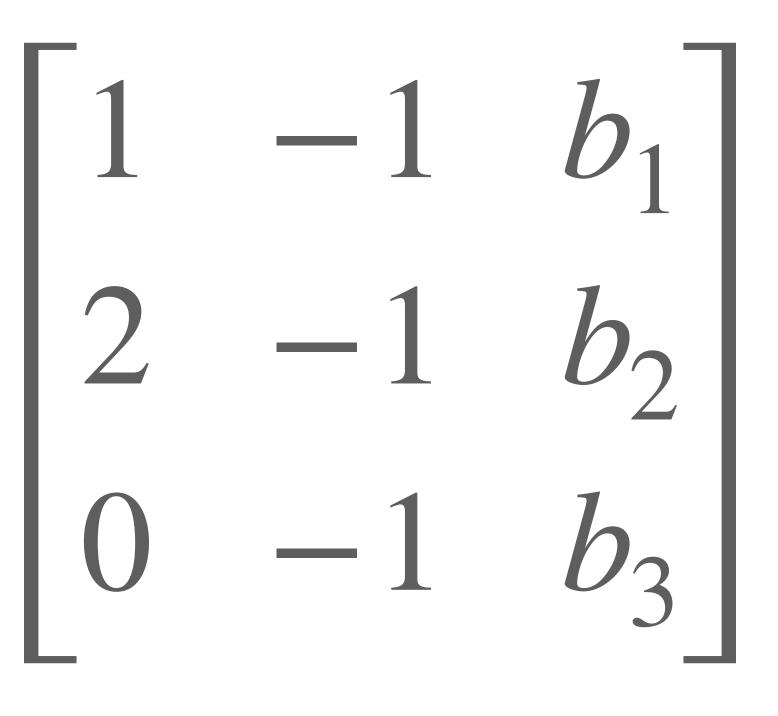
True or **False**, the echelon form of any matrix has at most one row of the form [0 0 ... 0 ■] where ■ is nonzero.

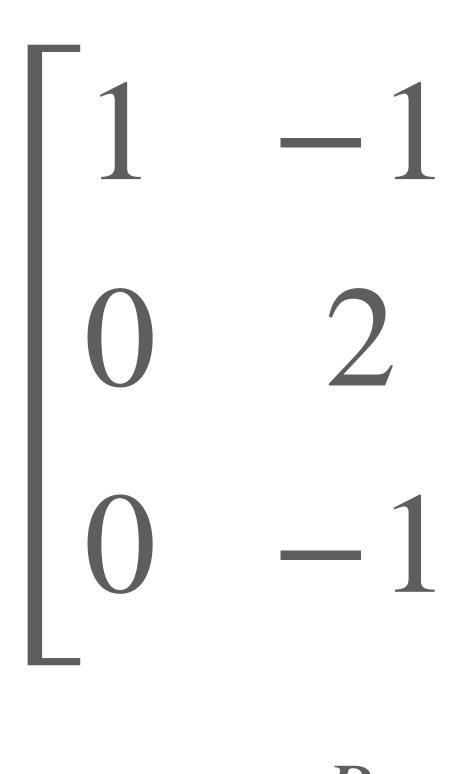
Answer: True

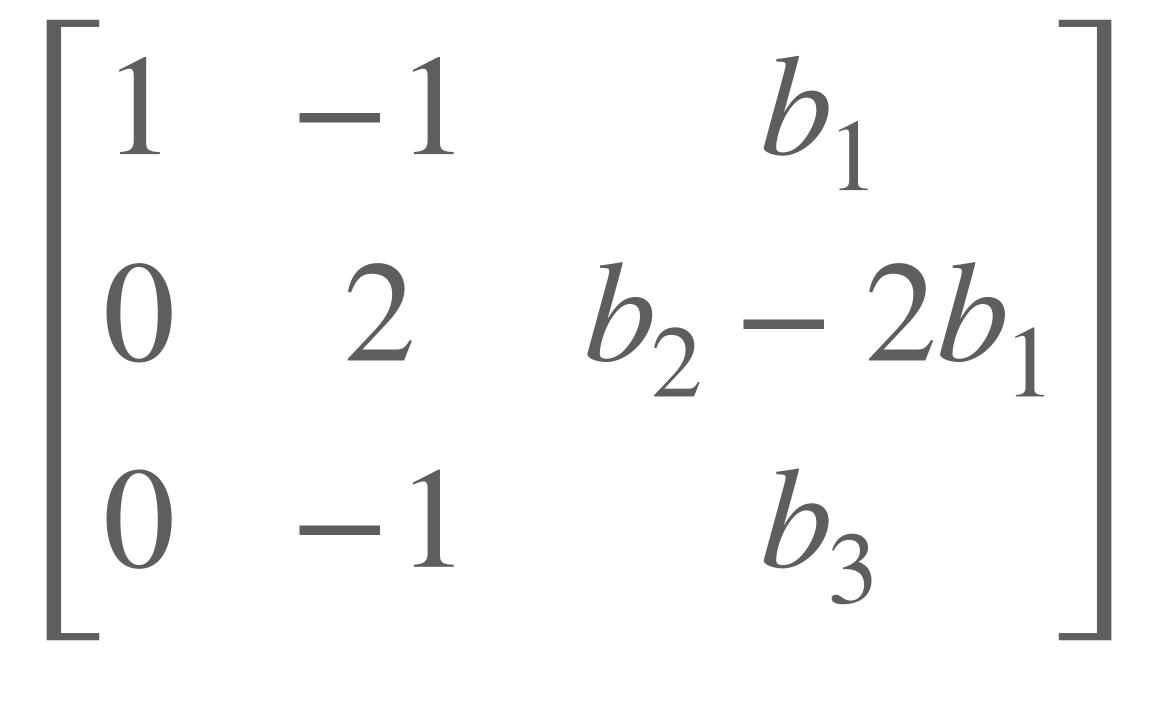


* * * * * * * * * * leading * * * * entry not * to the * * * * right 0 0 0 ()0 0 0 0 0 0 0 0 0 this is not in echelon form

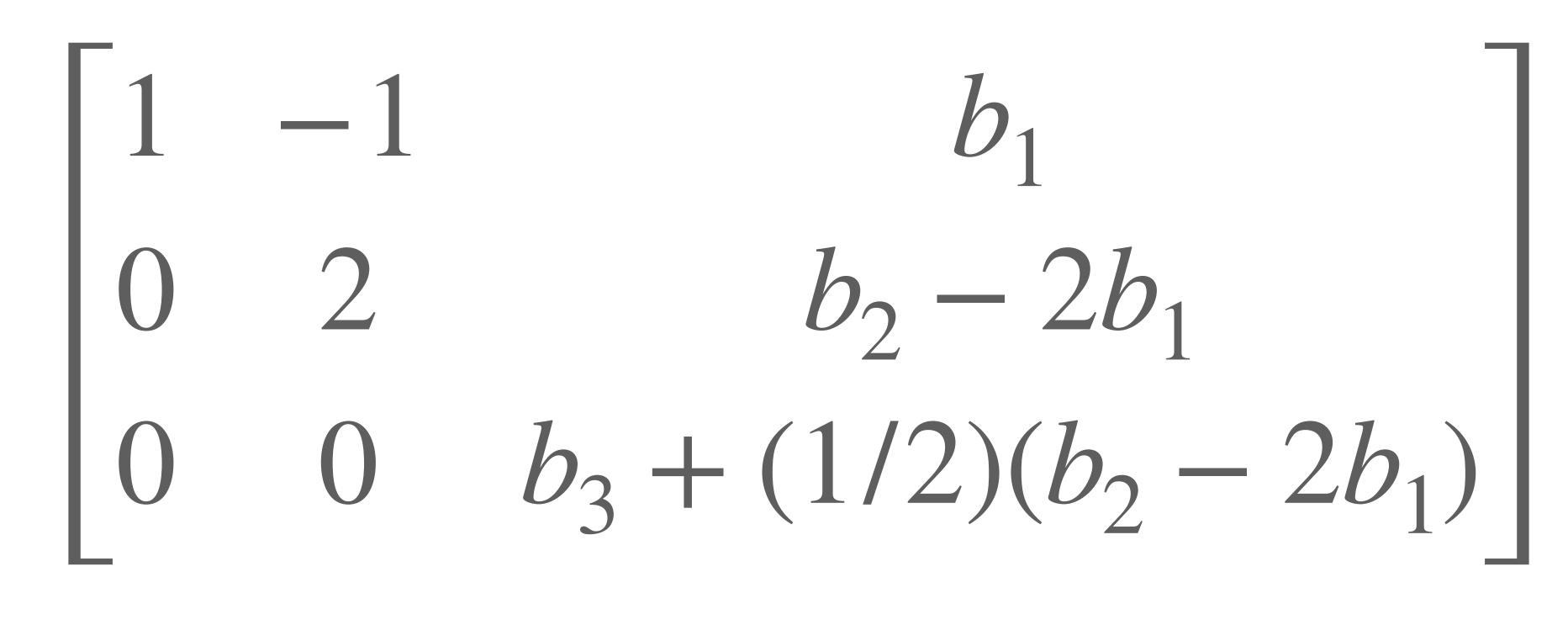
Give a linear equation for the span Example of the vectors $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$ and $\begin{bmatrix} -1\\-1\\-1\\-1 \end{bmatrix}$. $x_1 \begin{pmatrix} 1\\2\\0 \end{bmatrix} + x_2 \begin{pmatrix} -1\\-1\\-1 \end{bmatrix} = \begin{pmatrix} b_1\\-1\\-1\\-1\\-1 \end{pmatrix} \stackrel{0}{=} -1$ -2(1) + 2 + 0 = 0 $b_3 \stackrel{1}{=} -1$ -2(-1) + (-1) + (-1) = 0Example $\begin{bmatrix} 1 & -1 & b_{1} \\ 2_{1} & -1_{2} & b_{2} \\ 0 & -1 & b_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{2} - 2f_{1} \\ 0 & -1_{2} & b_{2} - 2f_{3} \\ 0 & -1_{2} & b_{3} - 2f_{3} \end{bmatrix} \begin{bmatrix} 1 & -1_{2} & b_{1} \\ 0 & 1_{2} & b_{2} - 2f_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{2} \\ 0 & -1_{2} & b_{2} - 2f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{2} \\ 0 & -1_{3} & b_{3} - 2f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{2} \\ 0 & -1_{3} & b_{3} - 2f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{2} \\ 0 & -1_{3} & b_{3} - 2f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \\ 0 & -1_{3} & b_{3} - 2f_{3} \end{bmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & f_{1} \neq f_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} + f_{3} \\ 0 & -1_{3} & b_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} \\ 0 & f_{1} \neq f_{3} \end{pmatrix} \begin{pmatrix} 0 & f_{1} \neq f_{3} \\ 0 & f_{1} \neq f_{3} \end{pmatrix} \begin{pmatrix} 0 & f$ 2-26, =0 $\begin{bmatrix} 1 & -1 & -1 & b_1 \\ 0 & 1 & 1 & b_2 & -2b_1 \\ 0 & 0 & b_3 & +b_2 & -2b_1 \\ \end{bmatrix} \begin{bmatrix} 0 & b_3 & +b_2 & -2b_1 \\ -2x_1 & +x_2 & +x_3 & =0 \\ \end{bmatrix}$



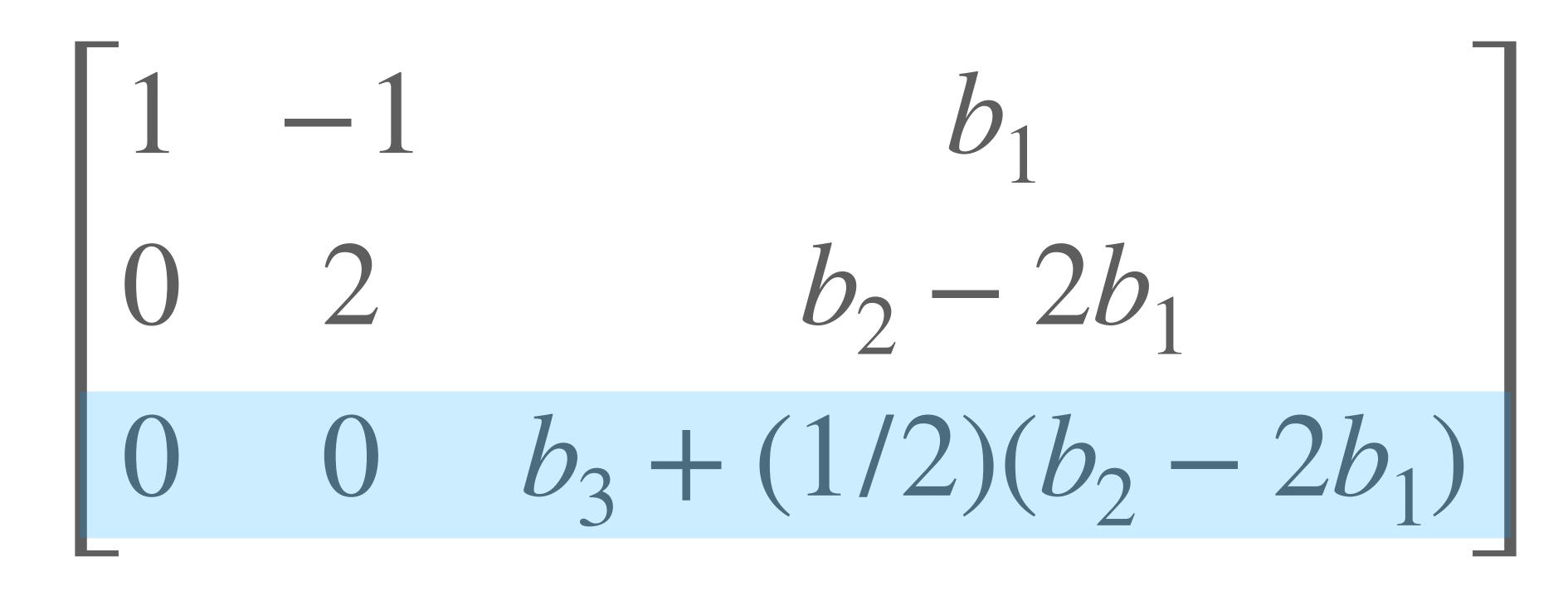




 $R_2 \leftarrow R_2 - 2R_1$



 $R_3 \leftarrow R_3 - (1/2)R_2$



 $R_3 \leftarrow R_3 - (1/2)R_2$

 $0 = b_3 + (1/2)(b_2 - 2b_1)$

$b_1 - (1/2)b_2 - b_3 = 0$

$x_1 - (1/2)x_2 - x_3 = 0$

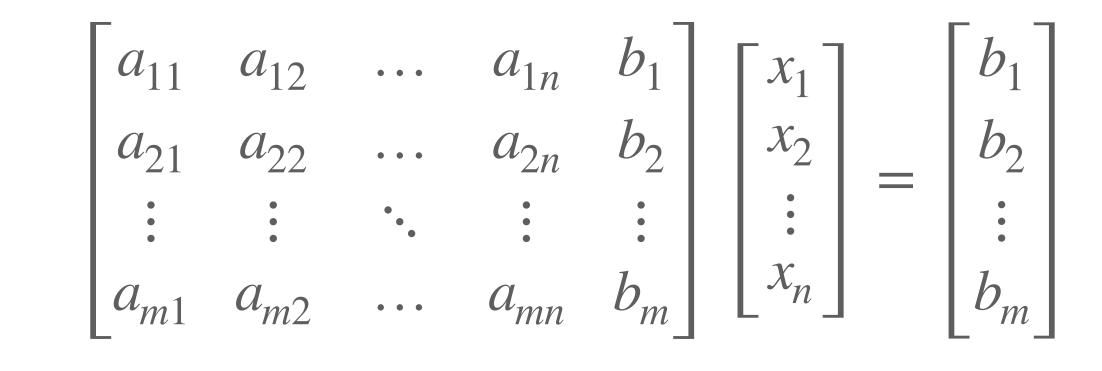
Taking Stock

Four Representations

a_{11}	<i>a</i> ₁₂	• • •	a_{1n}	b_1
<i>a</i> ₂₁	a_{22}	• • •	a_{2n}	b_2
•	•	•	•	•
a_{m1}	a_{m2}	• • •	a _{mn}	b_m

augmented matrix

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$ system of linear equations



matrix equation

$$x_{1}\begin{bmatrix}a_{11}\\a_{21}\\\vdots\\a_{1m}\end{bmatrix} + x_{2}\begin{bmatrix}a_{21}\\a_{21}\\\vdots\\a_{2m}\end{bmatrix} + \dots + x_{n}\begin{bmatrix}a_{n1}\\a_{n2}\\\vdots\\a_{nm}\end{bmatrix} = \begin{bmatrix}b_{1}\\b_{2}\\\vdots\\a_{m}\end{bmatrix}$$

vector equation

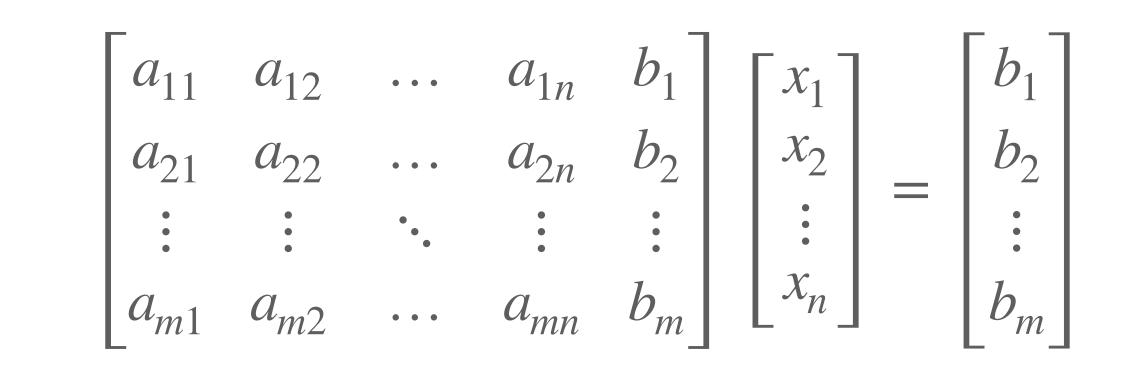
Four Representations

a_{11}	<i>a</i> ₁₂	• • •	a_{1n}	b_1
<i>a</i> ₂₁	a_{22}	• • •	a_{2n}	b_2
	•	•••	•	
a_{m1}	a_{m2}	• • •	a _{mn}	b_m

augmented matrix

they all have the same solution sets

 $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$ system of linear equations



matrix equation

 $x_{1} \begin{vmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{1m} \end{vmatrix} + x_{2} \begin{vmatrix} a_{21} \\ a_{21} \\ \vdots \\ a_{2m} \end{vmatrix} + \dots + x_{n} \begin{vmatrix} a_{n1} \\ a_{n2} \\ \vdots \\ a_{nm} \end{vmatrix} = \begin{vmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{nm} \end{vmatrix}$ $\begin{bmatrix} u \\ 1m \end{bmatrix} \begin{bmatrix} u \\ 2m \end{bmatrix} \begin{bmatrix} u \\ m \end{bmatrix}$

vector equation

back to linear independence...

