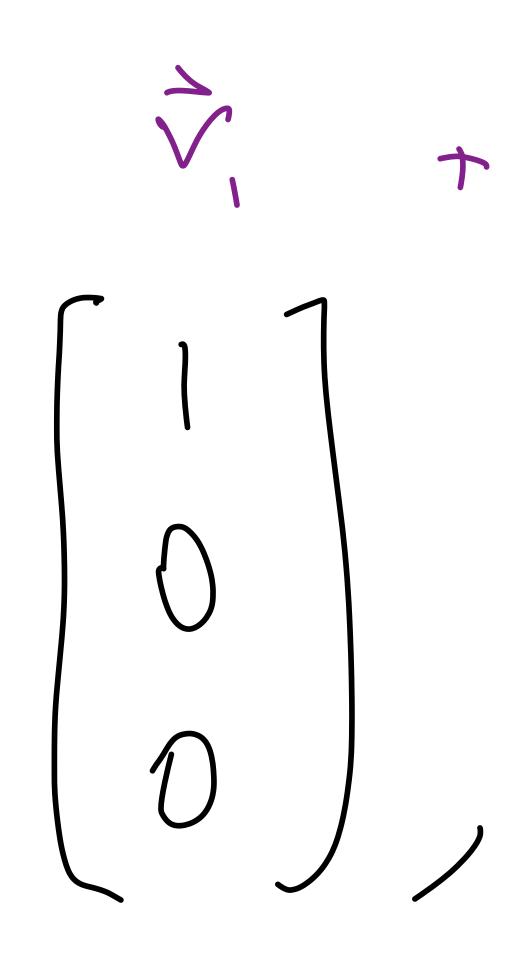
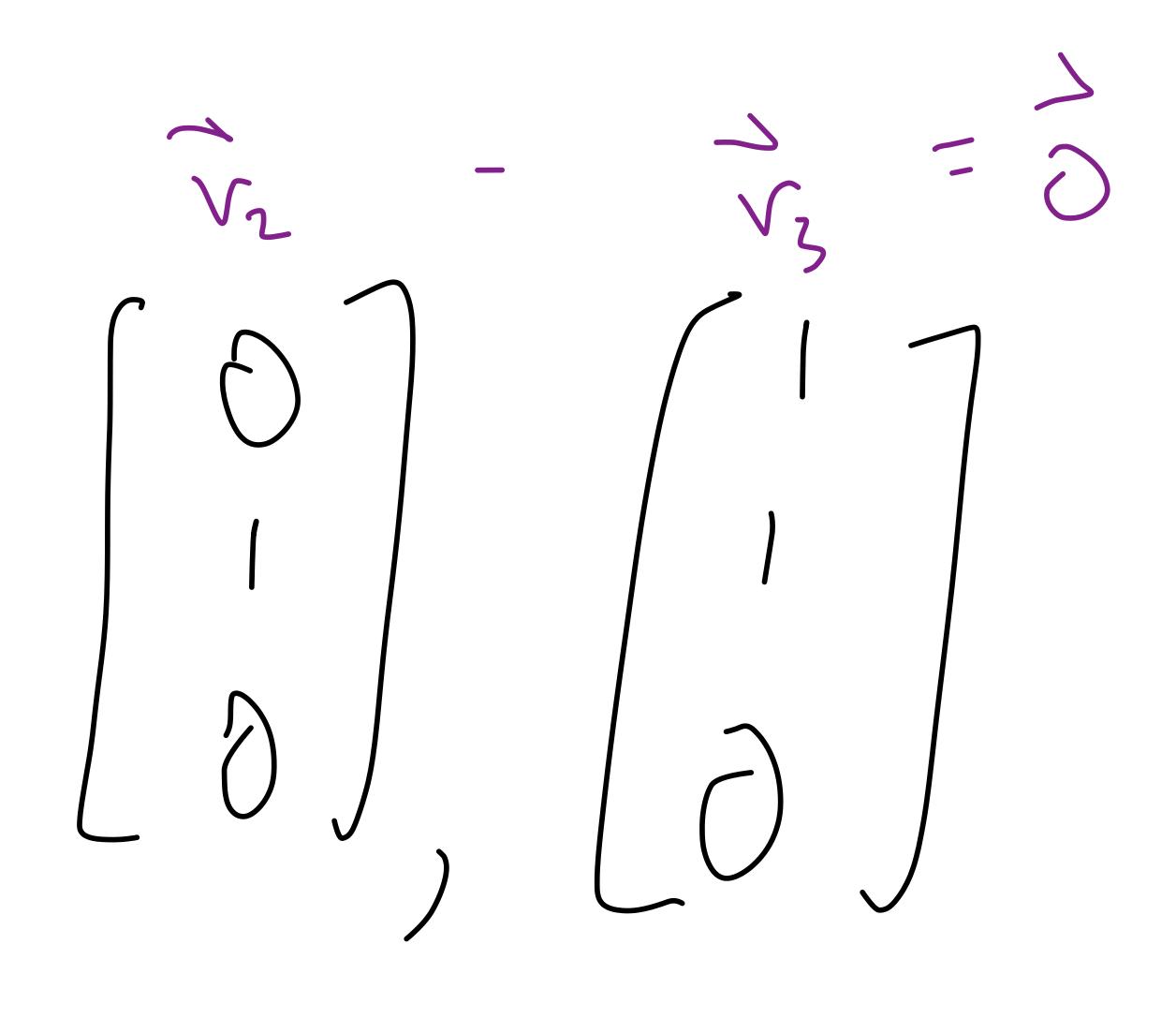
Linear Transformations Geometric Algorithms Lecture 8

CAS CS 132

Practice Problem

Find three vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in \mathbb{R}^3 such that » every pair of vectors (i.e., $\{v_1, v_2\}$, $\{v_1, v_3\}$, $\{\mathbf{v}_2, \mathbf{v}_3\}$) are linearly independent » $\{v_1, v_2, v_3\}$ is linearly dependent





Objectives

- 1. Finish our discussion of Linear Independence 2. Introduce Matrix Transformations
- 3. Define Linear Transformations
- 4. Start looking at the Geometry of Linear Transformations

Keywords

Transformations Domain, Codomain Image, Range Matrix Transformations Linear Transformations Additivity, Homogeneity Dilation, Contraction, Shearing, Rotation

Recap

Recap: Homogenous Linear Systems

Definition. A system of linear equations is called *homogeneous* if it can be expressed as

 $A\mathbf{x} = \mathbf{0}$

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is linearly independent if the vectors equation

 $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n = \mathbf{0}$

has exactly one solution (the trivial solution).

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is linearly independent if the vectors equation

- $x_1 v_1 + x_2 v_2 + \ldots + x_n v_n = 0$
- has exactly one solution (the trivial solution).

The columns of A are linearly independent if Ax = 0 has exactly one solution.

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is linearly dependent if the vectors equation

- $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2$
- has a nontrivial solution.

$$+\ldots+x_n\mathbf{v}_n=\mathbf{0}$$

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is linearly dependent if the vectors equation

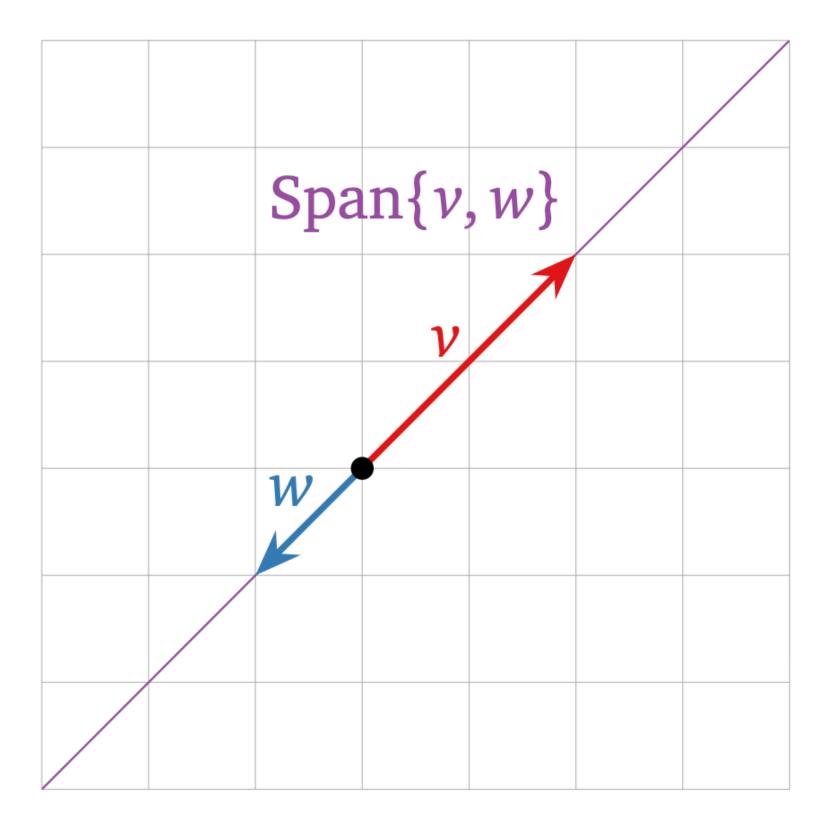
- $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2$
- has a nontrivial solution.