Homogeneous Linear Systems

Recall: The Zero Vector

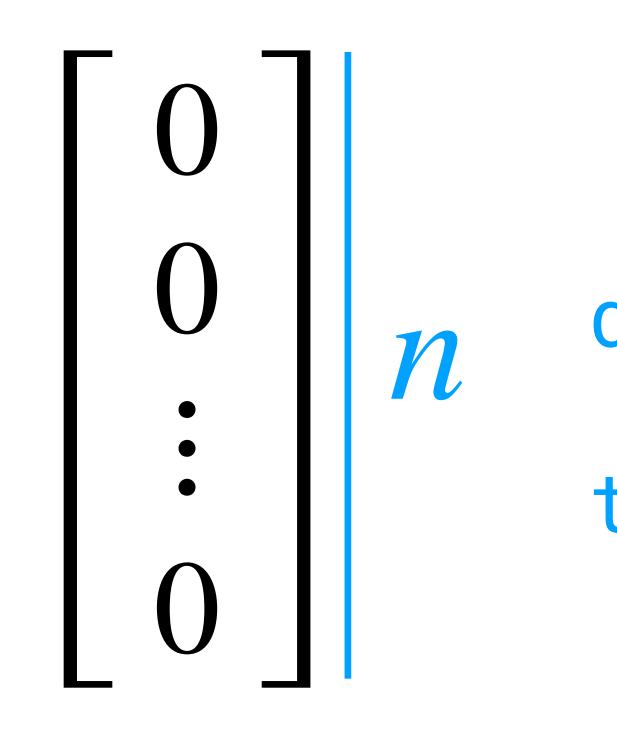
$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Recall: The Zero Vector

$\begin{array}{l} v + 0 = 0 + v = v \\ c 0 = 0 & 0 = & 0 \\ u + -u = 0 & 0 \end{array}$

Recall: The Zero Vector

$\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v} \qquad \mathbf{0} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{i} \end{bmatrix}$ $\mathbf{u} + -\mathbf{u} = \mathbf{0}$



the the dimension is implicit in the notation

Homogenous Linear Systems

Definition. A system of linear equations is called *homogeneous* if it can be expressed as

 $A\mathbf{x} = \mathbf{0}$

Homogenous Linear Systems

Definition. A system of linear equations is called *homogeneous* if it can be expressed as

 $x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \ldots + x_n \mathbf{a}_n = \mathbf{0}$

Homogenous Linear Systems

coeff of con i, col;

Definition. A system of linear equations is called *homogeneous* if it can be expressed as $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0$

Trivial Solutions

Definition. For the matrix equation $A\mathbf{x} = \mathbf{0}$

the solution $\mathbf{x} = \mathbf{0}$ is called the *trivial* solution.

Any other solution is called *nontrivial*.

Trivial Solutions

- Definition. For the vector equation $x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \ldots + x_n \mathbf{a}_n = \mathbf{0}$
- the solution $\mathbf{x} = \mathbf{0}$ is called the *trivial* solution.
- Any other solution is called *nontrivial*.

Trivial Solutions

- Any other solution is called *nontrivial*.

Definition. For the system of linear equations $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = 0$ $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0$ $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0$

the solution x = 0 is called the *trivial solution*.

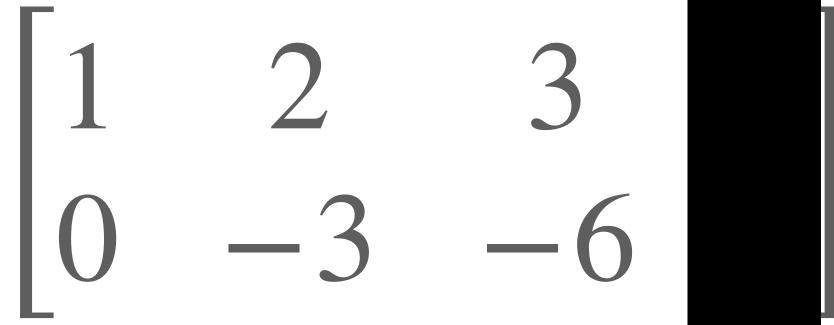
Questions about Homogeneous Systems

When does Ax = 0 have nontrivial solutions?

What does it mean geometrically in each case?

When does Ax = 0 have only the trivial solution?

An Important Feature of Homogenous Systems $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$



An Important Feature of Homogenous Systems $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{bmatrix}$

What do we know about the covered column?

An Important Feature of Homogenous Systems $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -3 & -6 & 0 \end{bmatrix}$

What do we know about the covered column? It has to be all zeros.

Linear Independence

Linear Independence

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is linearly independent if the vectors equation

$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n = \mathbf{0}$

has exactly one solution (the trivial solution).

Linear Independence

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is linearly independent if the vectors equation

- $x_1 v_1 + x_2 v_2 + \ldots + x_n v_n = 0$
- has exactly one solution (the trivial solution).

The columns of A are linearly independent if Ax = 0 has exactly one solution.

Linear Dependence

Definition. A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is **linearly dependent** if the vectors equation

 $x_1\mathbf{v}_1 + x_2\mathbf{v}_2$

has a nontrivial solution.

$$+\ldots+x_n\mathbf{v}_n=\mathbf{0}$$

Linear Dependence

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is linearly dependent if the vectors equation

- $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2$
- has a nontrivial solution.

A set of vectors is linearly dependent if there is a nontrivial linear combination of the vectors which equals 0.

$$+\ldots+x_n\mathbf{v}_n=\mathbf{0}$$

Linear Dependence (Alternative)

Definition. A set of vectors is **linearly dependent** if it is <u>not</u> linearly independent.

Linear Dependence (Alternative)

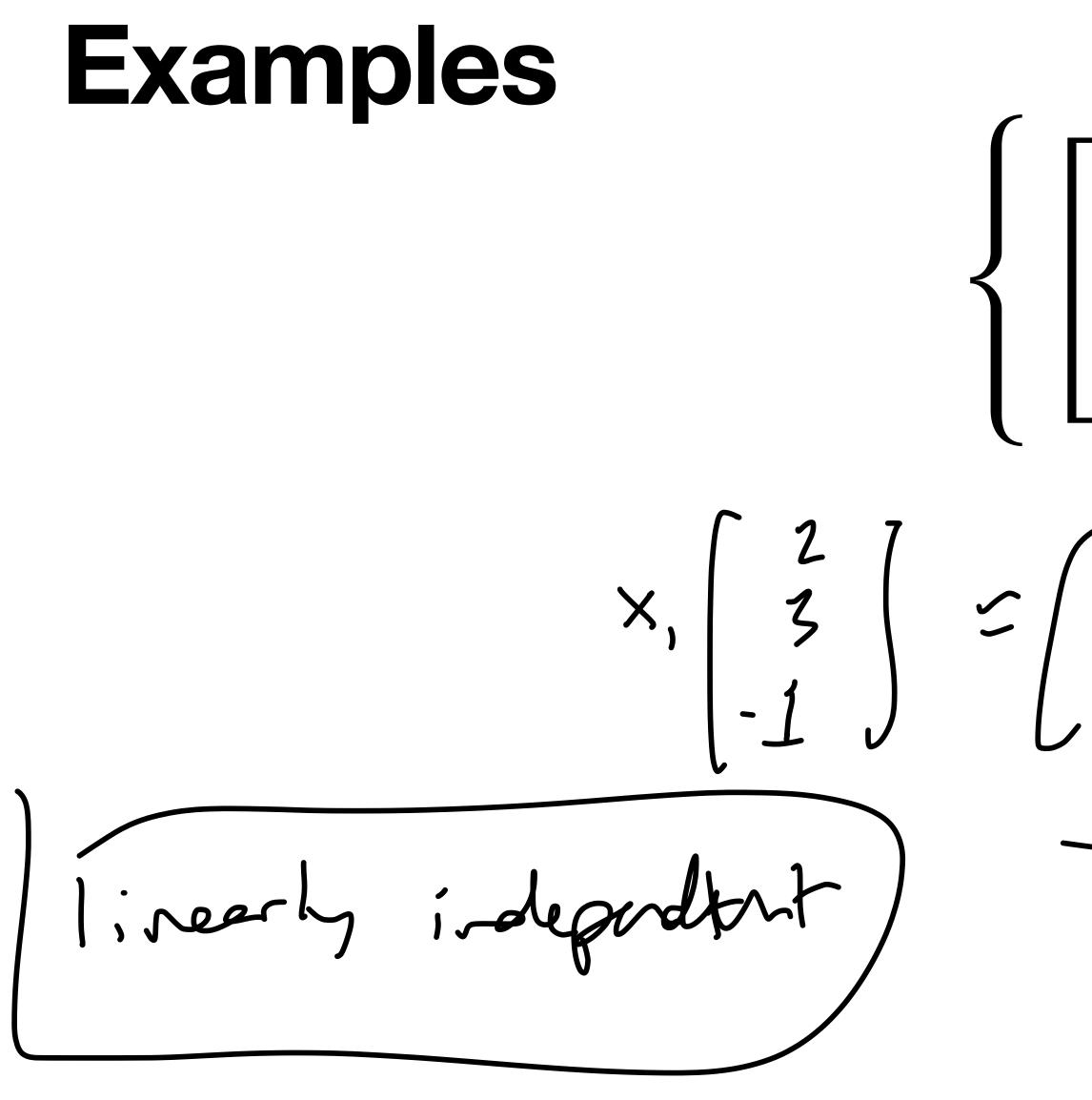
Definition. A set of vectors is **linearly dependent** if it is <u>not</u> linearly independent.

$A\mathbf{x} = \mathbf{0}$ has a nontrivial solution

$A\mathbf{x} = \mathbf{0}$ does <u>not</u> have only the trivial solution

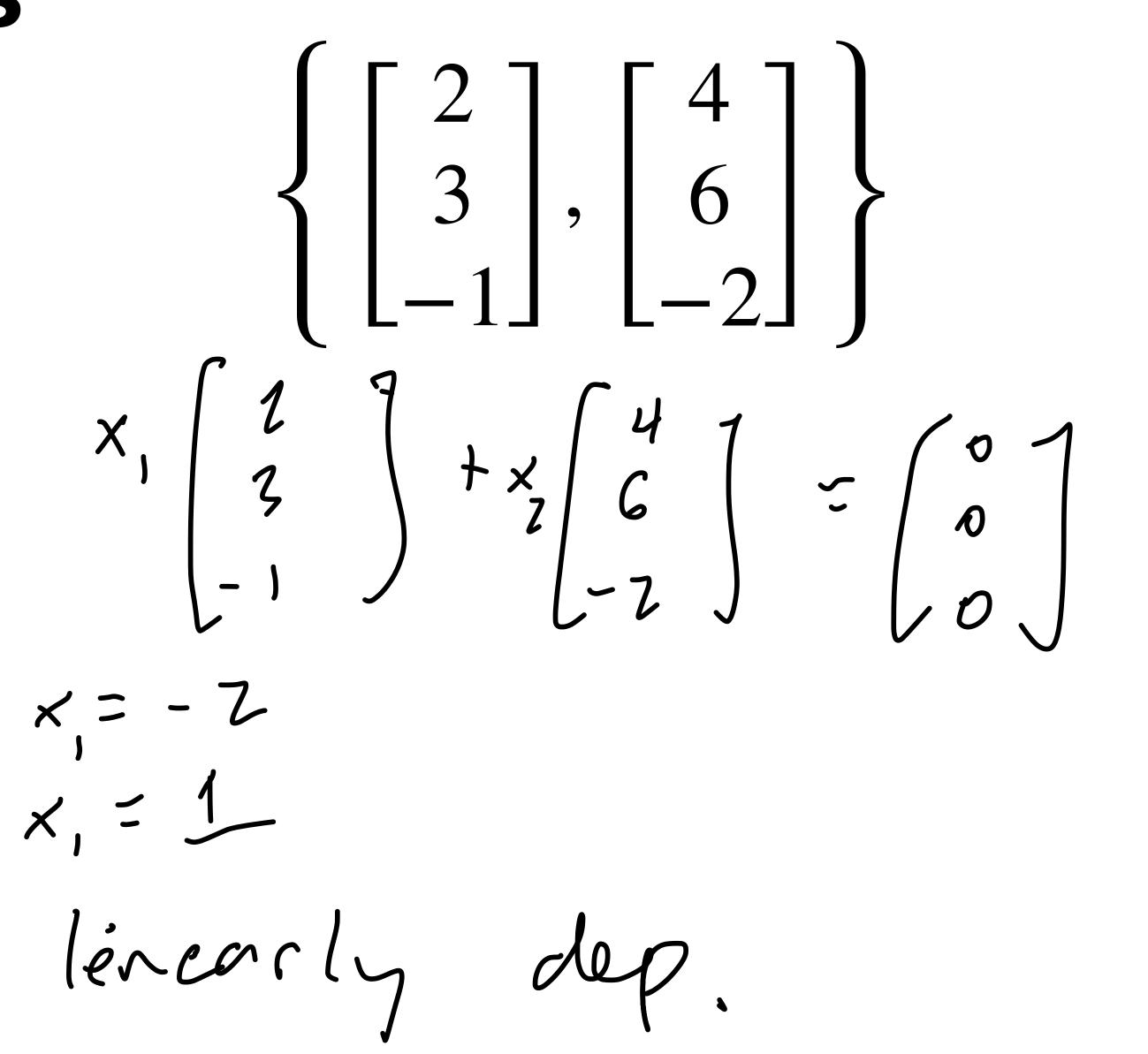
Examples

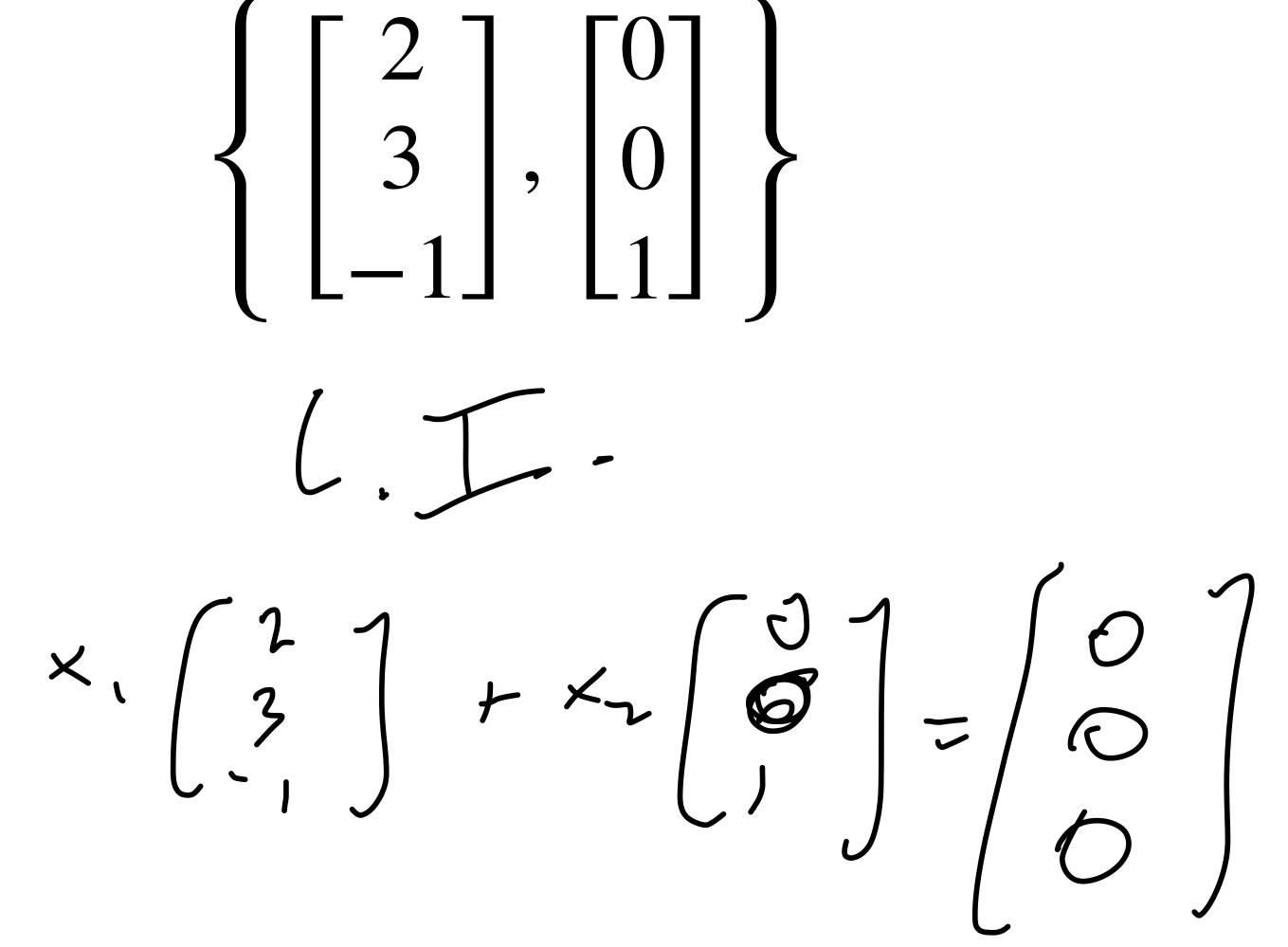
lineerly independent



 $\begin{cases} 2 \\ 3 \\ 1 \end{cases}$ $\begin{array}{c} X_{1} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -\chi \end{pmatrix}$ 2×,=0 32,50 x,:0 ×,

Examples





Another Interpretation of Linear Dependence

demo (from ILA)

It's possible for three vectors in \mathbb{R}^3 to span all of \mathbb{R}^3 , but it's <u>not</u> guaranteed

It's possible for three vectors in \mathbb{R}^3 to span all of \mathbb{R}^3 , but it's <u>not</u> guaranteed

There may be vectors which lies in the plane spanned by two other vectors.

It's possible for three vectors in \mathbb{R}^3 to span all of \mathbb{R}^3 , but it's <u>not</u> guaranteed

There may be vectors which lies in the plane spanned by two other vectors.

Or even two vectors which lie in the span of one of the others.

Fundamental Concern

"smaller" than it could be?

How do we classify when a set of vectors does not span as much as it possibly can? When it is

Fundamental Concern

"smaller" than it could be?

This is the role of linear dependence.

How do we classify when a set of vectors does <u>not</u> span as much as it possibly can? When it is

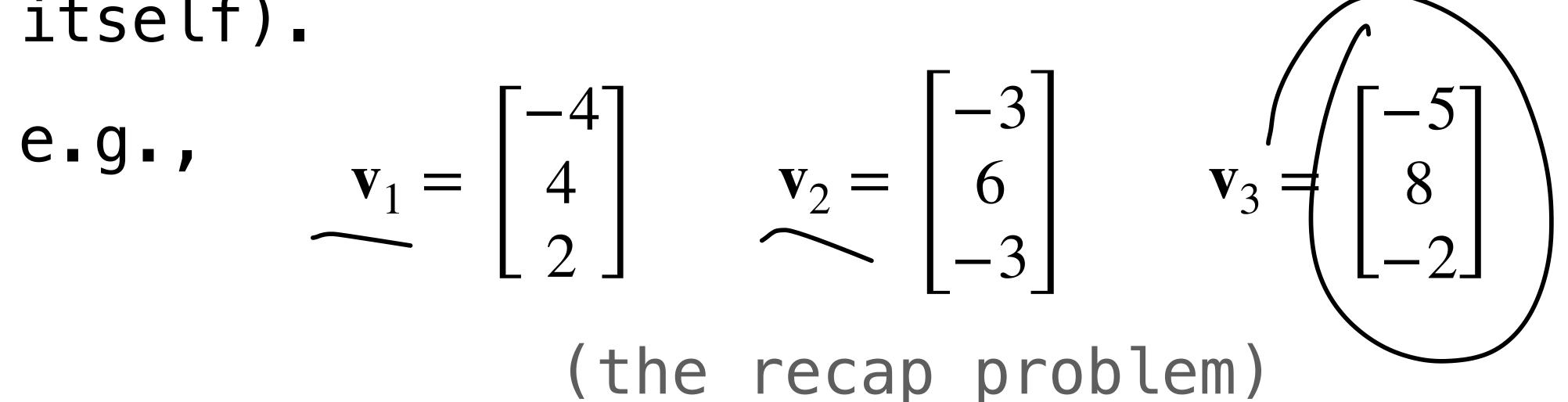
Linear Dependence (Another Alternative)

Linear Dependence (Another Alternative)

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is **linearly dependent** if it is nonempty and one of its vectors can be written as a linear combination of the others (not including itself).

Linear Dependence (Another Alternative)

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is linearly dependent if it is nonempty and one of its vectors can be written as a linear combination of the others (not including itself).



The Linear Combination Perspective Suppose we have four vectors such that $v_3 = 2v_1 + 3v_2 + 5v_4$ what do we know about the equation $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3 + x_4 \mathbf{v}_4 = \mathbf{0}$ 2 v, +3 v, - v, + 5 v, + 0

The Linear Combination Perspective $v_3 = 2v_1 + 3v_2 + +5v_4$

implies

$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3 + x_4 \mathbf{v}_4 = \mathbf{0}$ has a nontrivial solution:

(2,3,-1,5)

Suppose has a nontrivial solution:

where, say, $\alpha_2 \neq 0$

 $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + x_4\mathbf{v}_4 = \mathbf{0}$

 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$

Suppose has a nontrivial solution:

where, say, $\alpha_2 \neq 0$ We can turn this into a linear combination.

 $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + x_4\mathbf{v}_4 = \mathbf{0}$

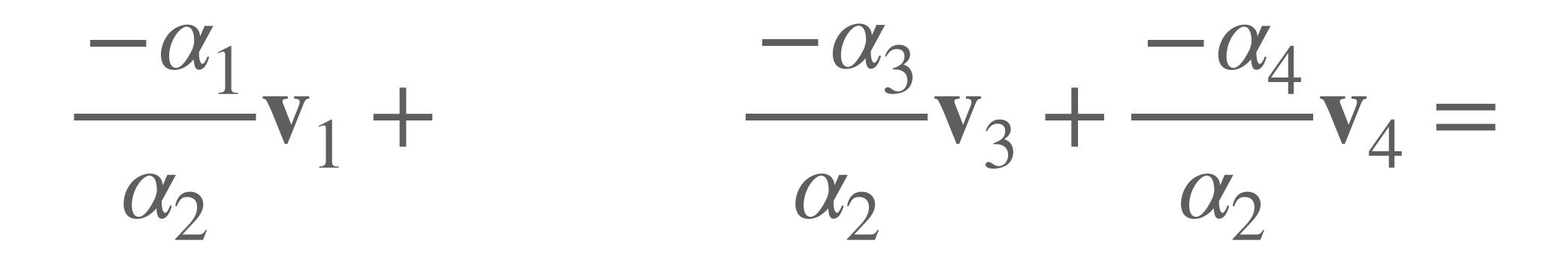
 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$

The Vector Equation Perspective $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 = \mathbf{0}$ X, 7() $\alpha_{2} v_{1} = -\alpha_{1} v_{1} - \alpha_{3} v_{2} - \alpha_{4} v_{4}$ $\vec{V}_{1} = \left(-\frac{\alpha_{1}}{\alpha_{2}}\right) \vec{V}_{1} + \left(-\frac{\alpha_{3}}{\alpha_{2}}\right) \vec{V}_{2} + \left(-\frac{\alpha_{4}}{\alpha_{2}}\right) \vec{V}_{3}$

$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 = \mathbf{0}$

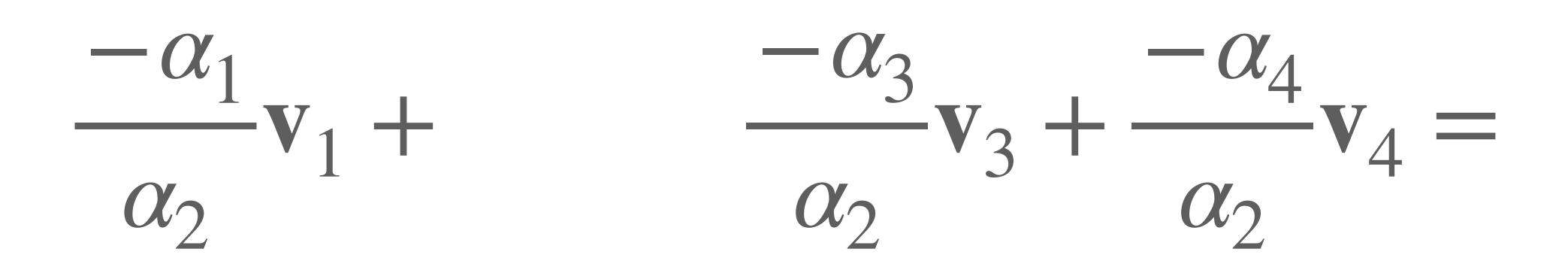
 $\alpha_1 \mathbf{V}_1 +$

$\alpha_3 \mathbf{V}_3 + \alpha_4 \mathbf{V}_4 = -\alpha_2 \mathbf{V}_2$



We get one vector as a linear combination of the others.

The Vector Equation Perspective This division only works because $\alpha_2 \neq 0$.



We get one vector as a linear combination of the others.

In All

of its vectors can be written as a linear combination of the others.

Theorem. A set of vectors is linearly dependent if and only if it is nonempty and at least one

> P if and only if Q means P implies Q and Q implies P

Linear Dependence Relation

Definition. If $v_1, v_2, ..., v_n$ are linearly dependent, then a linear dependence relation is an equation of the form

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2$ -

A linear dependence relation witnesses the linear dependence.

$$+\ldots+\alpha_n\mathbf{v}_n=\mathbf{0}$$

How To: Linear Dependence Relation

How To: Linear Dependence Relation

Question. Write down a linear dependence relation for the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$.

How To: Linear Dependence Relation

Question. Write down a linear dependence relation for the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$.

Solution. Find a nontrivial solution to the equation

 $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix} \mathbf{x} = \mathbf{0}$

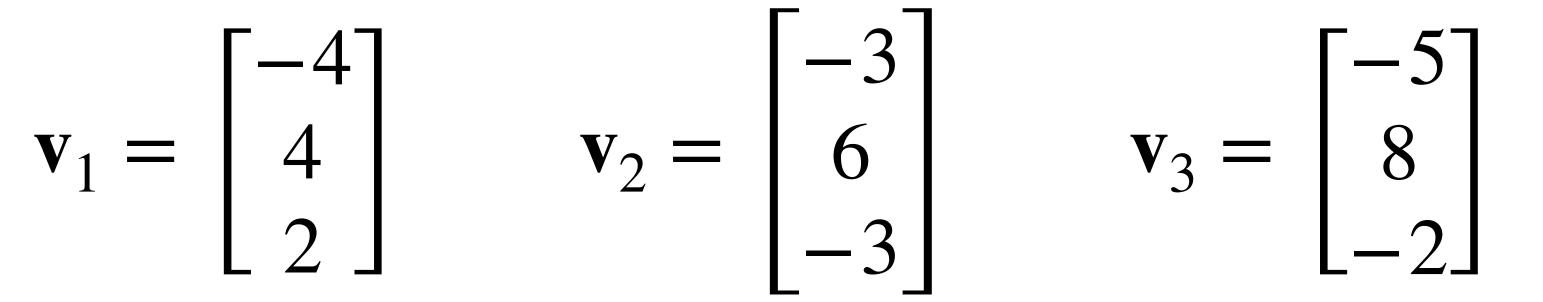
How To: Linear Dependence Relation

Question. Write down a linear dependence relation for the vectors $v_1, v_2, \dots v_n$.

Solution. Find a nontrivial solution to the equation

- $\begin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 & \dots & \mathbf{V}_n \end{bmatrix} \mathbf{x} = \mathbf{0}$
- (there will be a free variable you can choose to be nonzero)

Example Write down the linear dependence relation for the following vectors.



$\begin{bmatrix} -4 & -3 & -5 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Added 0 column

Where we left off

$\begin{bmatrix} -4 & -3 & -5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

 $R_2 \leftarrow R_2/3$

$\begin{bmatrix} -4 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

 $R_1 \leftarrow R_1 + 3R_2$

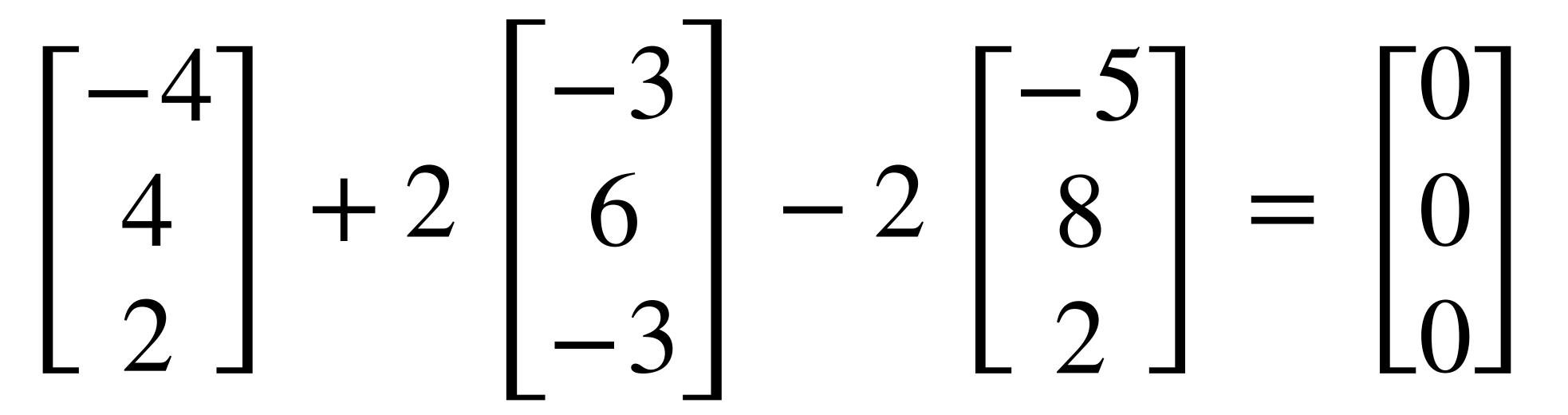
$\begin{bmatrix} 1 & 0 & 0.5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

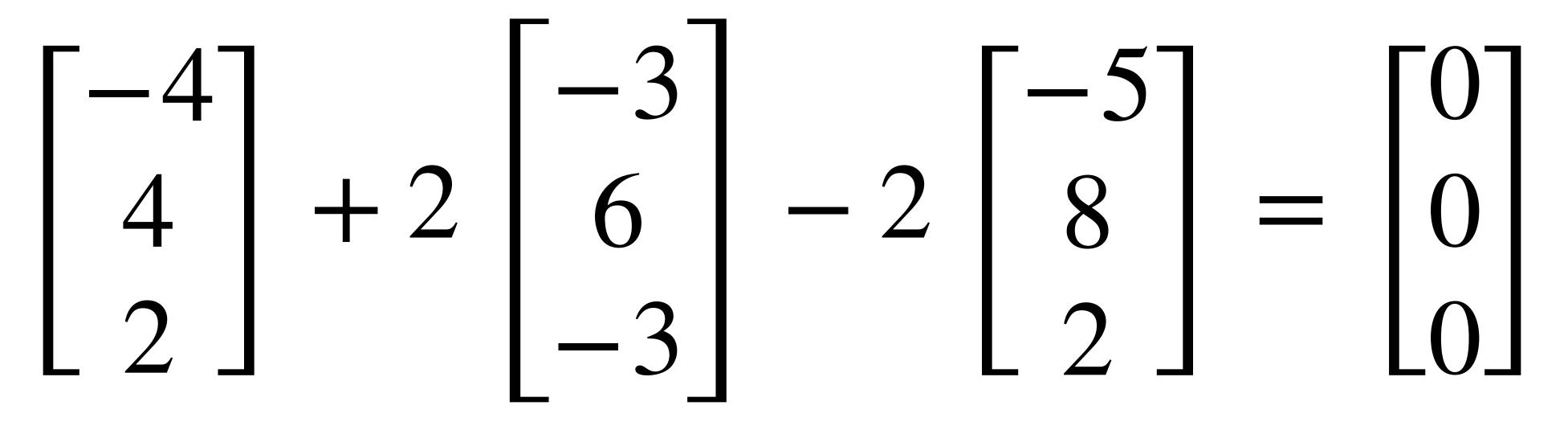
 $R_1 \leftarrow R_1/(-4)$

 $x_2 = -x_3$

$x_1 = -(0.5)x_3$ x_3 is free

 $x_1 = 1$ $x_2 = 2$ $x_3 = -2$





Note there are other solutions as well...