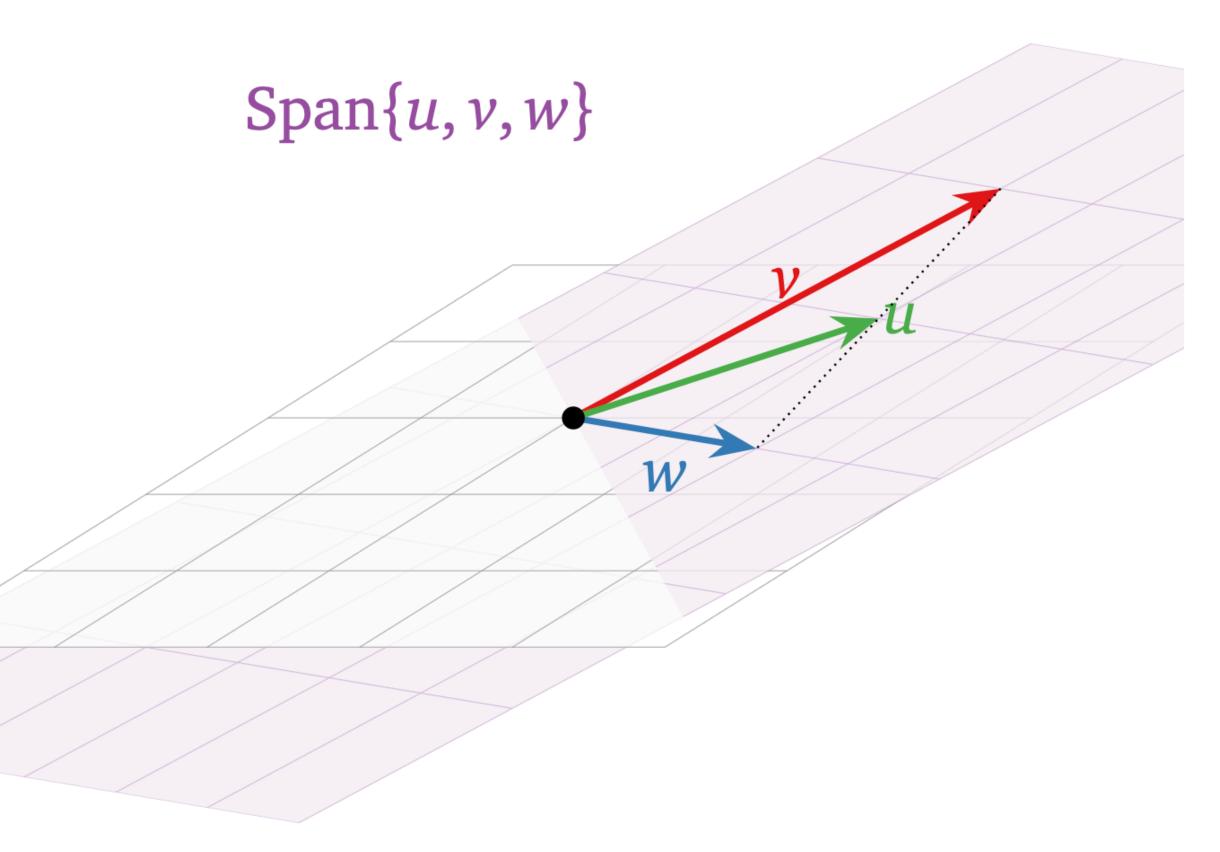
A set of vectors is linearly dependent if there is a nontrivial linear combination of the vectors which equals 0.

$$+\ldots+x_n\mathbf{v}_n=\mathbf{0}$$

Definition. A set of vectors $\{v_1, v_2, ..., v_n\}$ is **linearly dependent** if it is nonempty and one of its vectors can be written as a linear combination of the others (not including itself).

Linear Dependence (Pictorally)





Recall: Linear Dependence Relation

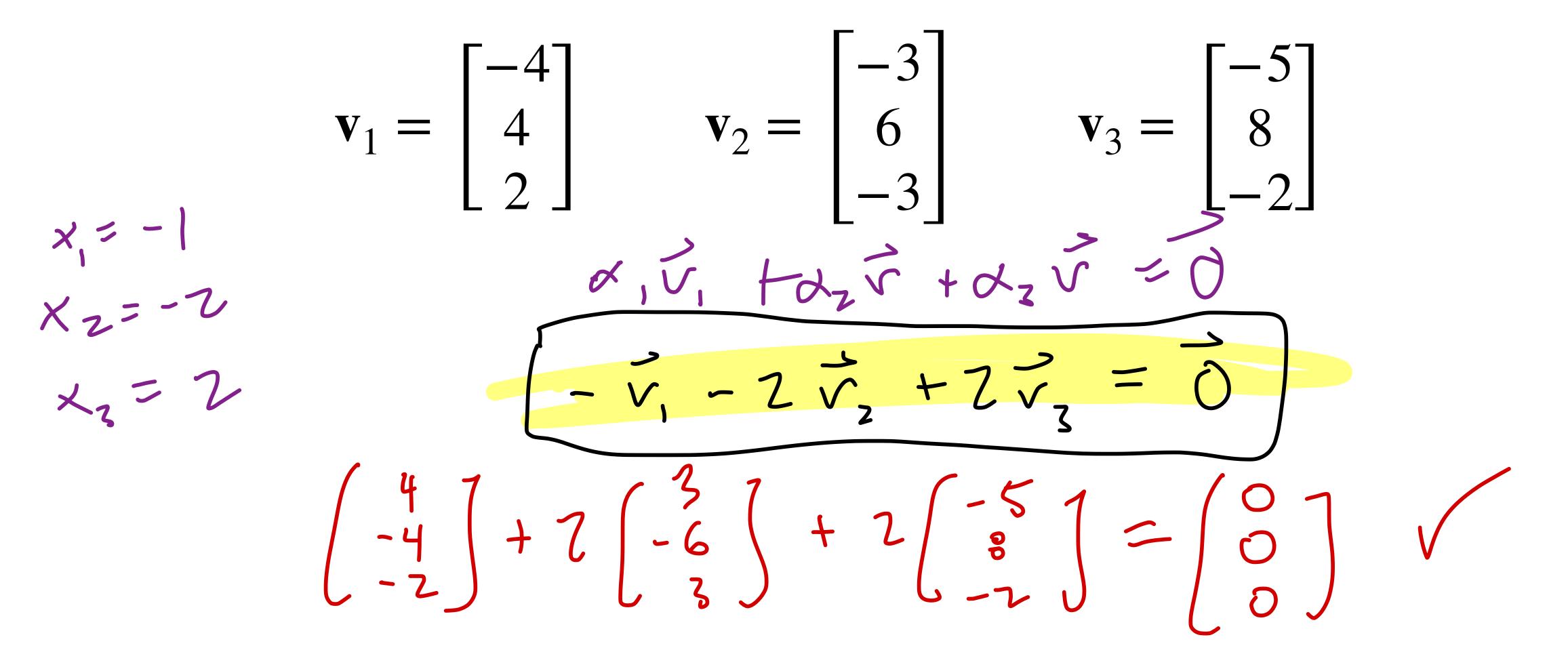
Definition. If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly dependent, then a *linear dependence relation* is an equation of the form

 $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 -$

A linear dependence relation witnesses the linear dependence.

$$+\ldots+\alpha_n\mathbf{v}_n=\mathbf{0}$$

Example Write down the linear dependence relation for the following vectors.



P, EF, + 3Pz 1 P, EP, /40-20 の J ×= - ½×3

メュニーナろ Kz is free

X2 = - 2

×3= 1

Simple Cases

{} (a.k.a. Ø) is linearly independent

{} (a.k.a. Ø) is linearly independent We stretch the definition a bit: there is no nontrivial linear combination of the vectors equaling 0. There are none at all...

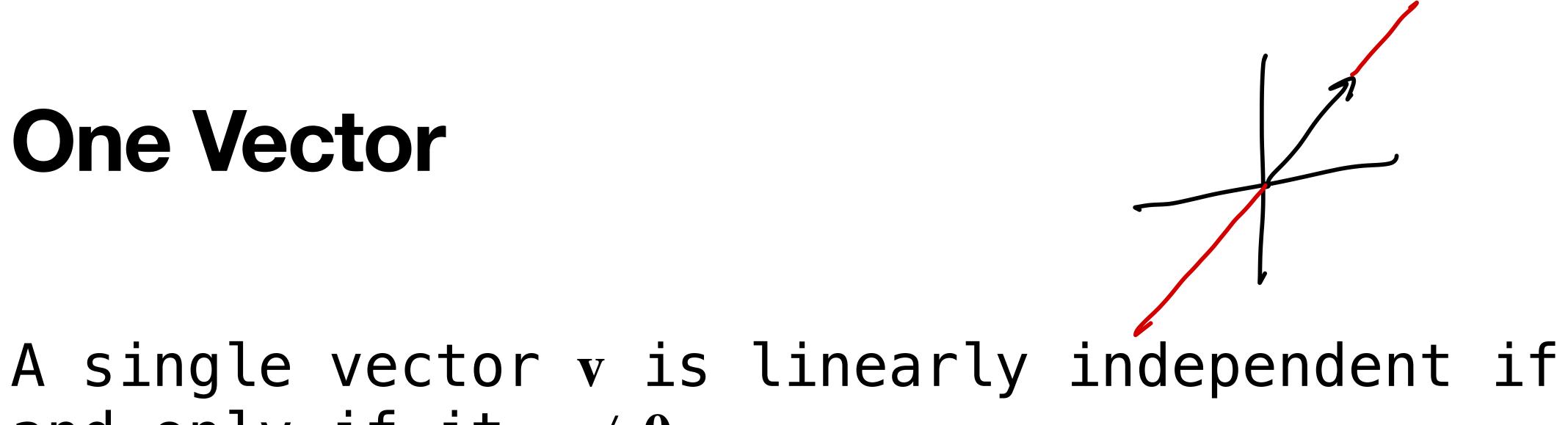
 $\{\}$ (a.k.a. \emptyset) is linearly independent We stretch the definition a bit: there is no nontrivial linear combination of the vectors

equaling 0. There are none at all...