Simple Cases

{} (a.k.a. Ø) is linearly independent

{} (a.k.a. Ø) is linearly independent We stretch the definition a bit: there is no nontrivial linear combination of the vectors equaling 0

{} (a.k.a. Ø) is linearly independent We stretch the definition a bit: there is no nontrivial linear combination of the vectors equaling 0

There are none at all...

 $\{\}$ (a.k.a. \emptyset) is linearly independent We stretch the definition a bit: there is no nontrivial linear combination of the vectors equaling 0

There are none at all...

0 is in every span, even the empty span.

One Vector

A single vector v is linearly independent if and only if it $v \neq 0$.

Note that

has many nontrivial solutions.

 $x_1 \mathbf{0} = \mathbf{0}$ olutions.

The Zero Vector and Linear Dependence

If a set of vectors V is linearly dependent.

If a set of vectors V contains the 0, then it

The Zero Vector and Linear Dependence

If a set of vectors V contains the 0, then it is linearly dependent.

$(1)\mathbf{0} + \mathbf{0}\mathbf{v}_2 + \mathbf{0}\mathbf{v}_2 + \dots + \mathbf{0}\mathbf{v}_n = \mathbf{0}$

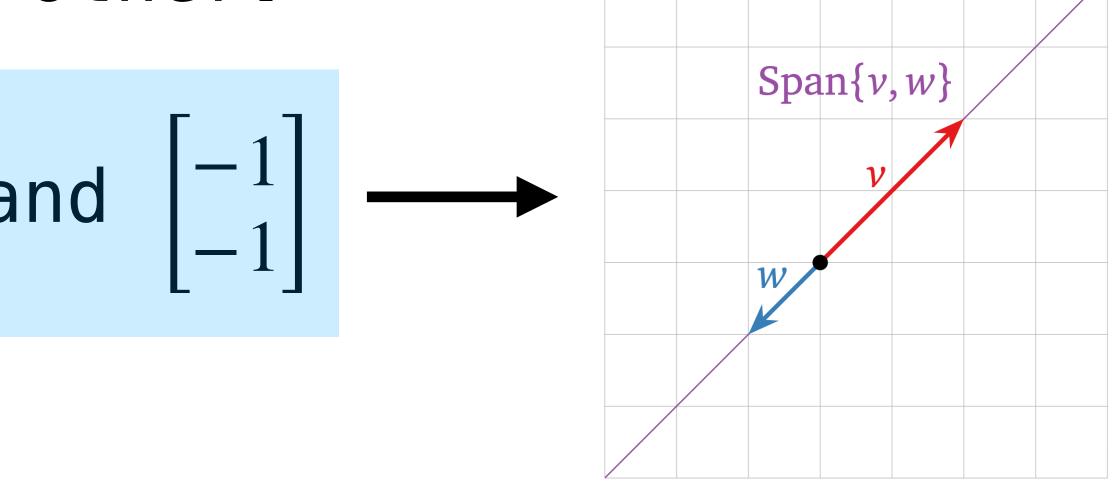
There is a very simple nontrivial solution.

Two Vectors

Definition. Two vectors are *colinear* if they are scalar multiples of each other.

e.g., $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ and $\begin{bmatrix} 1.5\\1.5\\3 \end{bmatrix}$ or $\begin{bmatrix} 2\\2 \end{bmatrix}$ and $\begin{bmatrix} -1\\-1 \end{bmatrix}$ \longrightarrow

Two vectors are linearly dependent if and only if they are colinear.



<u>image source</u>

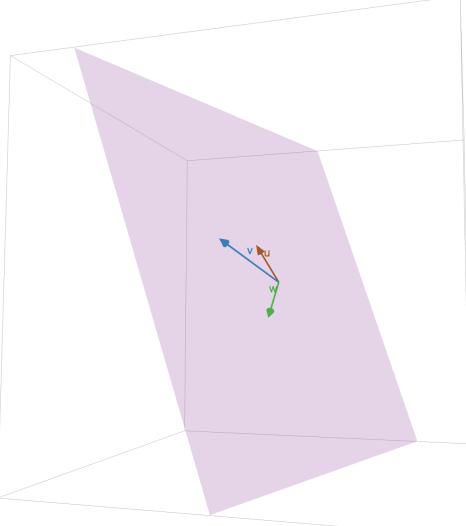
Three Vectors

if their span is a plane.

if they are colinear or coplanar.

Definition. A collection of vectors is **coplanar**

Three vectors are linearly dependent if an only



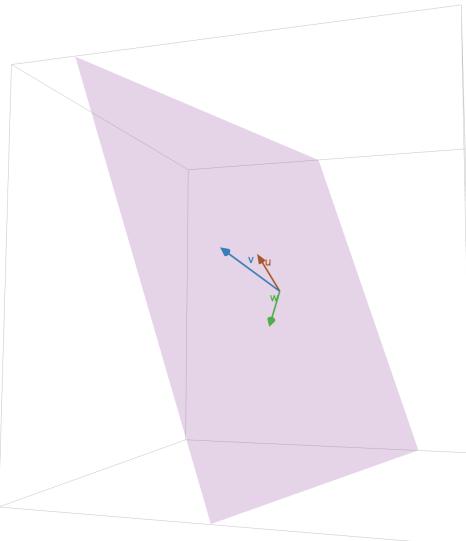
Three Vectors

if their span is a plane.

Three vectors are linearly dependent if an only if they are colinear or coplanar.

This can be reasoning can be extended to more vectors, but we run out of terminology

Definition. A collection of vectors is **coplanar**



Yet Another Interpretation

Increasing Span Criterion

If $v_1, v_2, ..., v_n$ are linearly independent then we cannot write one of it's vectors as a linear combination of the others.

But we get something stronger.

Increasing Span Criterion

Theorem. $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent if and only if for all $i \le n$,

 $\mathbf{v}_i \notin \mathsf{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{i-1}\}$

Increasing Span Criterion

Theorem. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent if and only if for all $i \leq n$

$V_i \notin span\{V_1, V_2, ..., V_{i-1}\}$

As we add vectors, the span gets larger.

Increasing Span Criterion So in this case, our span keeps getting "bigger"

Increasing Span Criterion So in this case, our span keeps getting "bigger" span{} is a point {0}

Increasing Span Criterion So in this case, our span keeps getting "bigger" span{} is a point {0} $span\{v_1\}$ is a line

Increasing Span Criterion So in this case, our span keeps getting "bigger" span{} is a point {0} $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane

Increasing Span Criterion So in this case, our span keeps getting "bigger" span{} is a point {0} $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane $span\{v_1, v_2, v_3\}$ is a 3d-hyperplane

Increasing Span Criterion So in this case, our span keeps getting "bigger" $span{} is a point {0}$ $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane $span\{v_1, v_2, v_3\}$ is a 3d-hyperplane $span\{v_1, v_2, v_3, v_4\}$ is a 4d-hyperlane

Increasing Span Criterion So in this case, our span keeps getting "bigger" $span{} is a point {0}$ $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane $span\{v_1, v_2, v_3\}$ is a 3d-hyperplane $span\{v_1, v_2, v_3, v_4\}$ is a 4d-hyperlane

Characterization of Linear Dependence

Theorem. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly dependent if and only there is an $i \leq n$

 $v_i \in span\{v_1, v_2, ..., v_{i-1}\}$

Characterization of Linear Dependence

Theorem. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly dependent if and only there is an $i \leq n$

As we add vectors, we'll eventually find one in the span of the preceding ones.

$v_i \in span\{v_1, v_2, ..., v_{i-1}\}$

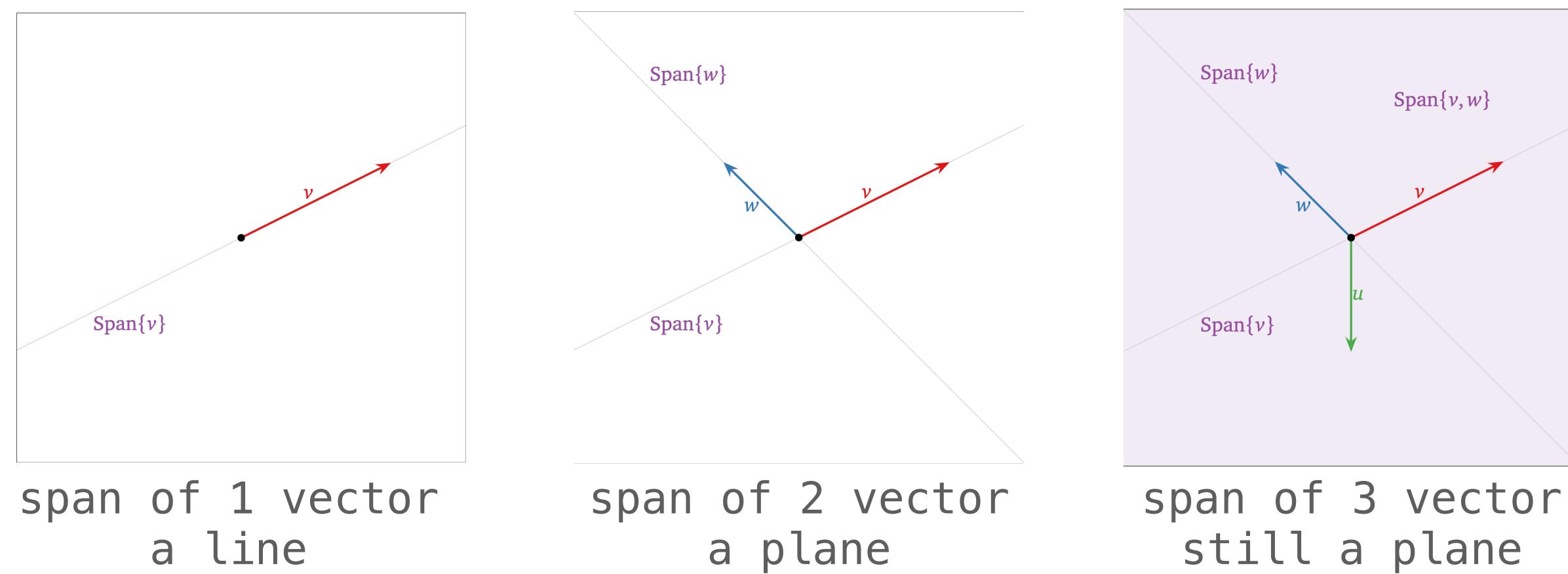
Characterization of Linear Dependence

span{} is a point {0} $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane $span\{v_1, v_2, v_3\}$ is still a plane

Characterization of Linear Dependence

 $span{} is a point {0}$ $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane $span\{v_1, v_2, v_3\}$ is still a plane (this is an example, it may take a lot more vectors before we find one in the span of the preceding vectors)

As a Picture



<u>image source</u>

Characterization of Linear Dependence

Corollary. If $v_1, v_2, ..., v_k$ are linearly dependent, then for any vector \mathbf{v}_{k+1} , the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}$ are linearly dependent.

> If we add a vector to a linearly dependent set, it remains linearly dependent

Question

Are the following vectors linearly independent? $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 2023 \\ 0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 0.1 \\ 7 \end{bmatrix}$

Answer: No

Any three vectors can at most span a plane. plane (\mathbb{R}^2).

$\mathbf{v}_1 = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$ $\mathbf{v}_2 = \begin{vmatrix} 2023 \\ 0 \end{vmatrix}$ $\mathbf{v}_3 = \begin{vmatrix} 0.1 \\ 7 \end{vmatrix}$

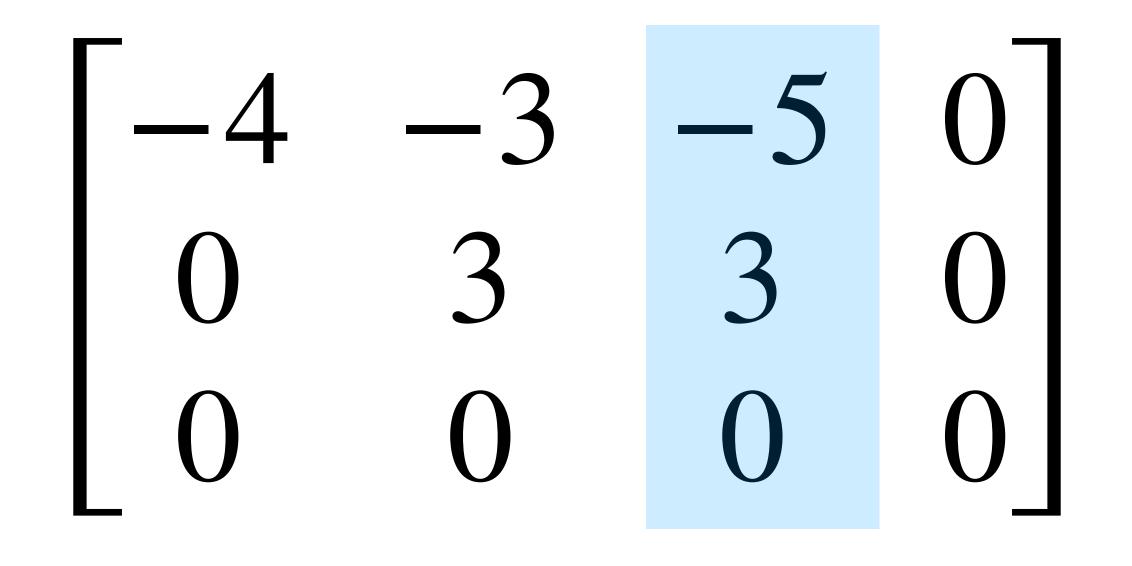
The first two are not colinear, so they span a

Linear Independence and Free Variables

Linear Dependence Relations (Again)

came across a system which a free variable

When finding a linear dependence relation, we



we can take x_3 to be free

independent if and only if A has a pivot in every <u>column</u>.

Theorem. The columns of a matrix A are linearly

independent if and only if A has a pivot in every <u>column</u>.

be the ones whose columns don't have pivots.

Theorem. The columns of a matrix A are linearly

Remember that we choose our free variables to

independent if and only if A has a pivot in every <u>column</u>.

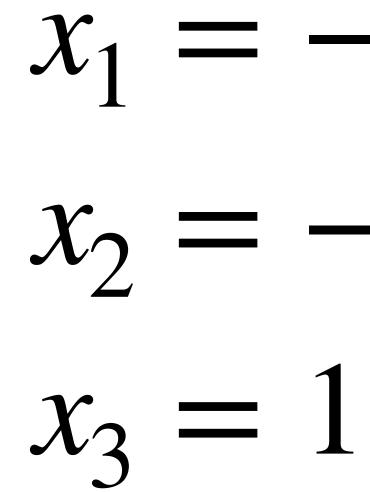
be the ones whose columns don't have pivots.

Theorem. The columns of a matrix A are linearly

- Remember that we choose our free variables to
 - Free variables allow for infinitely many (nontrivial) solution.

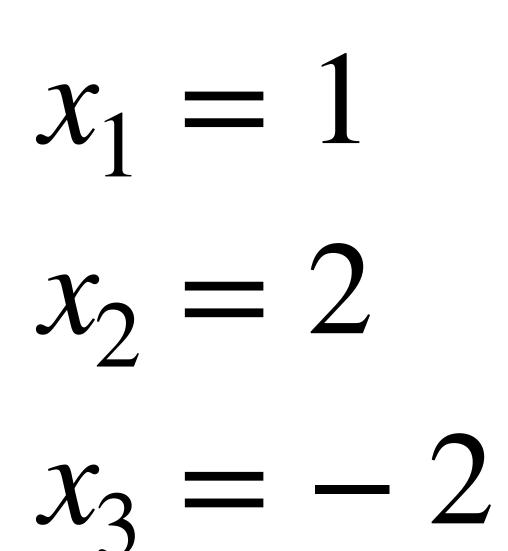
 $x_2 = -x_3$

 $x_1 = -(0.5)x_3$ x_3 is free



$x_1 = -0.5$ $x_2 = -1$

 $x_1 = 0.5$ $x_2 = 1$ $x_3 = -1$



 $x_1 = 1$ $x_2 = 2$ $x_3 = -2$

Question. Is the set of vectors $\{a_1, a_2, ..., a_n\}$ linearly independent?

Question. Is the set of vectors $\{a_1, a_2, \dots, a_n\}$ linearly independent?

Solution. Check if $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{0}$ has a unique solution.

Question. Is the set of vectors $\{a_1, a_2, \dots, a_n\}$ linearly independent?

solution.

Solution. Check if $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]\mathbf{x} = \mathbf{0}$ has a unique

Question. Is the set of vectors $\{a_1, a_2, \dots, a_n\}$ linearly independent? Solution. Check if the general form solution of $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \ \mathbf{0}]$ has any free variables.

Question. Is the set of vectors $\{a_1, a_2, \dots, a_n\}$ linearly independent?

Solution. Reduce $[a_1 \ a_2 \ \dots \ a_n]$ to echelon form and check if has a pivot position in every column.

Example: Recap Problem Again $\mathbf{v}_1 = \begin{bmatrix} -4\\4\\2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -3\\6\\-3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -5\\8\\-2 \end{bmatrix}$

The reduced echelon form of $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$ is

 $\begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{array}{c} \text{column} \\ \text{without a} \\ \text{reduced} \end{array}$

pivot

Linear Independence and Full Span

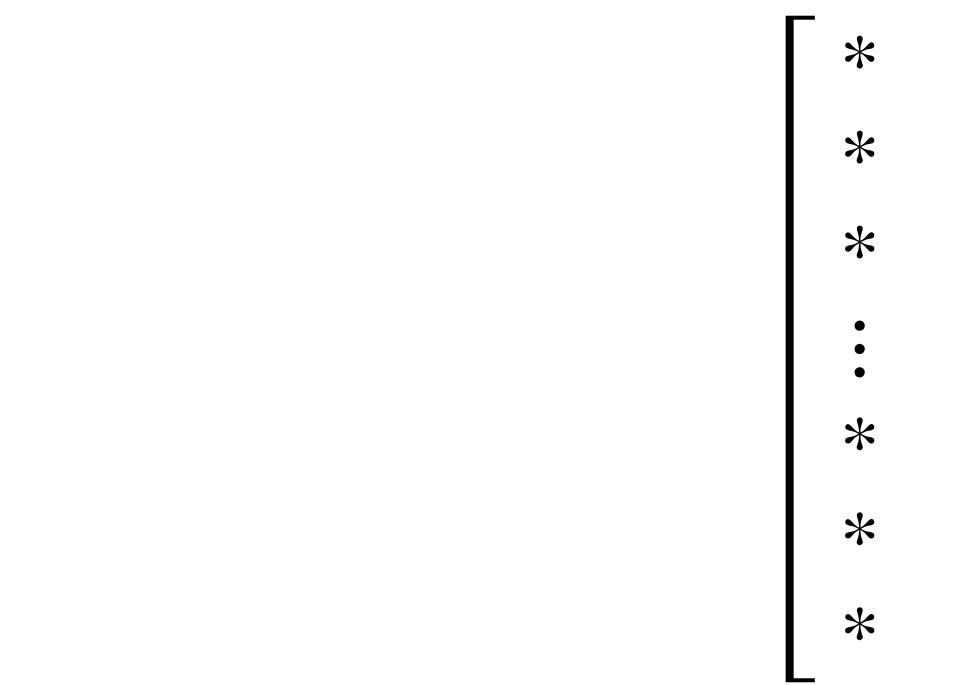
there is a pivot in every <u>row</u>.

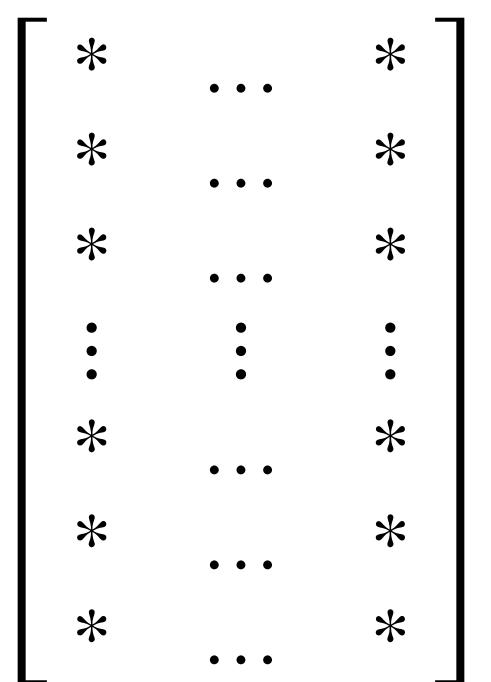
if there is a pivot in every <u>column</u>.

- The columns of a $(m \times n)$ matrix span all of \mathbb{R}^n if
- The columns of a matrix are linearly independent

Tall Matrices

If m > n then the columns cannot span \mathbb{R}^m





Tall Matrices

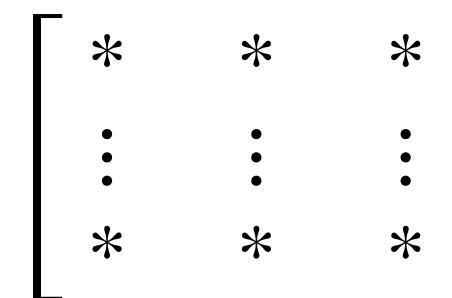
If m > n then the columns cannot span \mathbb{R}^m

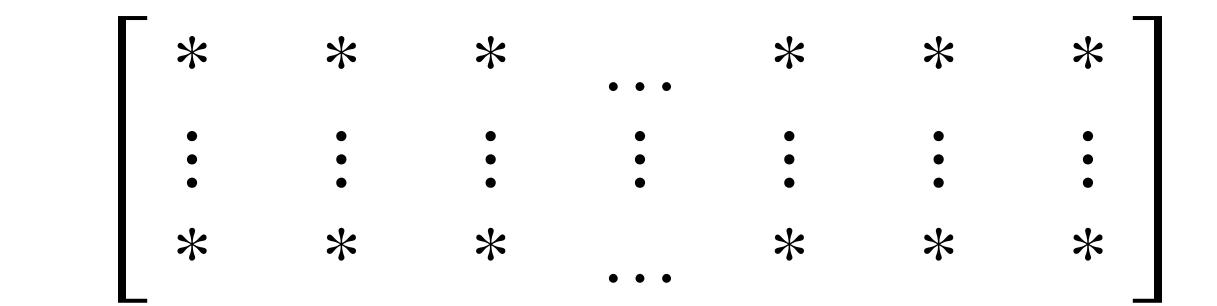
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$

This matrix has at most 3 pivots, but 4 rows.

Wide Matrices

If m < n then the columns cannot be linearly independent





Wide Matrices

If m < n then the columns cannot be linearly independent

 1
 2
 3
 4

 5
 6
 7
 8

 9
 10
 11
 12

This matrix as at most 3 pivots, but 4 columns.

A Warning

there is a pivot in every <u>row</u>.

if there is a pivot in every <u>column</u>.

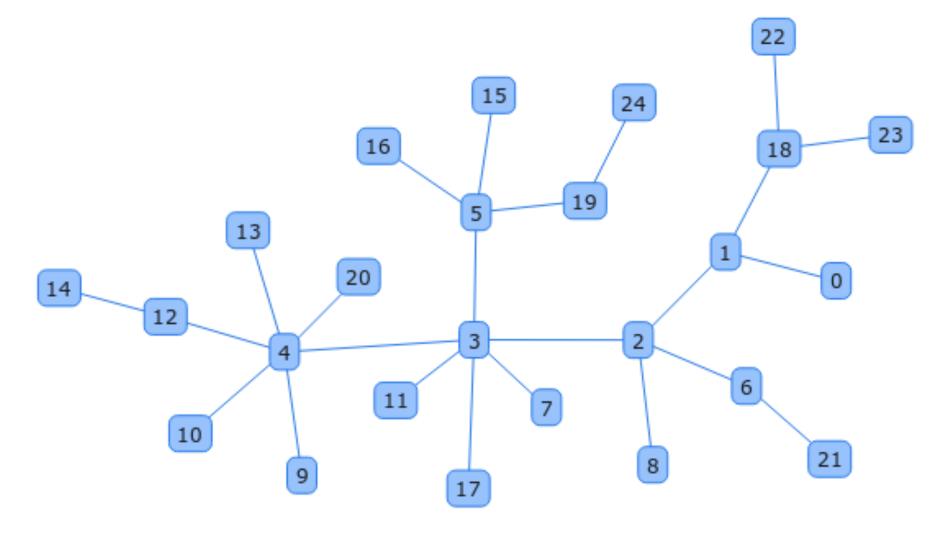
- The columns of a $(m \times n)$ matrix span all of \mathbb{R}^n if
- The columns of a matrix are linearly independent

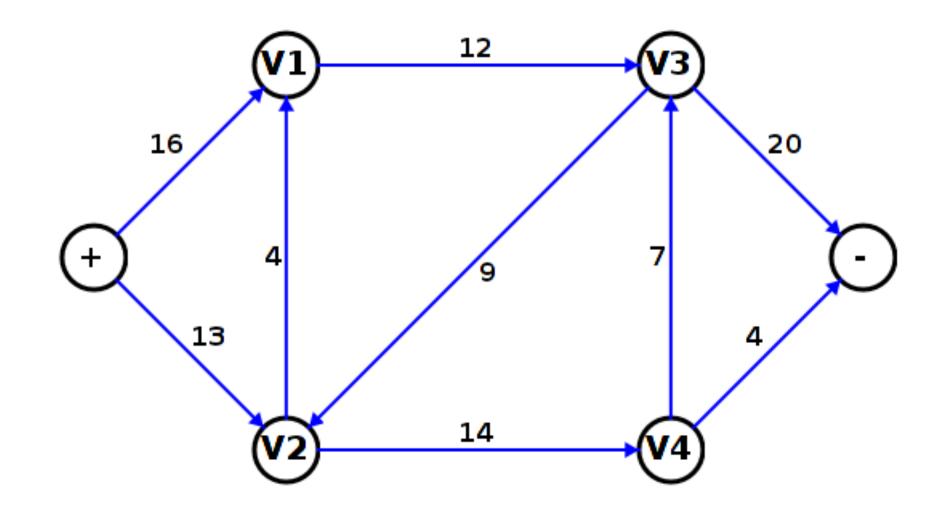
Don't confuse these!

Application: Networks and Flow

Graphs/Networks

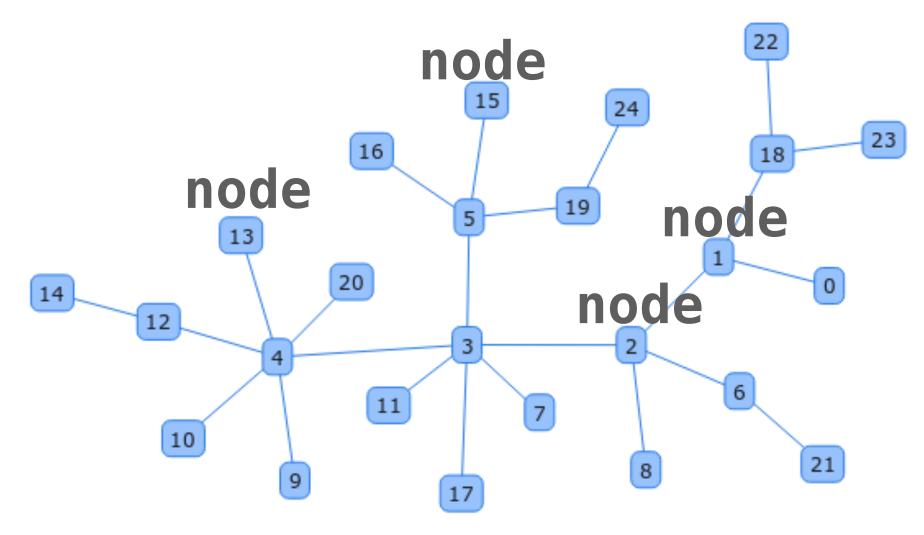
A **graph/network** is a mathematical object representing collection of *nodes* and *edges* connecting them.

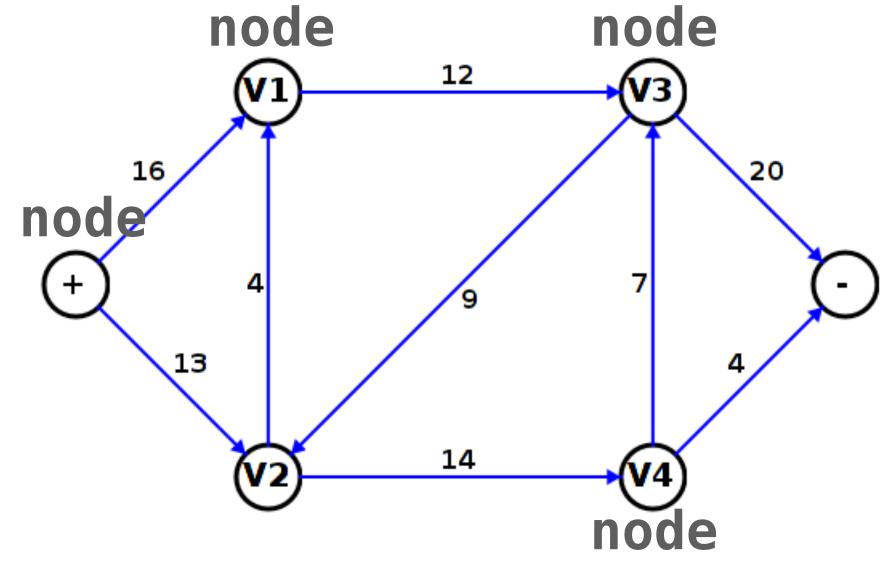




Graphs/Networks

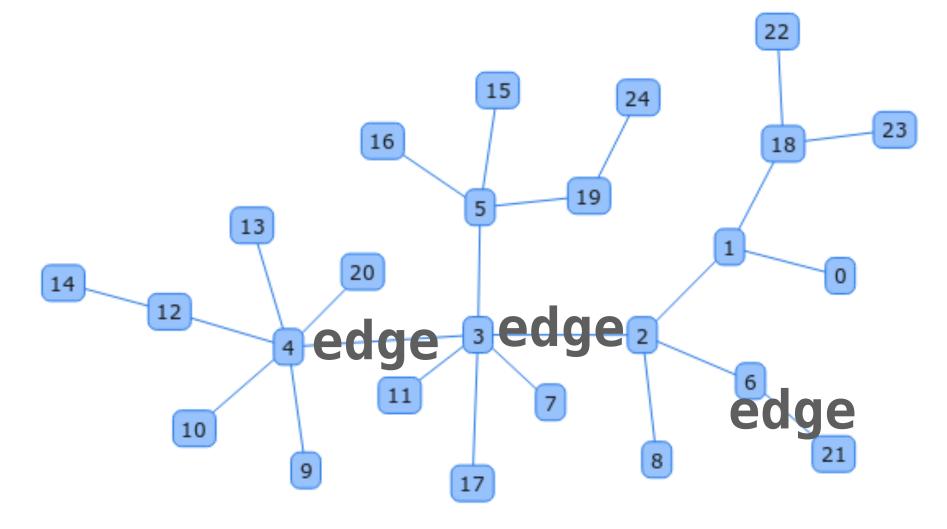
A **graph/network** is a mathematical object representing collection of *nodes* and *edges* connecting them.