0 is in every span, even the empty span.

One Vector

and only if it $v \neq 0$.



Note that $x_1 \mathbf{0} = \mathbf{0}$ has many nontrivial solutions.

The Zero Vector and Linear Dependence

If a set of vectors V is linearly dependent.

If a set of vectors V contains the 0, then it

The Zero Vector and Linear Dependence

If a set of vectors V contains the 0, then it is linearly dependent.

$(1)\mathbf{0} + \mathbf{0}\mathbf{v}_2 + \mathbf{0}\mathbf{v}_2 + \dots + \mathbf{0}\mathbf{v}_n = \mathbf{0}$

There is a very simple nontrivial solution.

Two Vectors

Definition. Two vectors are colinear if they are scalar multiples of each other.

e.g., $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$ and $\begin{bmatrix} 1.5\\1.5\\3 \end{bmatrix}$ or $\begin{bmatrix} 2\\2 \end{bmatrix}$ and $\begin{bmatrix} -1\\-1 \end{bmatrix}$ \longrightarrow

Two vectors are linearly dependent if and only if they are colinear.

$\operatorname{Span}\{v,w\}$

<u>image source</u>

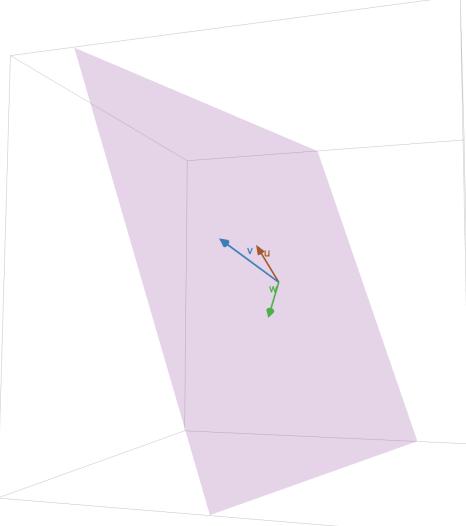
Three Vectors

if their span is a plane.

if they are colinear or coplanar. 01

Definition. A collection of vectors is **coplanar**

Three vectors are linearly dependent if an only



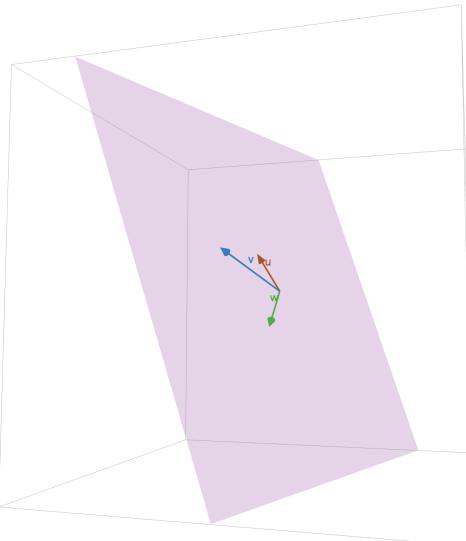
Three Vectors

if their span is a plane.

Three vectors are linearly dependent if an only if they are colinear or coplanar.

This can be reasoning can be extended to more vectors, but we run out of terminology

Definition. A collection of vectors is **coplanar**



Yet Another Interpretation

Increasing Span Criterion

If $v_1, v_2, ..., v_n$ are linearly independent then we cannot write one of it's vectors as a linear combination of the others.

But we get something stronger.

Increasing Span Criterion

Theorem. $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent if and only if for all $i \le n$,

 $\mathbf{v}_i \notin \mathsf{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{i-1}\}$

Increasing Span Criterion

Theorem. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent if and only if for all $i \leq n$

$V_i \notin span\{V_1, V_2, ..., V_{i-1}\}$

As we add vectors, the span gets larger.

Characterization of Linear Dependence

Theorem. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly dependent if and only there is an $i \leq n$

 $v_i \in span\{v_1, v_2, ..., v_{i-1}\}$

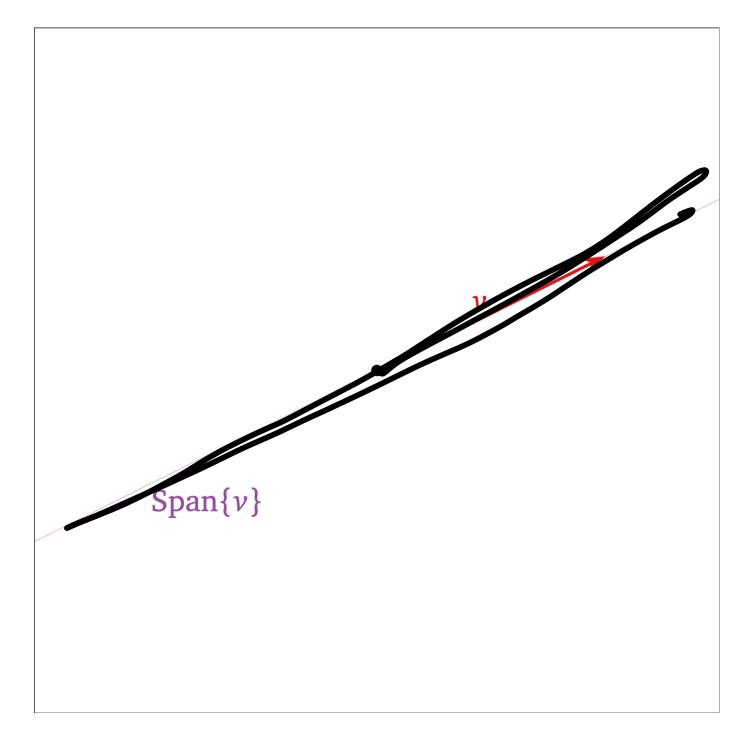
Characterization of Linear Dependence

Theorem. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly dependent if and only there is an $i \leq n$

As we add vectors, we'll eventually find one in the span of the preceding ones.