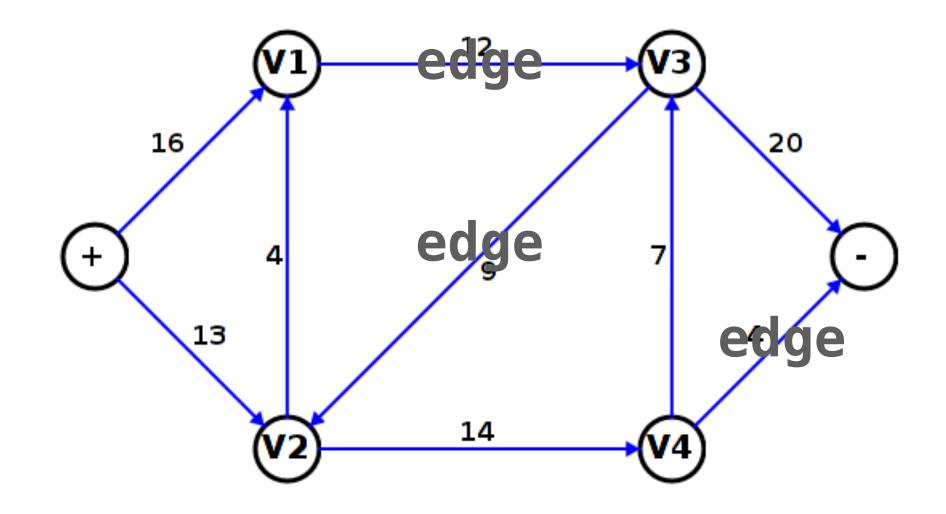




Graphs/Networks

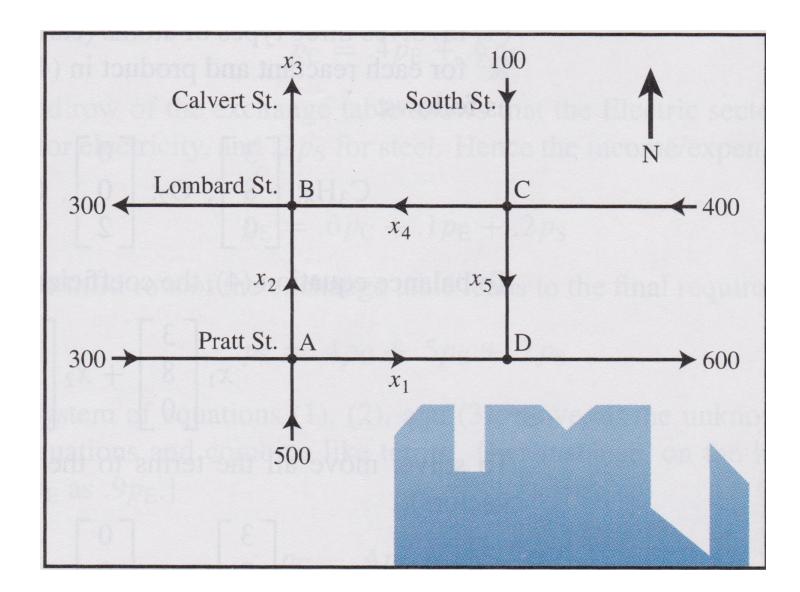
A **graph/network** is a mathematical object representing collection of *nodes* and *edges* connecting them.





Directed Graphs

Today we focus on *directed* graphs, in which edges have a specified direction.

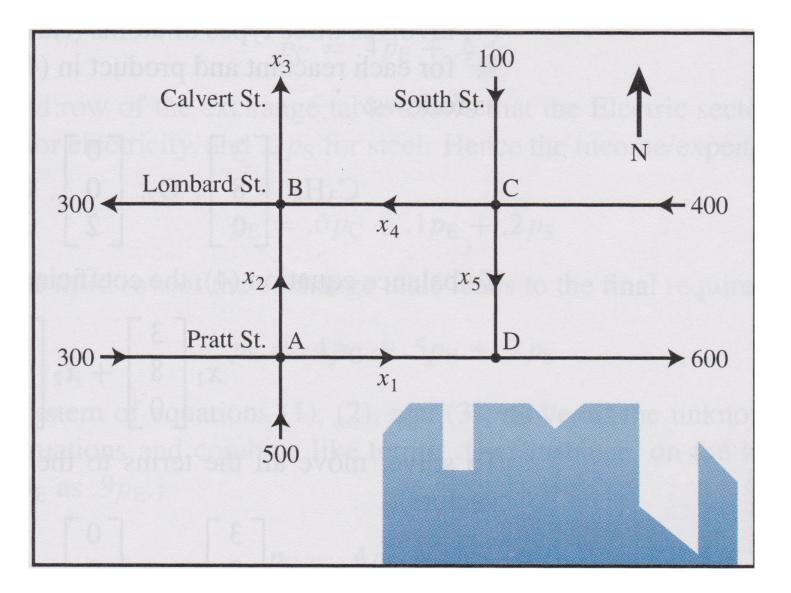


Think of these as one-way streets.

Flow

can push through the edges

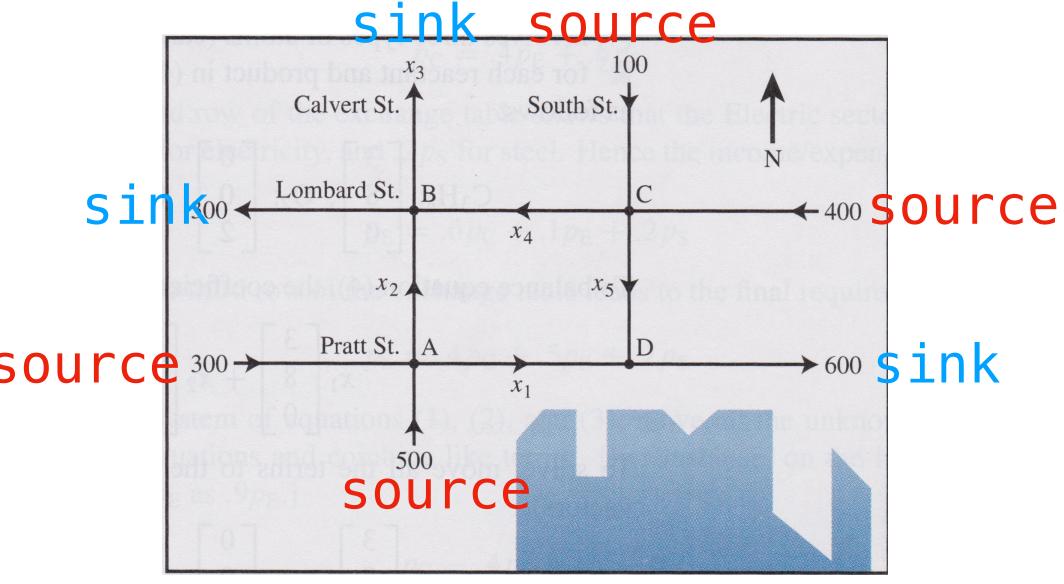
I like to imagine water moving through a pipe,



- We are often interested in how much "stuff" we
- In the above example, the "stuff" is cars/hr.
 - and splitting an joints in the pipe

Flow Network

A flow network is a directed graph with specified source and sink nodes. Flow <u>comes out of</u> and <u>goes into</u> sources and sinks. They are assigned a flow value (or variable).



Definition. The flow of a graph is an so that the following holds.

assignment of <u>nonnegative</u> values to the edges

Definition. The flow of a graph is an so that the following holds.

conservation: flow into a node = flow out of a node

assignment of <u>nonnegative</u> values to the edges

Definition. The flow of a graph is an so that the following holds.

conservation: flow into a node = flow out of a node

source/sink constraint: flow into a source/out of a sink is nonnegative.

assignment of <u>nonnegative</u> values to the edges

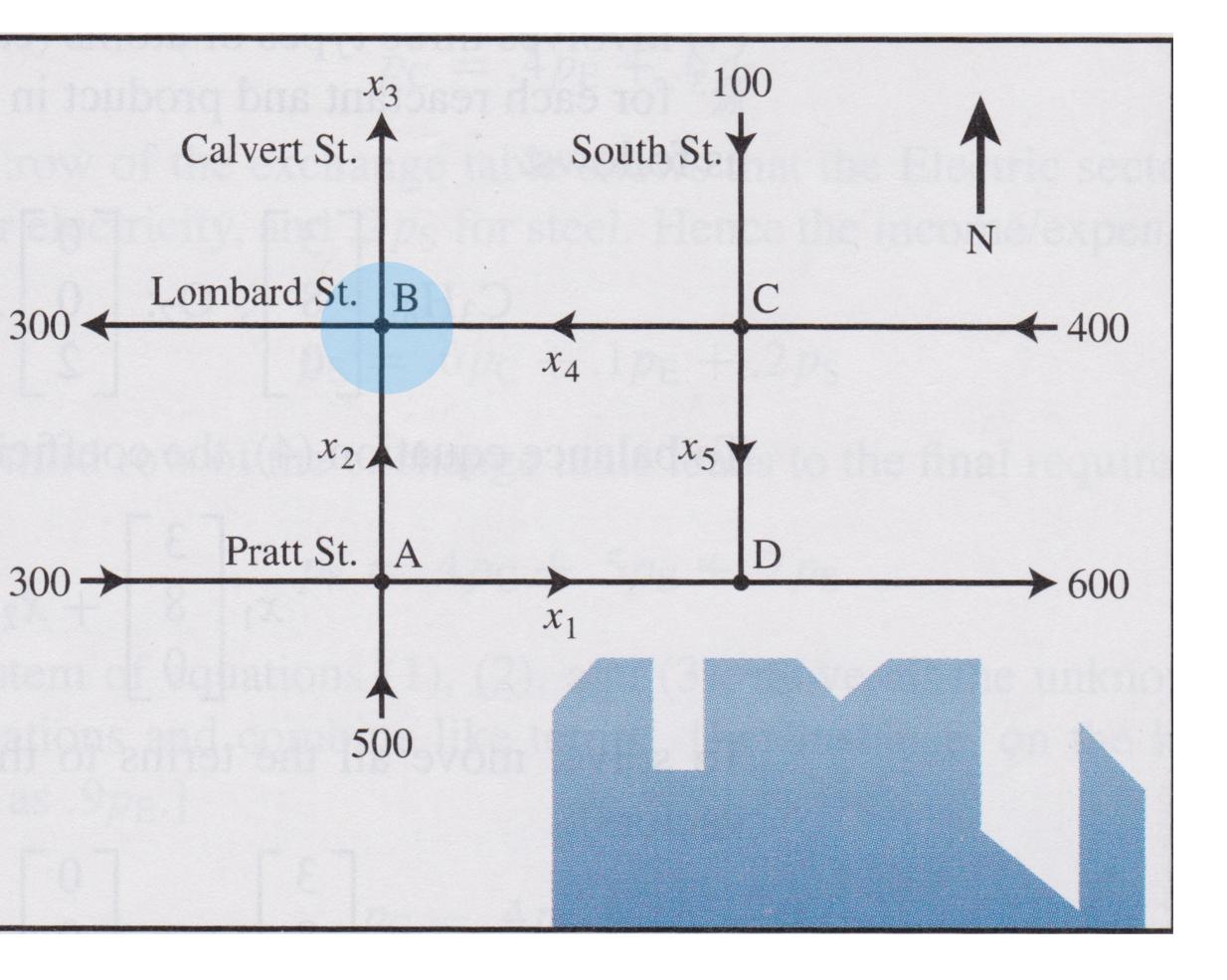
Flow Conservation Flow in

e.g.,

 $x_2 + x_4 = 300 + x_3$

 $100 + 400 = x_4 + x_5$

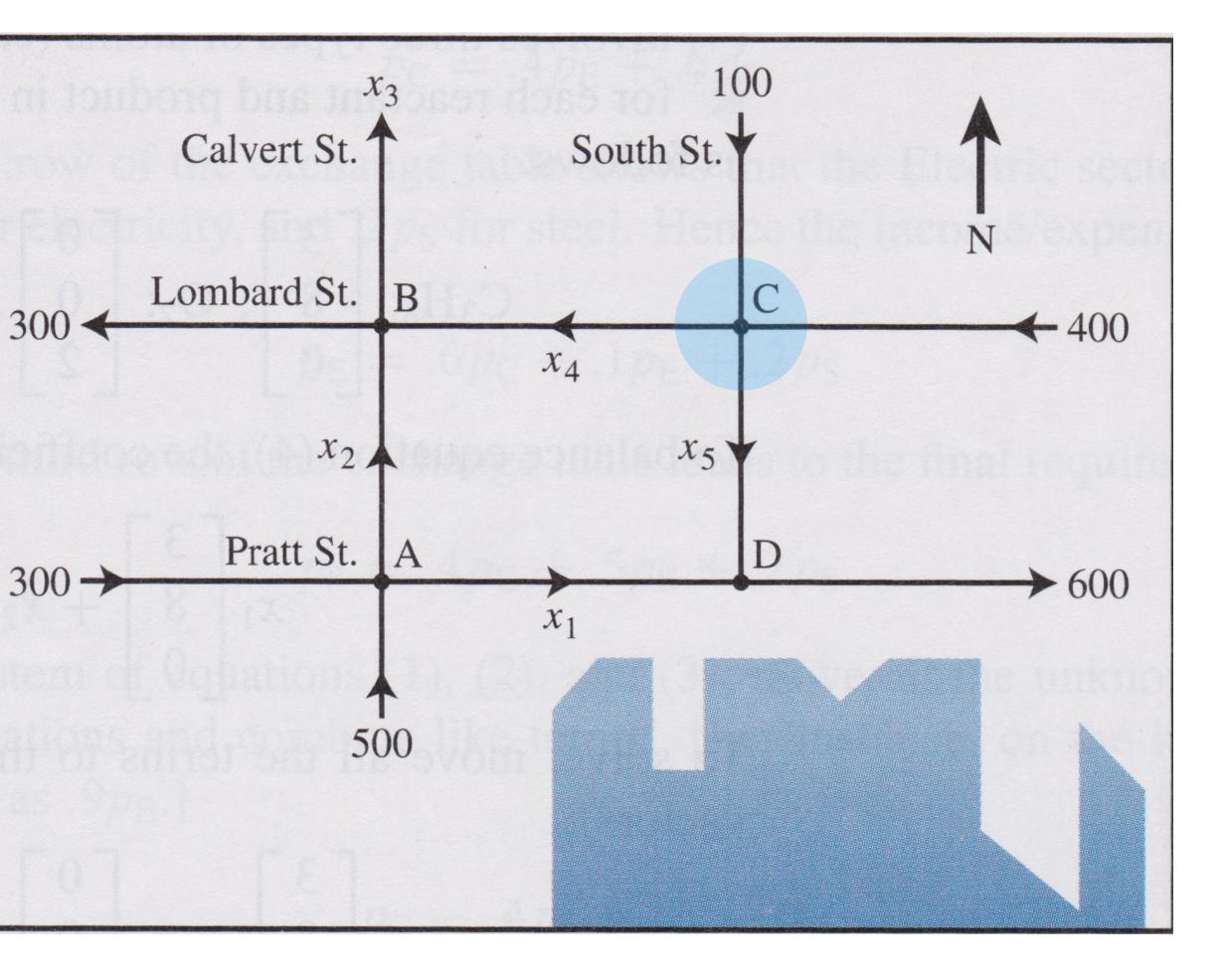
Flow in = Flow out



Flow Conservation Flow in

e.g., $x_2 + x_4 = 300 + x_3$ $100 + 400 = x_4 + x_5$

Flow in = Flow out



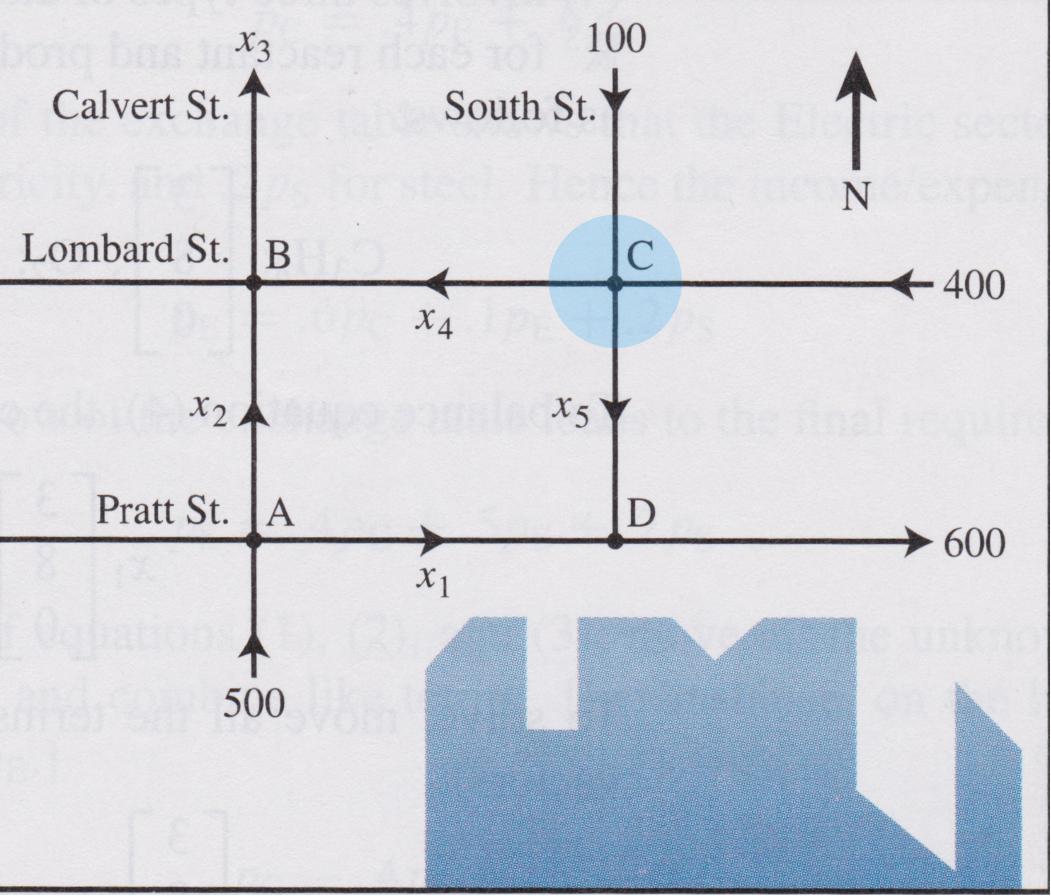
Flow Conservation e.g., 300 $x_2 + x_4 = 300 + x_3$

 $100 + 400 = x_4 + x_5$

Every node determines a linear equation

Flow in = Flow out

300-)



How To: Network Flow

How To: Network Flow

Question. Find a general solution for the flow of a given graph.