$v_i \in span\{v_1, v_2, ..., v_{i-1}\}$

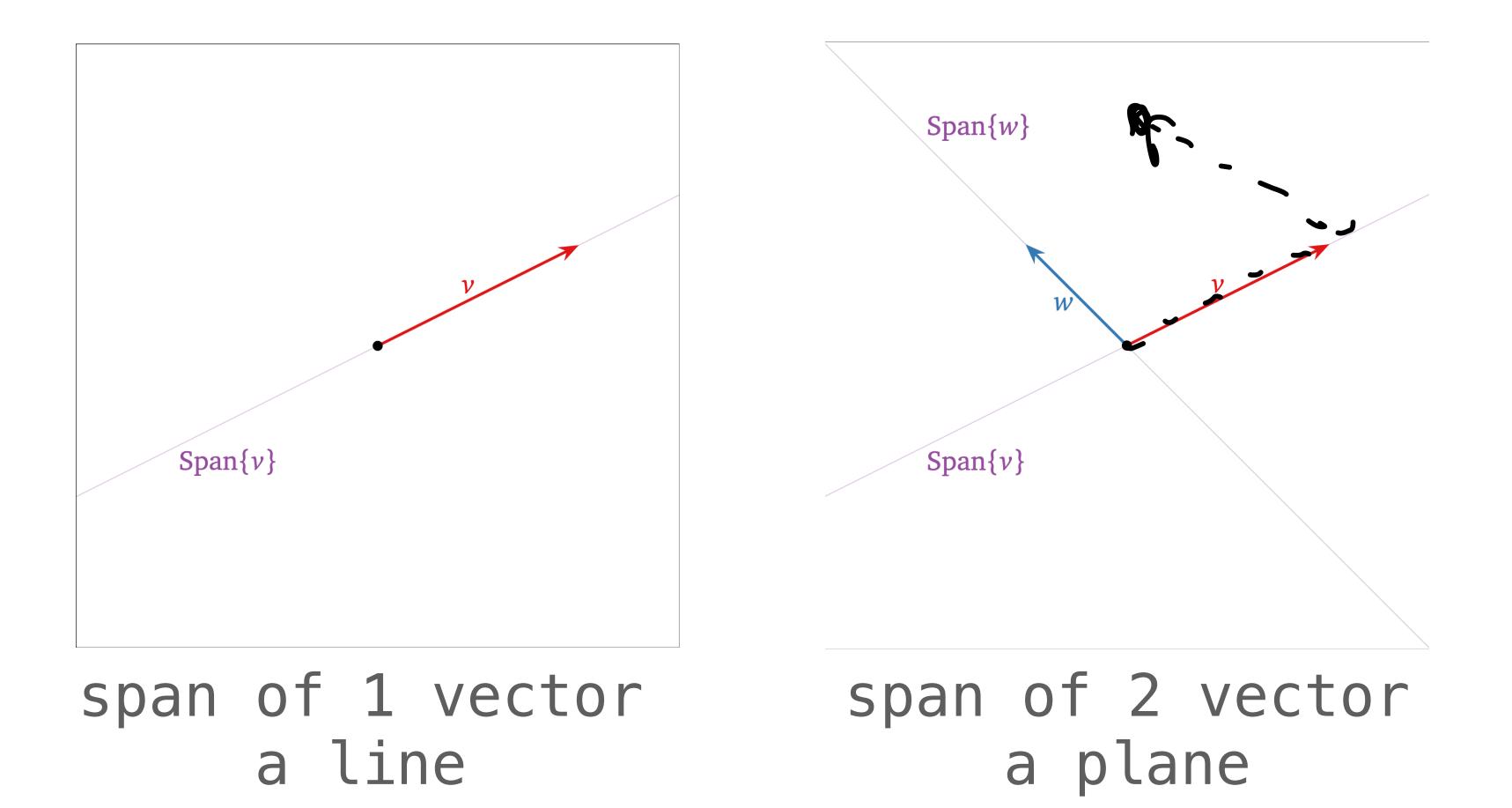
As a Picture



span of 1 vector a line

<u>image source</u>

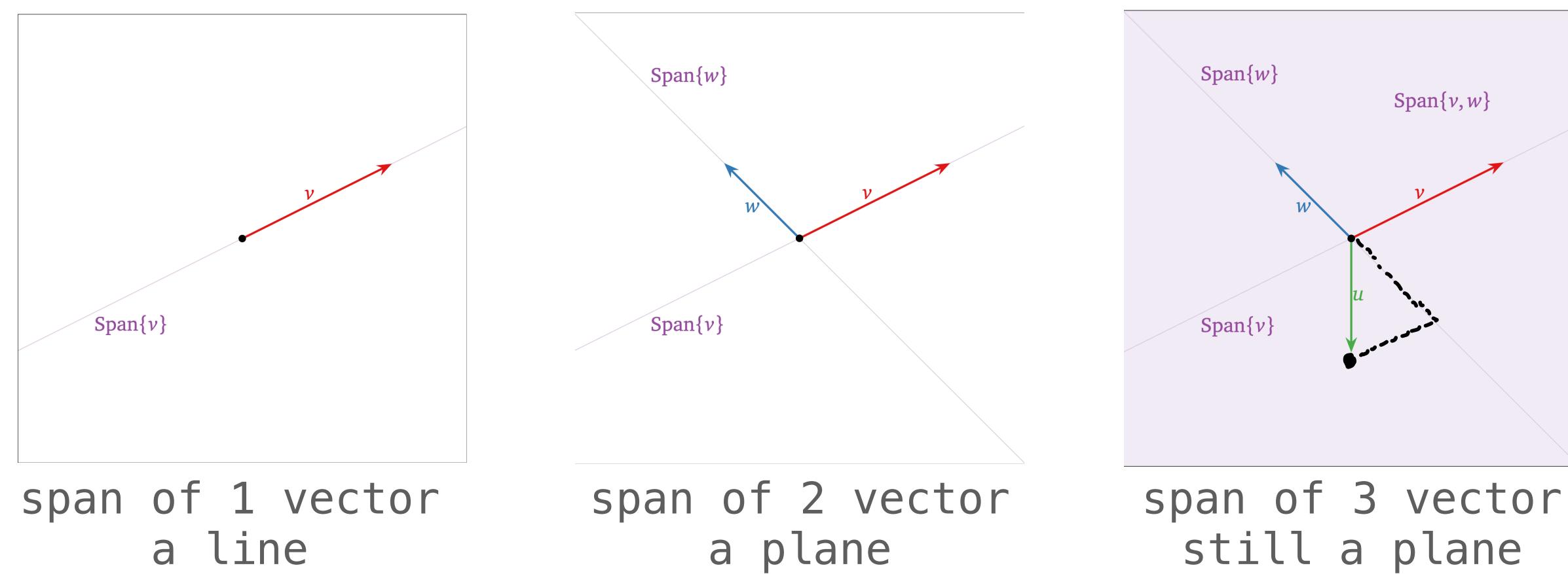
As a Picture





<u>image source</u>

As a Picture



<u>image source</u>

Increasing Span Criterion For linearly independent sets, our span keeps getting "bigger"

For linearly independent sets, our span keeps getting "bigger"

span{} is a point {0}

For linearly independent sets, our span keeps getting "bigger"

span{} is a point {0}

 $span\{v_1\}$ is a line

For linearly independent sets, our span keeps getting "bigger"

 $span{} is a point {0}$ $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane

For linearly independent sets, our span keeps getting "bigger"

 $span{} is a point {0}$

 $span\{v_1\}$ is a line

- $span\{v_1, v_2\}$ is a plane
- $span\{v_1, v_2, v_3\}$ is a 3d-hyperplane

For linearly independent sets, our span keeps getting "bigger"

 $span{} is a point {0}$ $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane $span\{v_1, v_2, v_3\}$ is a 3d-hyperplane $\texttt{span}\{\textbf{v}_1, \textbf{v}_2, \textbf{v}_3, \textbf{v}_4\}$ is a 4d-hyperlane

For linearly independent sets, our span keeps getting "bigger"

 $span{} is a point {0}$ $span\{v_1\}$ is a line $span\{v_1, v_2\}$ is a plane $span\{v_1, v_2, v_3\}$ is a 3d-hyperplane $span\{v_1, v_2, v_3, v_4\}$ is a 4d-hyperlane

For linearly dependent se don't get get "bigger".

For linearly dependent se don't get get "bigger".

span{} is a point {0}

For linearly dependent se don't get get "bigger".

span{} is a point {0}

 $\texttt{span}\{\boldsymbol{v}_1\}$ is a line

For linearly dependent se don't get get "bigger".

span{} is a point {0}

 $\texttt{span}\{\textbf{v}_1\}$ is a line

 $\texttt{span}\{\textbf{v}_1,\textbf{v}_2\}$ is a plane

don't get get "bigger".

span{} is a point {0}

 $span\{v_1\}$ is a line

 $span\{v_1, v_2\}$ is a plane

 $span\{v_1, v_2, v_3\}$ is still a plane

don't get get "bigger".

span{} is a point {0}

 $span\{v_1\}$ is a line

 $span\{v_1, v_2\}$ is a plane

 $span\{v_1, v_2, v_3\}$ is still a plane

Worth Noting...

Corollary. If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$ are linearly dependent, then for any vector \mathbf{v}_{k+1} , the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k, \mathbf{v}_{k+1}$ are linearly dependent.

If we add a vector to a linearly dependent set, it remains linearly dependent

Question

Are the following vectors linearly independent? $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 2023 \\ 0 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 0.1 \\ 7 \end{bmatrix}$

Answer: No

Any three vectors can at most span a plane. plane (\mathbb{R}^2).

$\mathbf{v}_1 = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$ $\mathbf{v}_2 = \begin{vmatrix} 2023 \\ 0 \end{vmatrix}$ $\mathbf{v}_3 = \begin{vmatrix} 0.1 \\ 7 \end{vmatrix}$

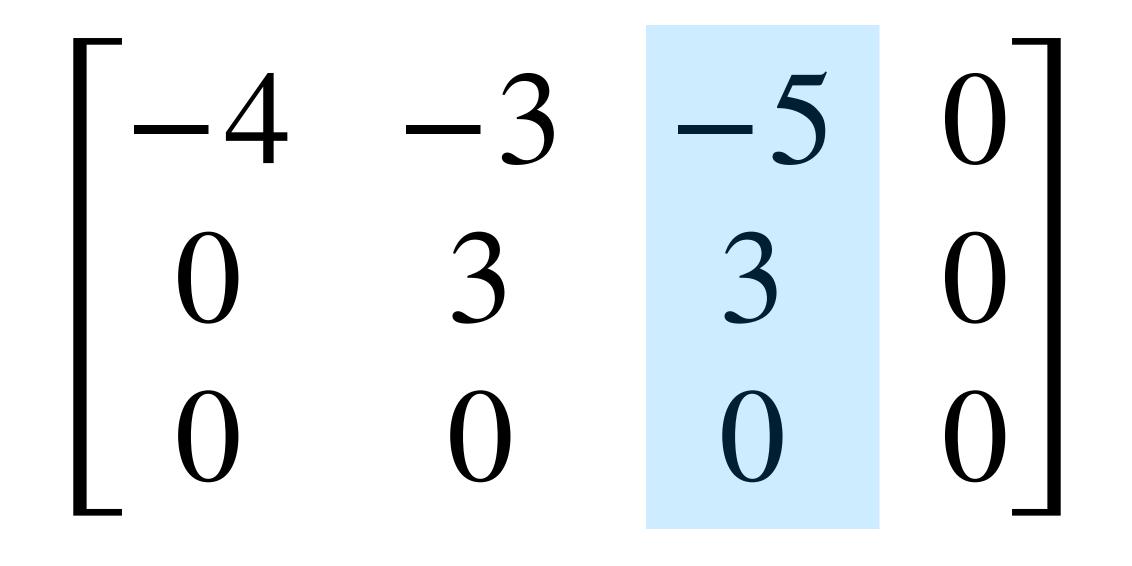
The first two are not colinear, so they span a

Linear Independence and Free Variables

Linear Dependence Relations (Again)

came across a system which a free variable

When finding a linear dependence relation, we



we can take x_3 to be free

independent if and only if A has a pivot in every <u>column</u>.

Theorem. The columns of a matrix A are linearly

independent if and only if A has a pivot in every <u>column</u>.

be the ones whose columns don't have pivots.

Theorem. The columns of a matrix A are linearly

Remember that we choose our free variables to

independent if and only if A has a pivot in every <u>column</u>.

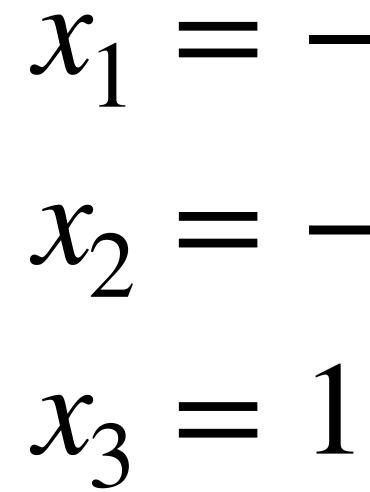
be the ones whose columns don't have pivots.

Theorem. The columns of a matrix A are linearly

- Remember that we choose our free variables to
 - Free variables allow for infinitely many (nontrivial) solution.

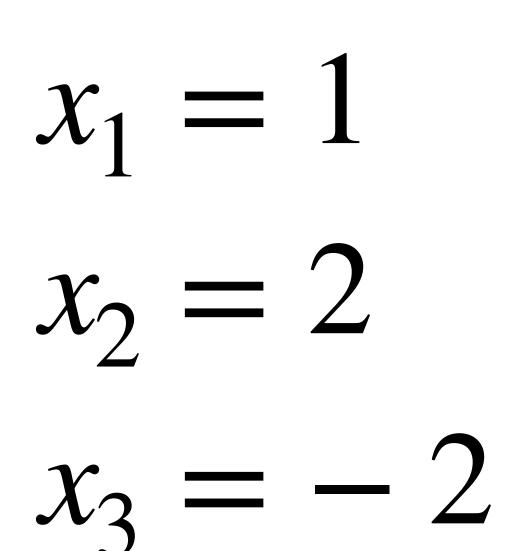
 $x_2 = -x_3$

 $x_1 = -(0.5)x_3$ x_3 is free



$x_1 = -0.5$ $x_2 = -1$

 $x_1 = 0.5$ $x_2 = 1$ $x_3 = -1$



 $x_1 = 1$ $x_2 = 2$ $x_3 = -2$

If a homogenous linear system has a unique solution then it must be the trivial solution.

Question. Is the set of vectors $\{a_1, a_2, ..., a_n\}$ linearly independent?

Question. Is the set of vectors $\{a_1, a_2, \dots, a_n\}$ linearly independent?

Solution. Check if $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{0}$ has a unique solution.

Question. Is the set of vectors $\{a_1, a_2, \dots, a_n\}$ linearly independent?

solution.

Solution. Check if $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]\mathbf{x} = \mathbf{0}$ has a unique

Question. Is the set of vectors $\{a_1, a_2, \dots, a_n\}$ linearly independent? Solution. Check if the general form solution of $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \ \mathbf{0}]$ has any free variables.

Question. Is the set of vectors $\{a_1, a_2, \dots, a_n\}$ linearly independent?

Solution. Reduce $[a_1 \ a_2 \ \dots \ a_n]$ to echelon form and check if has a pivot position in every column.

$\mathbf{v}_1 = \begin{bmatrix} -4\\4\\2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -3\\6\\-3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -5\\8\\-2 \end{bmatrix}$ The reduced echelon form of $[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$ is $\begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{array}{c} \text{column} \\ \text{without a} \\ \text{reduct} \end{array}$

pivot

Linear Independence and Full Span

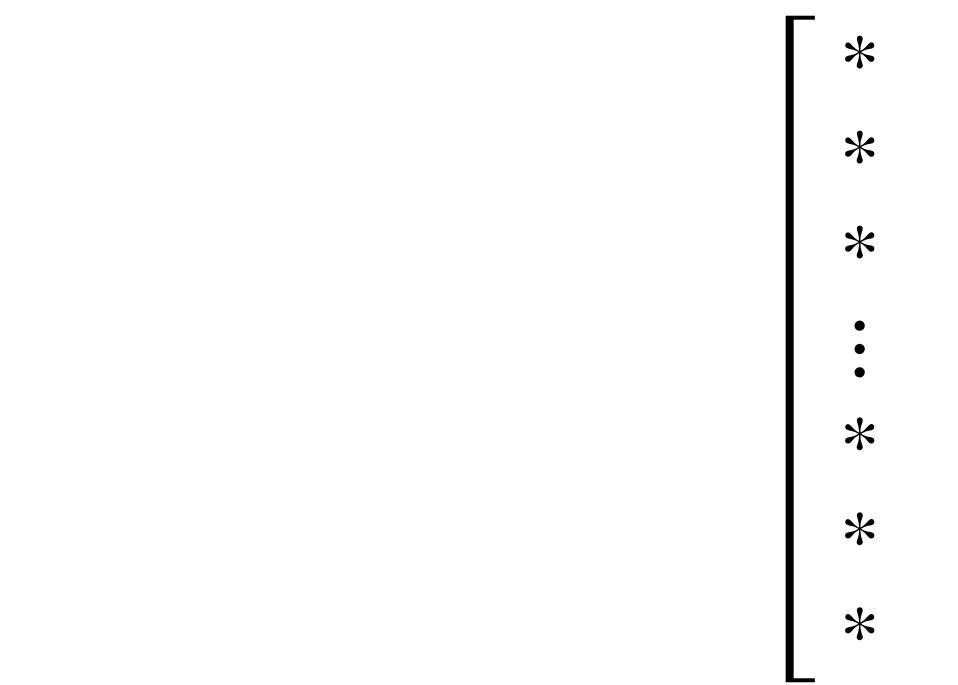
there is a pivot in every <u>row</u>.

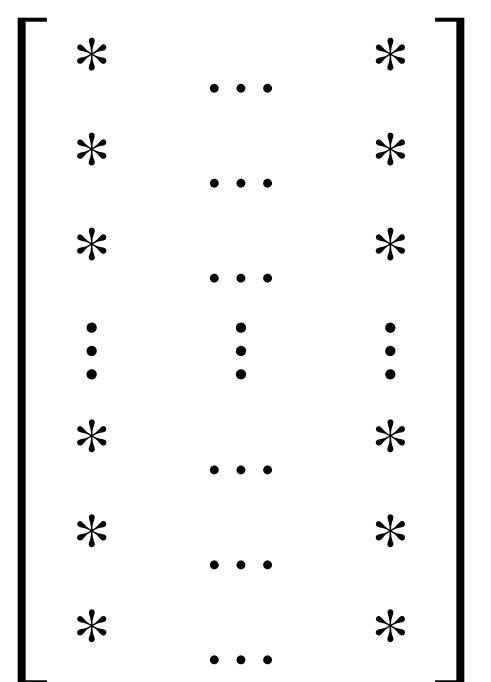
if there is a pivot in every <u>column</u>.

- The columns of a $(m \times n)$ matrix span all of \mathbb{R}^n if
- The columns of a matrix are linearly independent

Tall Matrices

If m > n then the columns cannot span \mathbb{R}^m





Tall Matrices

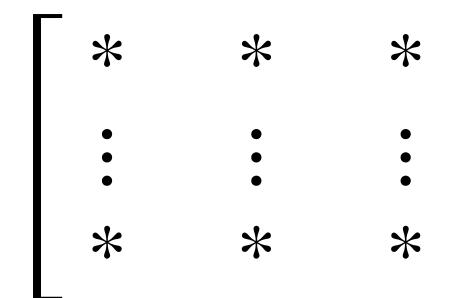
If m > n then the columns cannot span \mathbb{R}^m

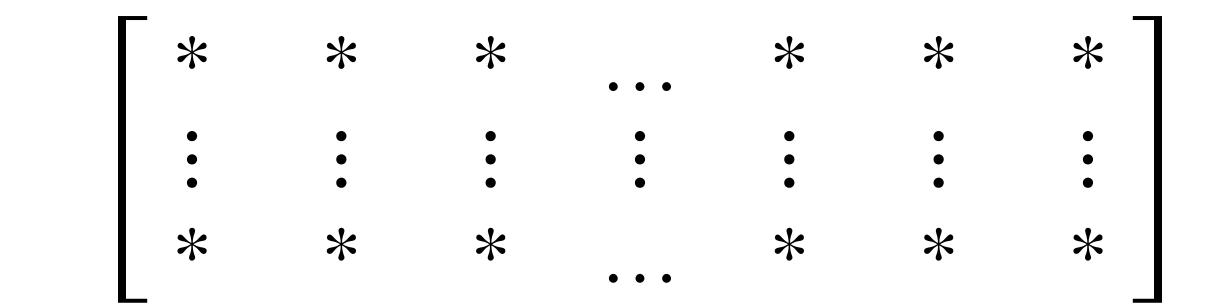
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$

This matrix has at most 3 pivots, but 4 rows.