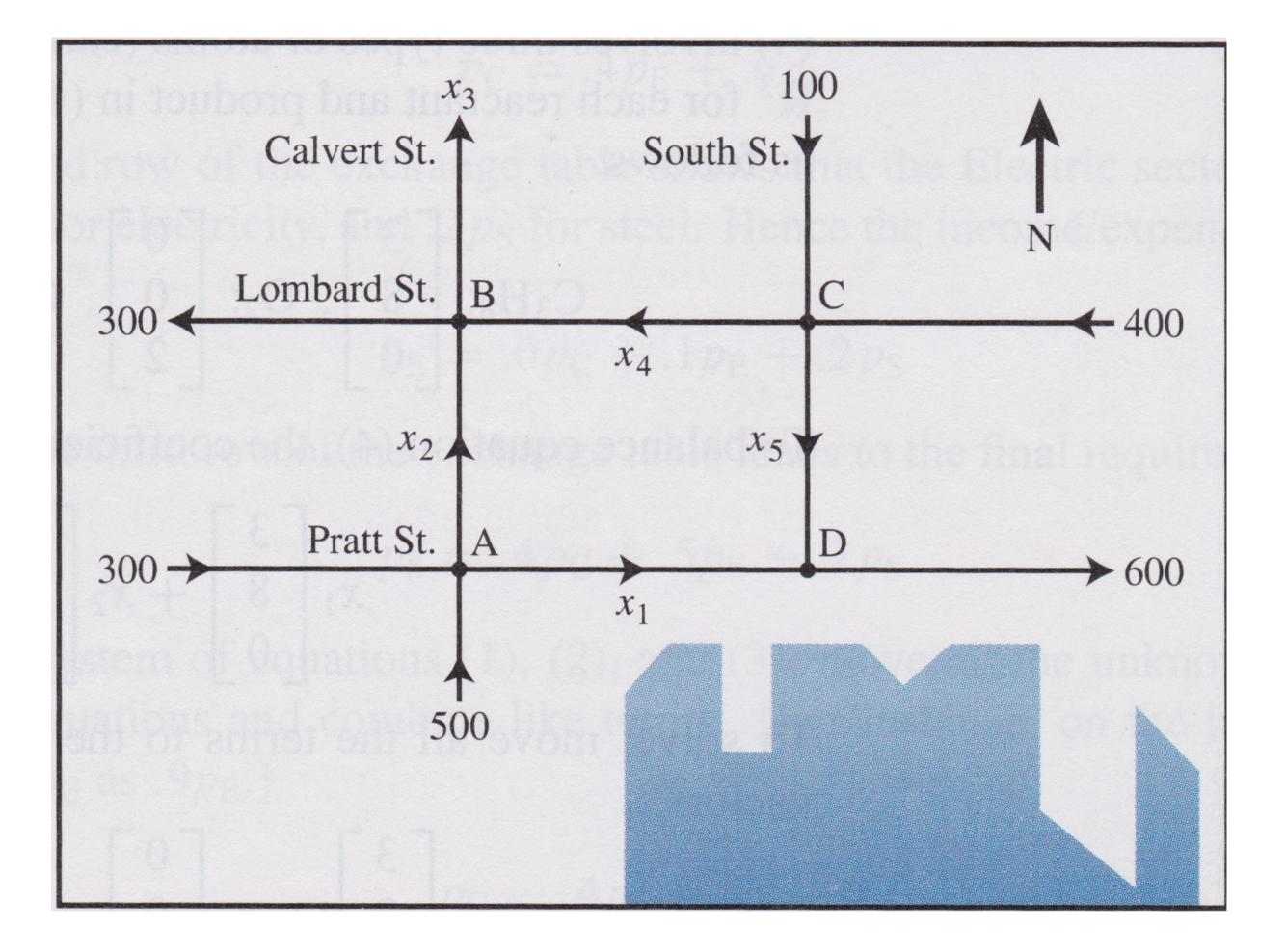
How To: Network Flow

Question. Find a generation of a given graph.

Solution. Write down the linear equations determined by <u>flow conservation</u> at non-source and non-sink nodes, and then solve.

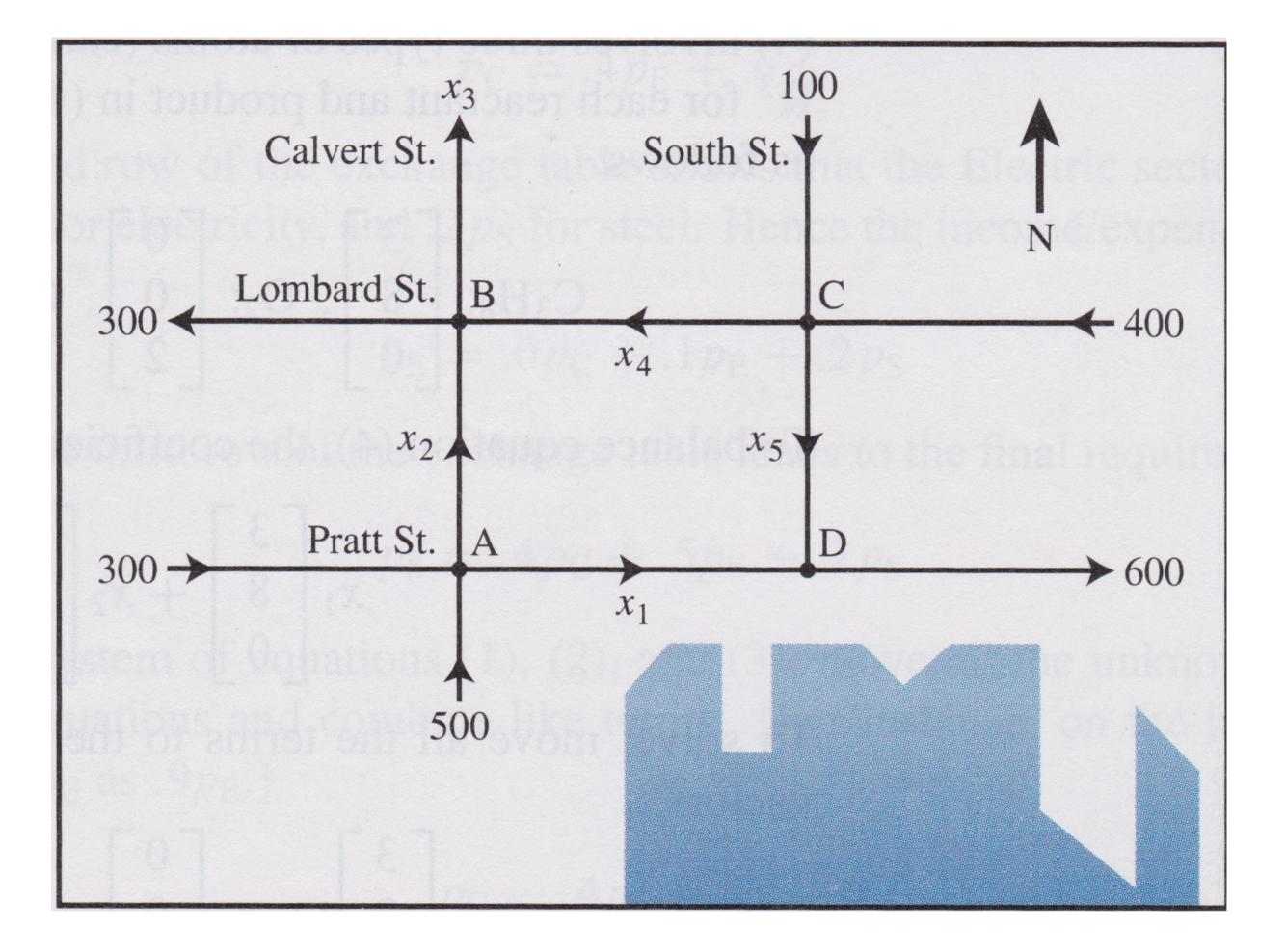
Question. Find a general solution for the flow

(A) $500 + 300 = x_1 + x_2$ (B) $x_2 + x_4 = 300 + x_3$ (C) $100 + 400 = x_4 + x_5$ (D) $x_1 + x_5 = 600$



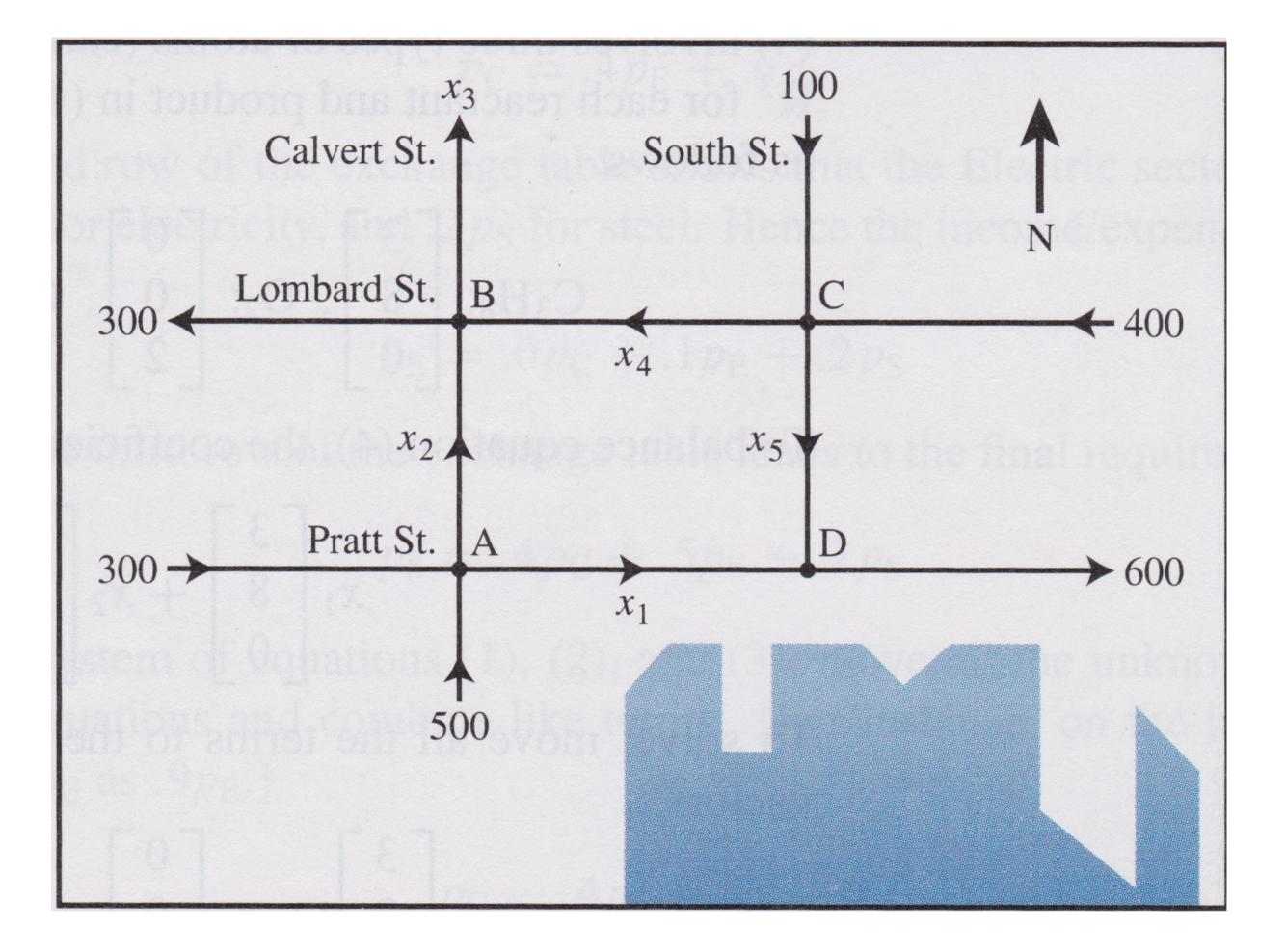
(A) $x_1 + x_2 = 800$ (B) $x_2 - x_3 + x_4 = 300$ (C) $x_4 + x_5 = 500$ (D) $x_1 + x_5 = 600$

System of Linear Equations



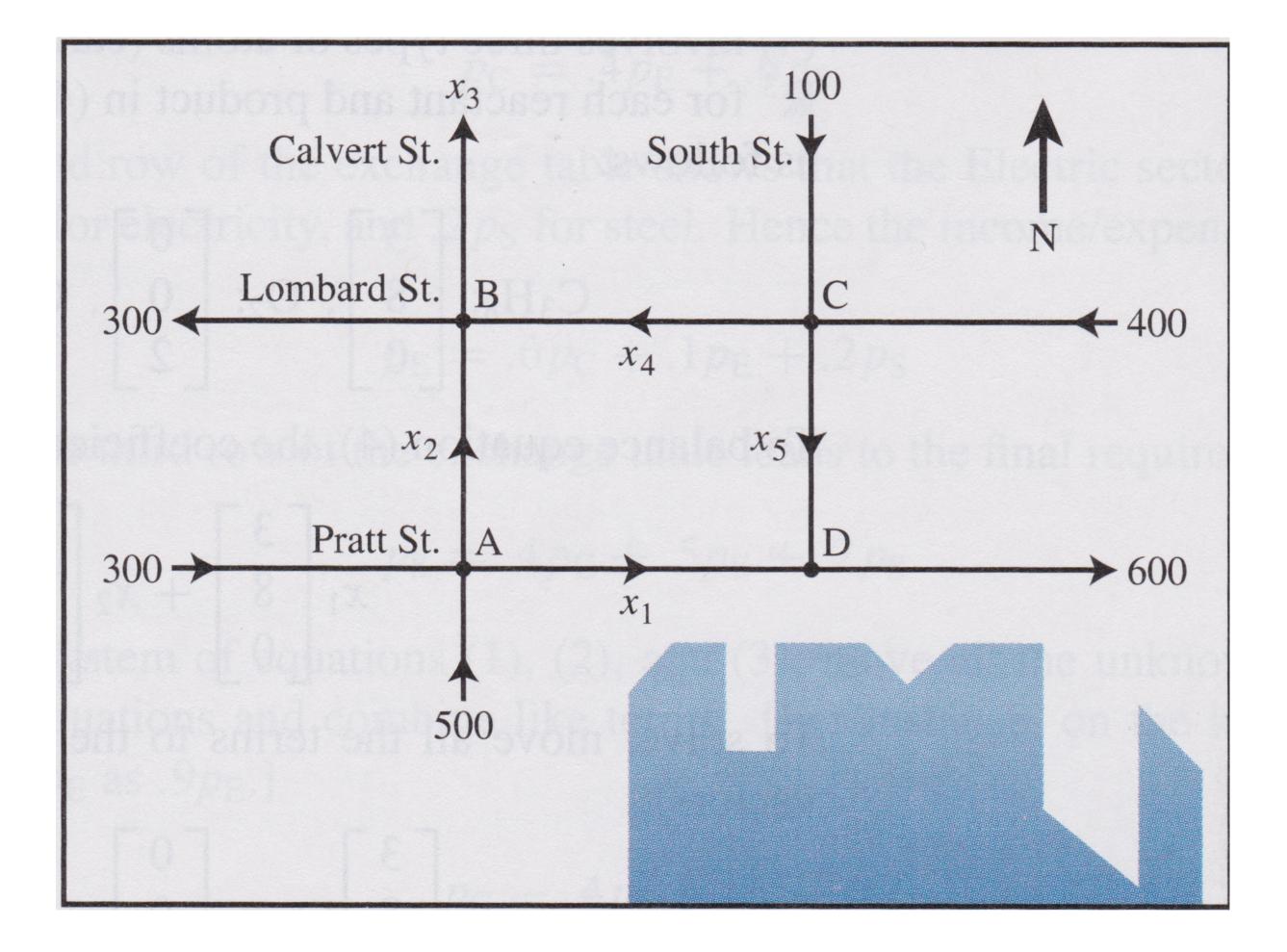
$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 800 \\ 0 & 1 & -1 & 1 & 0 & 300 \\ 0 & 0 & 0 & 1 & 1 & 500 \\ 1 & 0 & 0 & 0 & 1 & 600 \end{bmatrix}$