Wide Matrices

If m < n then the columns cannot be linearly independent





Wide Matrices

If m < n then the columns cannot be linearly independent

 1
 2
 3
 4

 5
 6
 7
 8

 9
 10
 11
 12

This matrix as at most 3 pivots, but 4 columns.

A Warning

there is a pivot in every <u>row</u>.

if there is a pivot in every <u>column</u>.

- The columns of a $(m \times n)$ matrix span all of \mathbb{R}^n if
- The columns of a matrix are linearly independent

Don't confuse these!

back to it...

Matrix Transformations

Recall: Spans (with Matrices)

set of all possible linear combinations of them.

Definition. The span of a set of vectors is the

$span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \mathbf{v} : \mathbf{v} \in \mathbb{R}^n \}$

Recall: Spans (with Matrices)

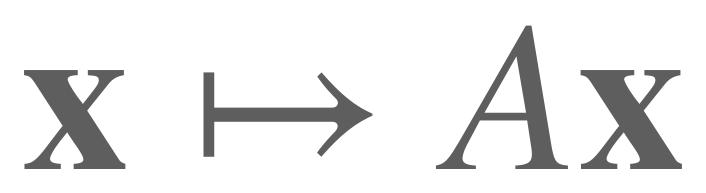
set of all possible linear combinations of them.

Definition. The span of a set of vectors is the

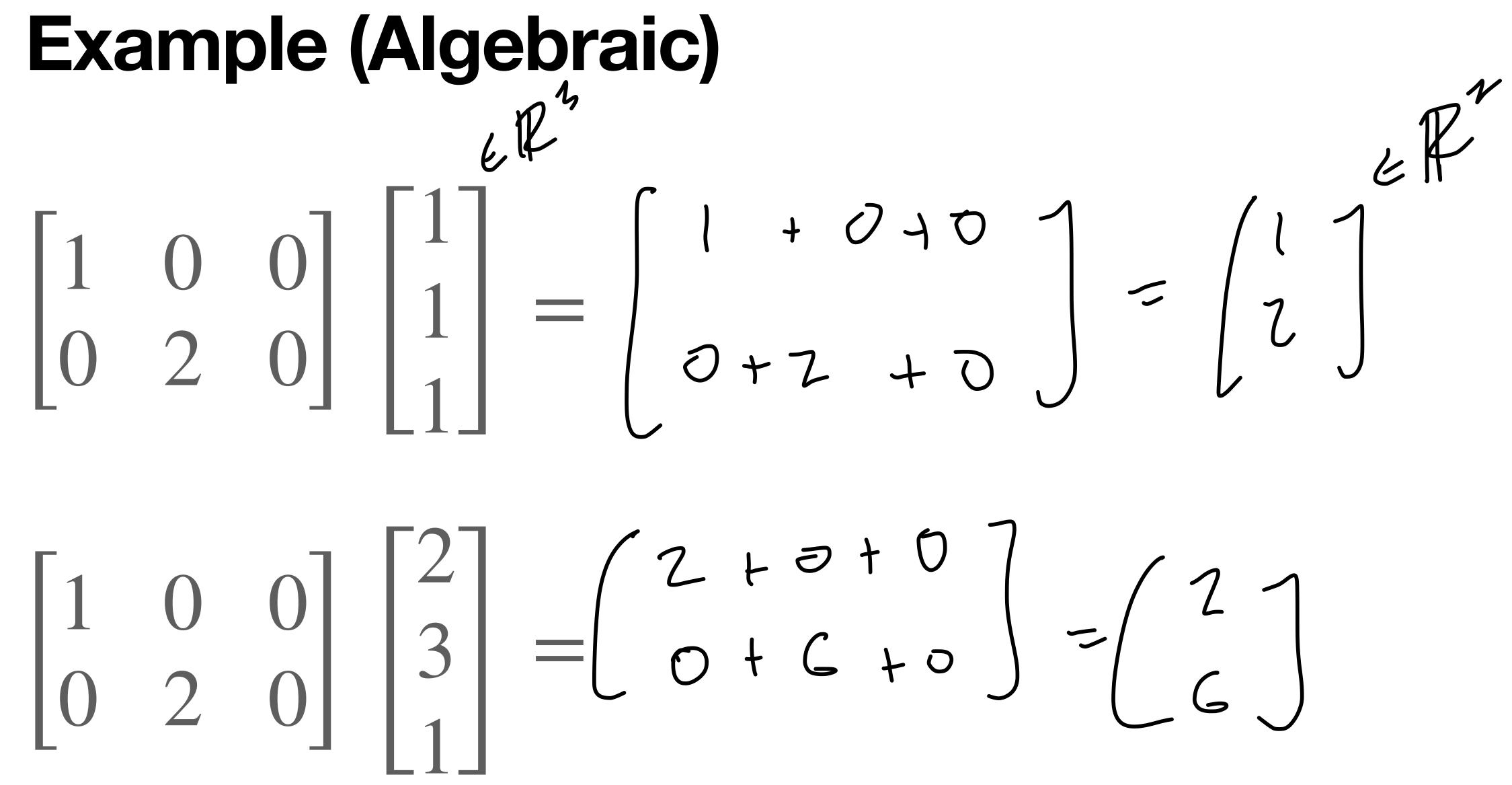
- $span\{a_1, a_2, ..., a_n\} = \{ [a_1 \ a_2 \ ... \ a_n] \ v : v \in \mathbb{R}^n \}$
 - The span of the columns of a matrix A is the set of of vectors resulting from multiplying A by any vector.

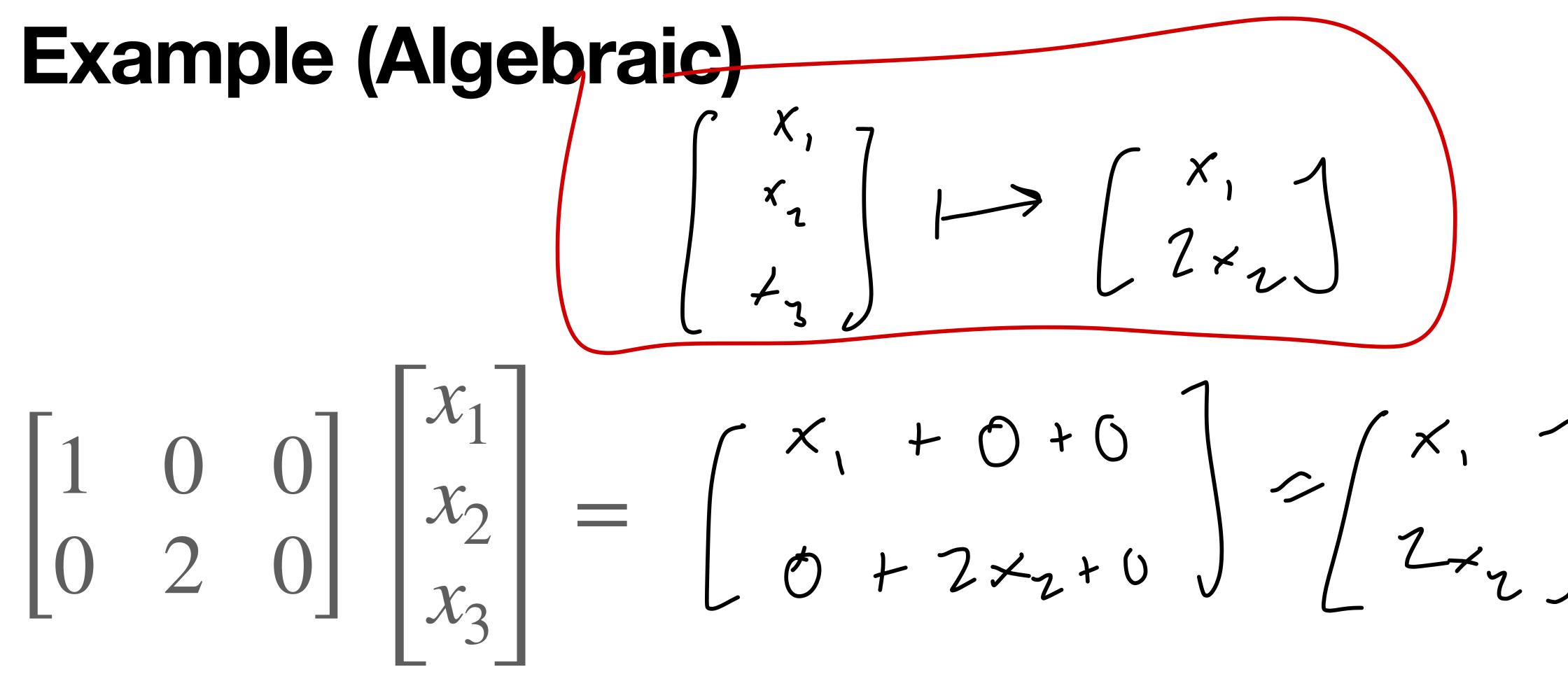
Matrices as Transformations

Matrices allow us to transform vectors. The transformed vector lies in the span of its columns.

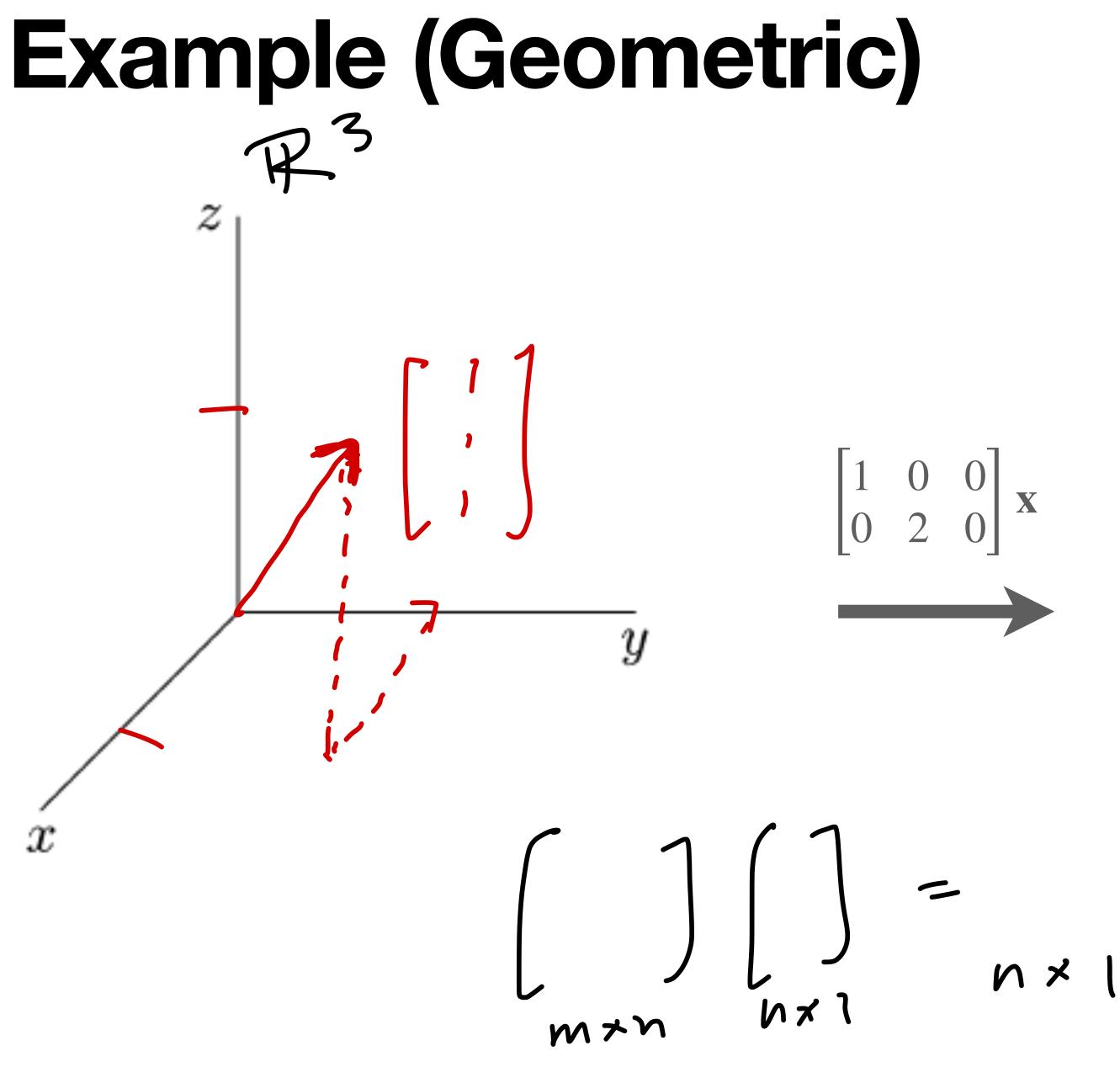


map a vector x to the vector Av

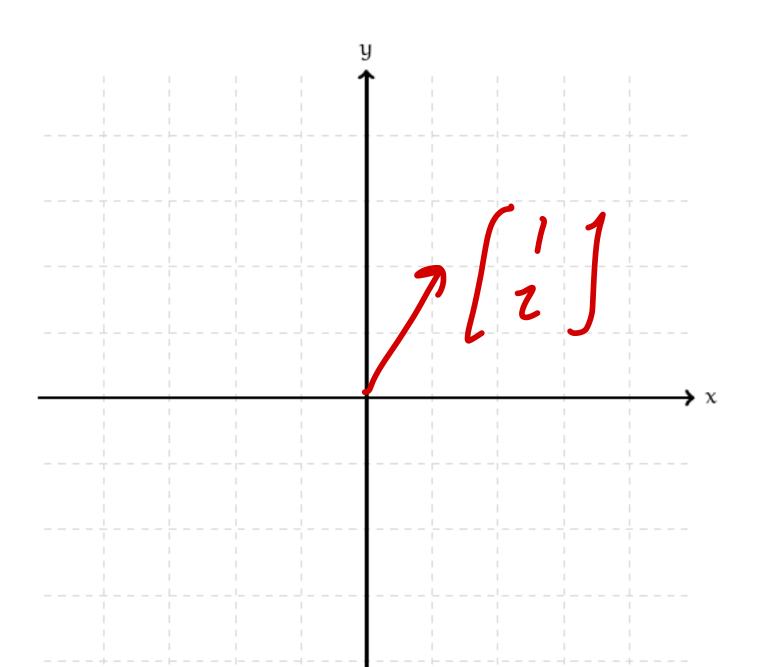




 $\left|\begin{array}{c}x_{2}\\ ,\end{array}\right| \xrightarrow{} \left|\begin{array}{c}x_{2}\\ ,\end{array}\right|$



 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}$

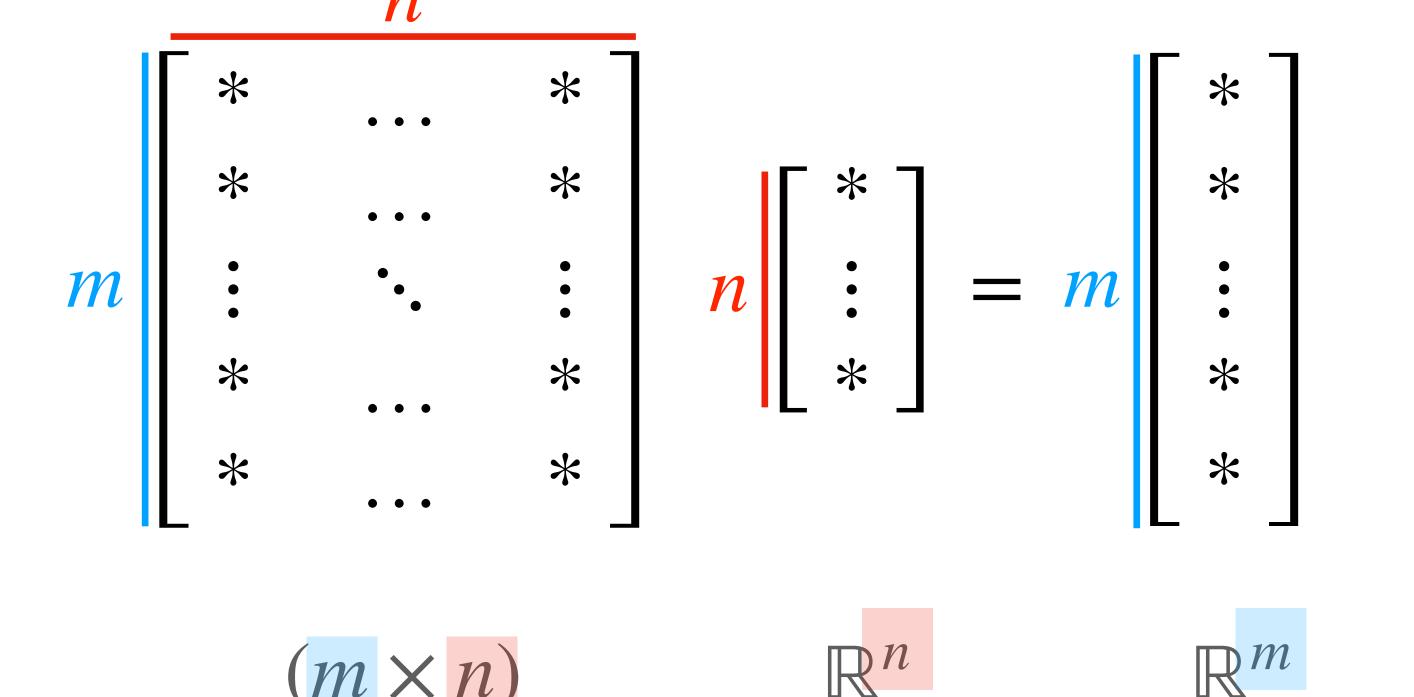


!!Important!!