Augmented Matrix



0 1 0 0 400 500 0 0 1

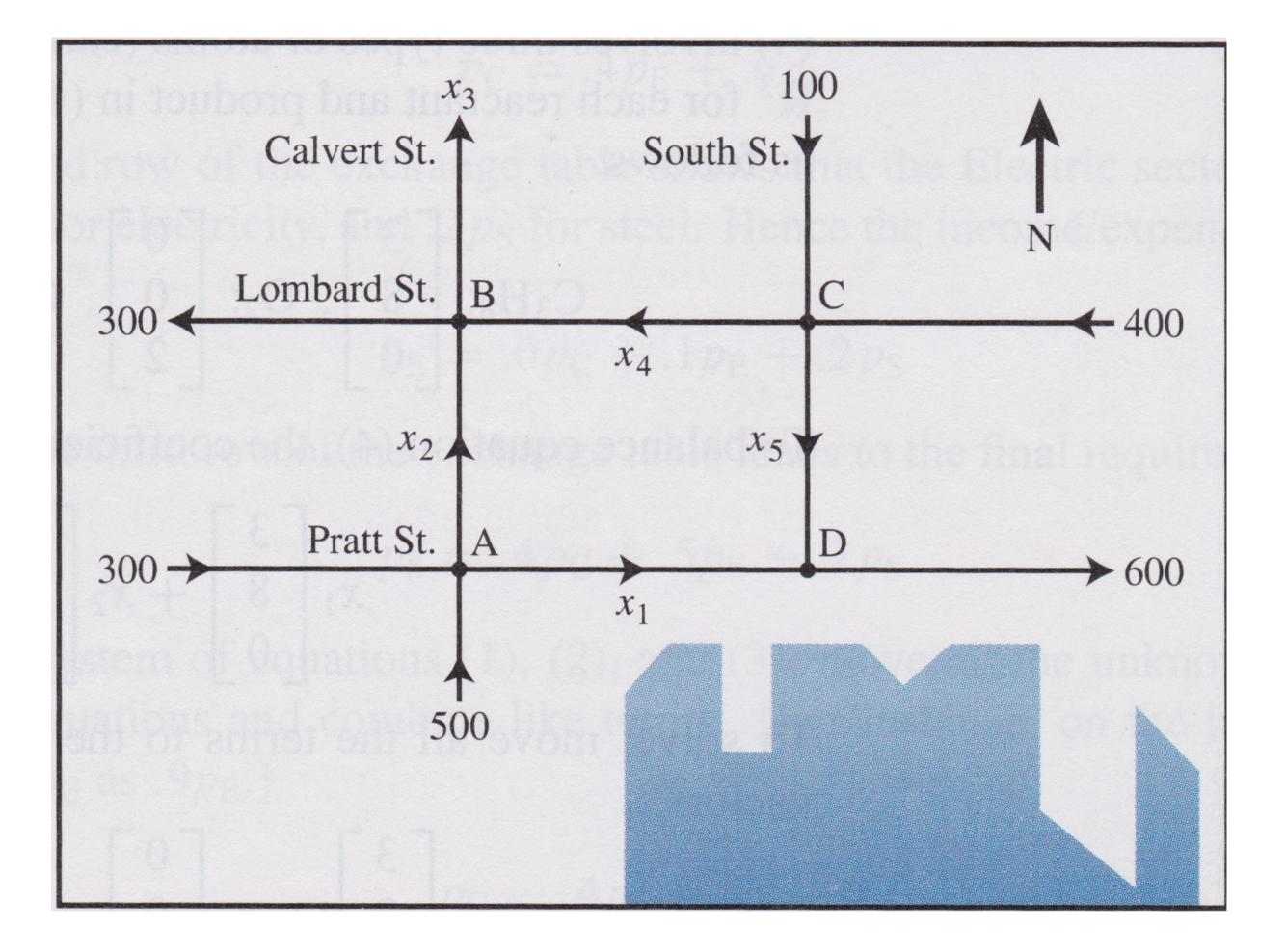
Reduced Echelon Form



Note that global flow is conserved.

 $x_1 = 600 - x_5$ $x_2 = 200 + x_5$ $x_3 = 400$ $x_4 = 500 - x_5$ x_5 is free

General Solution



How To: Max Flow Value for an Edge

How To: Max Flow Value for an Edge

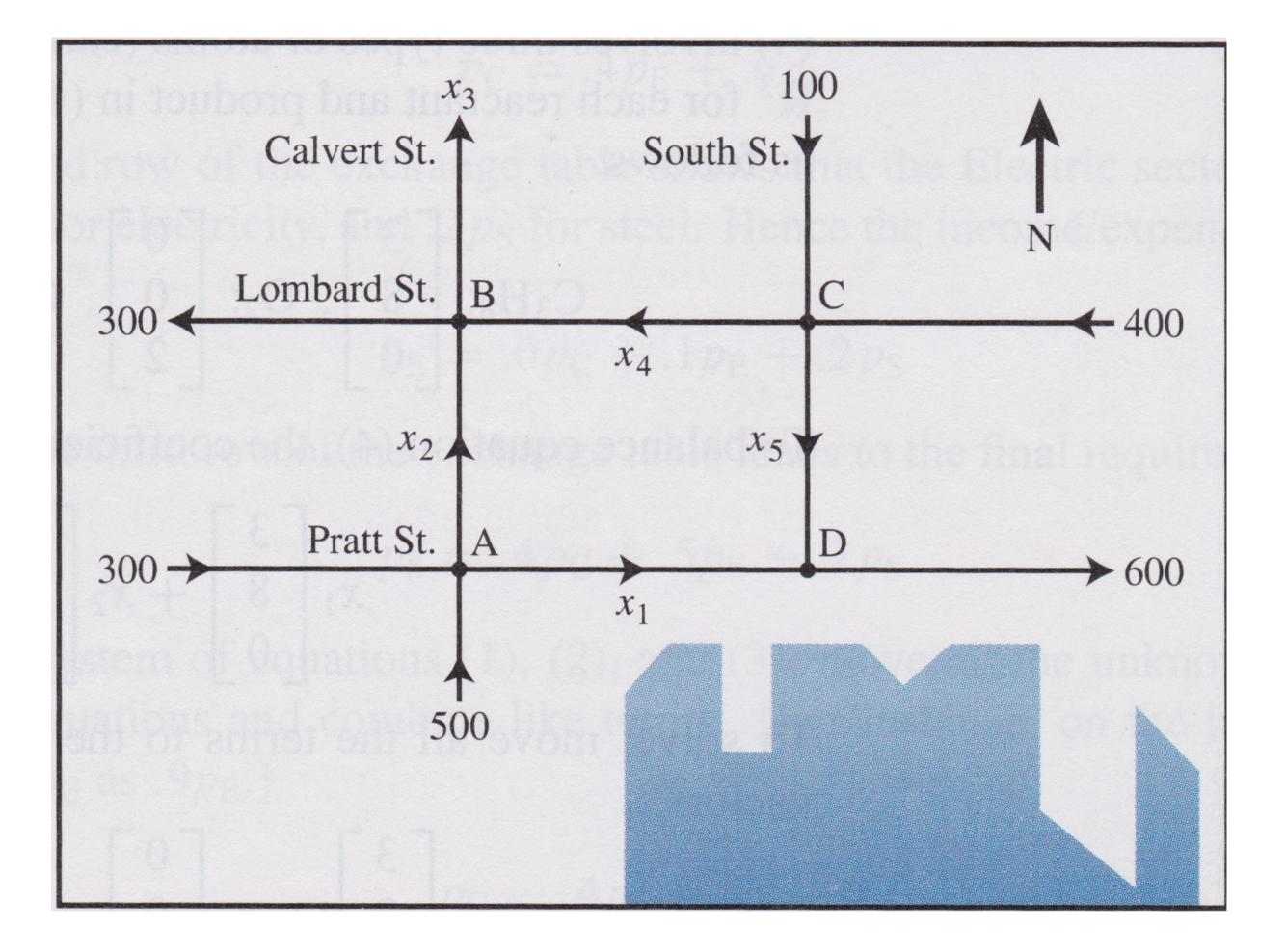
Question. Find the maximum value of a flow variable in a given flow network.

How To: Max Flow Value for an Edge

- Question. Find the maximum value of a flow variable in a given flow network.
- **Solution.** Remember that flow values must be positive. Look at the general form solution and see what makes this hold.

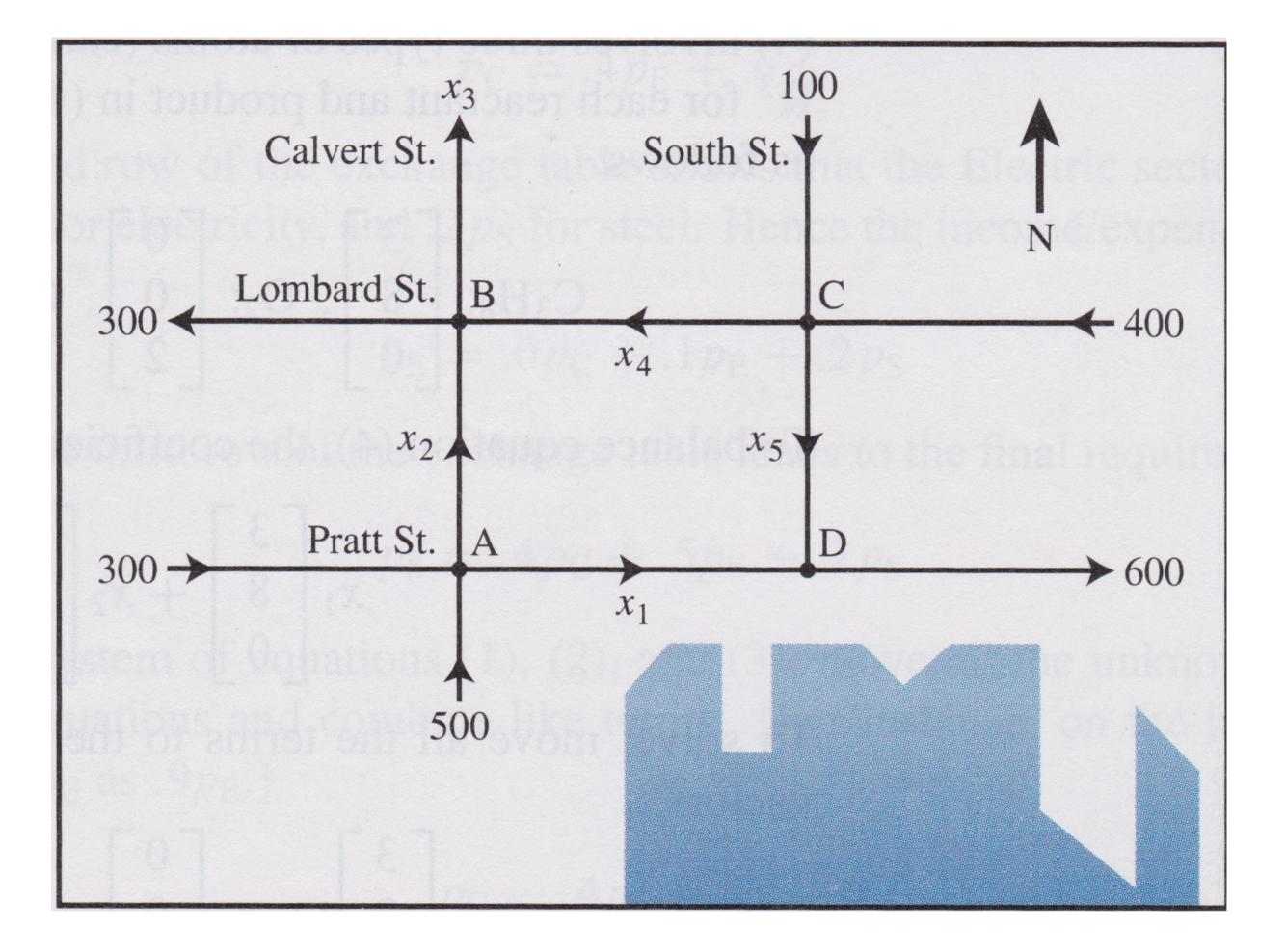
 $x_1 = 600 - x_5$ $x_2 = 200 + x_5$ $x_3 = 400$ $x_4 = 500 - x_5$ x_5 is free

 $x_4 \ge 0$ implies $x_5 \le 500$ $x_1 \ge 0$ implies $x_5 \le 600$



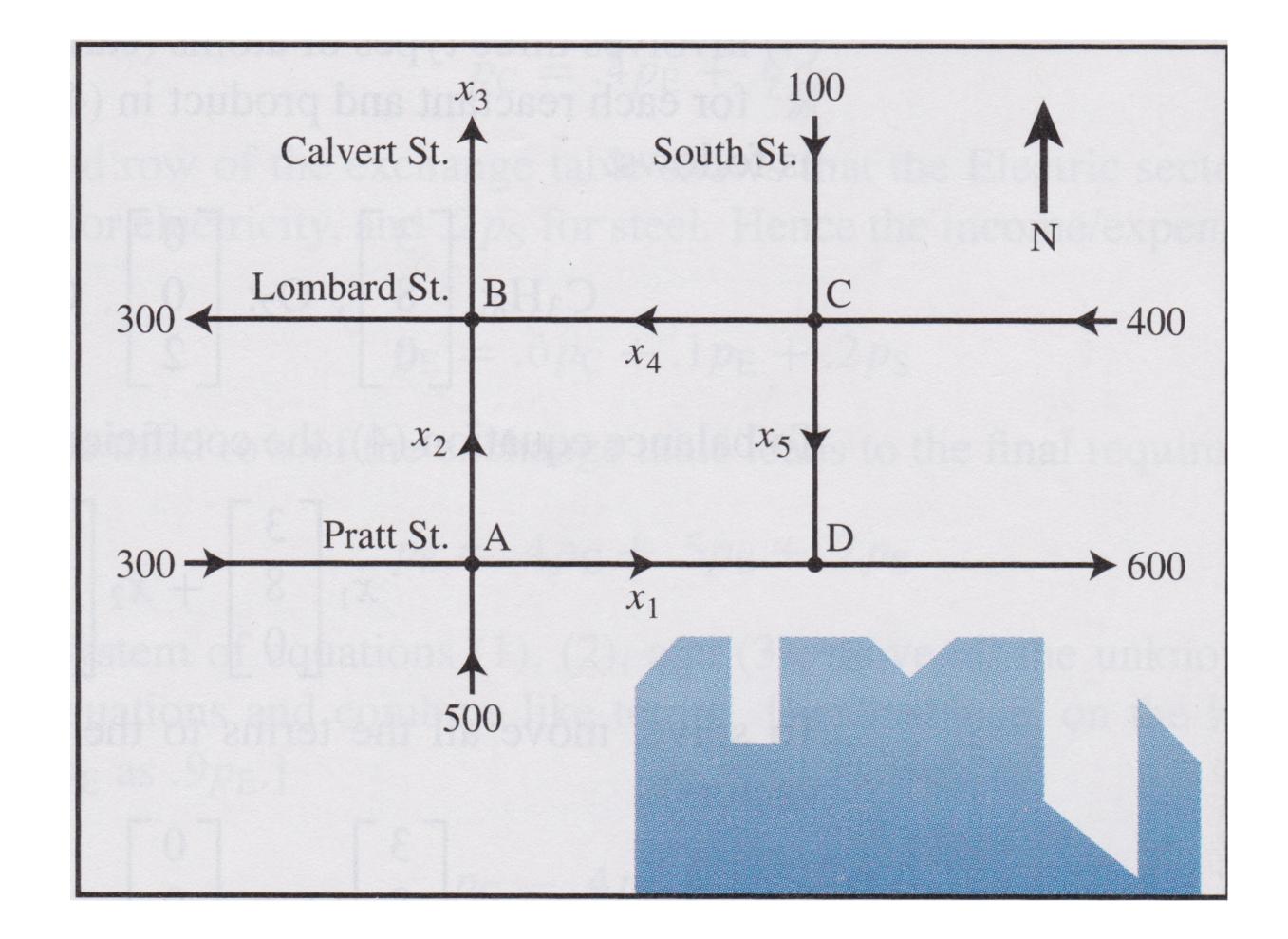
 $x_1 = 600 - x_5$ $x_2 = 200 + x_5$ $x_3 = 400$ $x_4 = 500 - x_5$ x_5 is free

 $x_4 \ge 0$ implies $x_5 \le 500$ $x_1 \ge 0$ implies $x_5 \le 600$



 $x_1 = 600 - x_5$ $x_2 = 200 + x_5$ $x_3 = 400$ $x_4 = 500 - x_5$ x_5 is free

 $x_4 \ge 0$ implies $x_5 \le 500$ $x_1 \ge 0$ implies $x_5 \le 600$



The maximum value of x_5 is 500

Summary

Linear independence helps us understand when a span is "as large as it can be."

We can reduce this seeing if a single homogeneous equation has a unique solution.

Network Flows define linear systems we can solve.