The vector may be a different size after translation.

Recall: Matrix-Vector Multiplication and Dimension

matrix-vector multiplication only works if the number of columns of the matrix matches the dimension of the vector



 $(m \times n)$

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

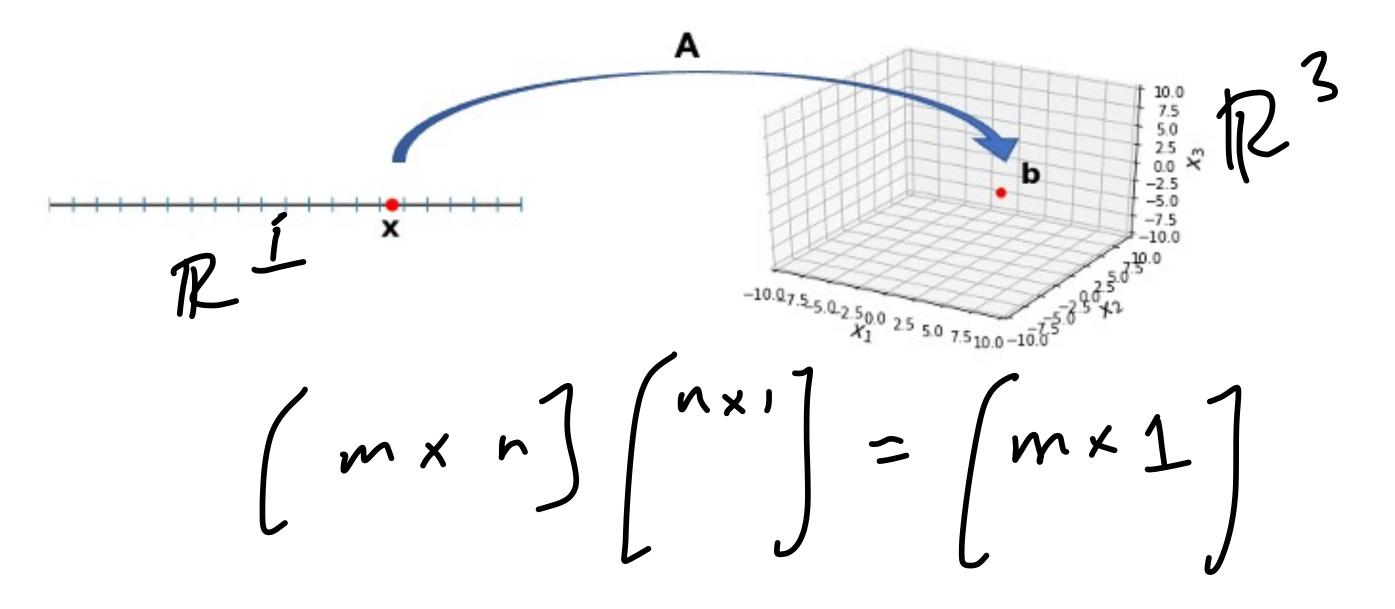
How does this relate back to matrix equations?

A New Interpretation of the Matrix Equation

- is there a vector which A transforms into b?
- find a vector which A
 transforms into b

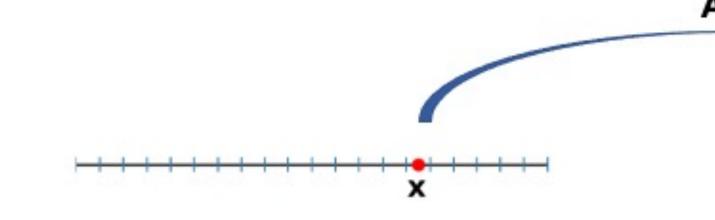
Question (Conceptual)

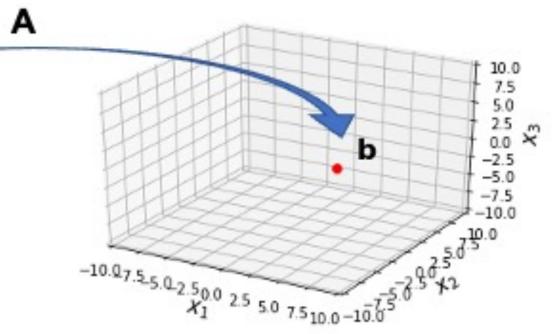
the matrix?

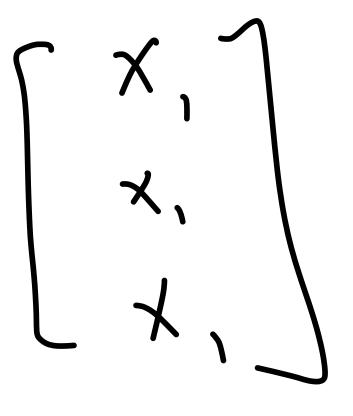


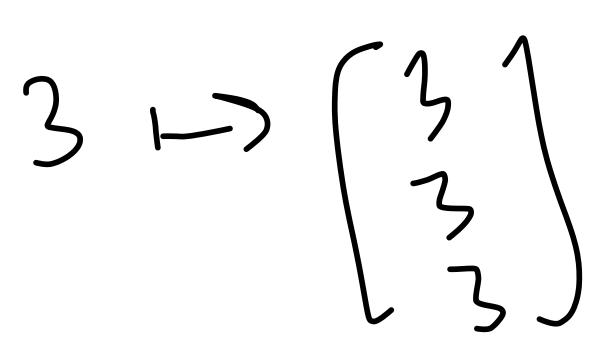
Suppose a matrix transforms a vector according to the following picture. What is the size of

Answer: 3×1



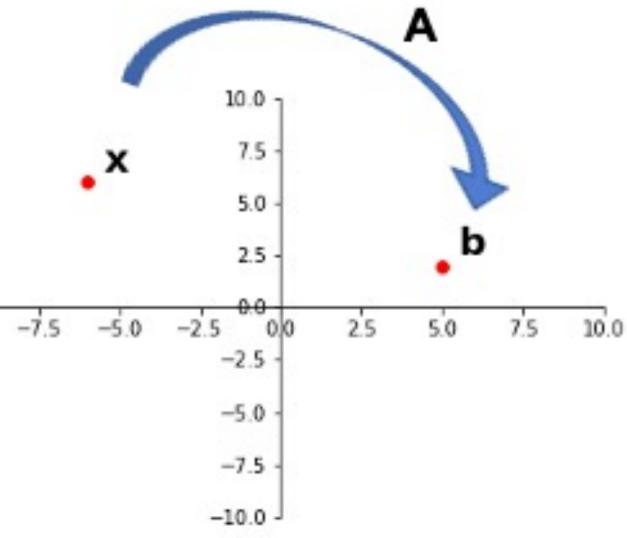






$\mathbb{R}^n \to \mathbb{R}^n$

Mapping between the same space can be viewed as a way of moving around points.



-10.0

Transformations

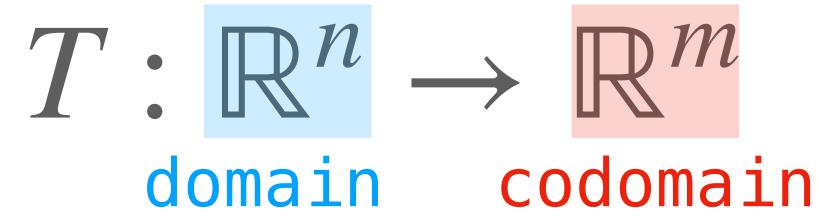
vector $T(\mathbf{v})$ in \mathbb{R}^m .

Definition. A *transformation* T from \mathbb{R}^n to \mathbb{R}^m is a function which maps every vector v in \mathbb{R}^n to a

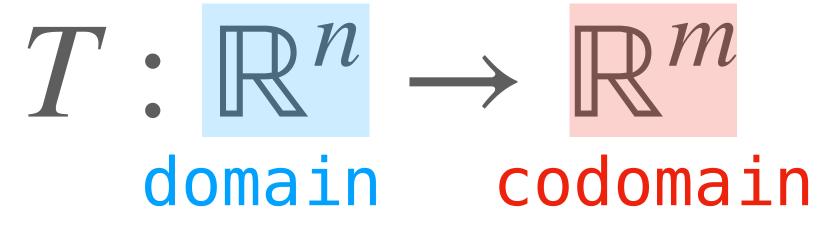
Definition. A *transformation* T from \mathbb{R}^n to \mathbb{R}^m is a function which maps every vector \mathbf{v} in \mathbb{R}^n to a vector $T(\mathbf{v})$ in \mathbb{R}^m .

 $T: \mathbb{R}^n \to \mathbb{R}^m$

Definition. A *transformation* T from \mathbb{R}^n to \mathbb{R}^m is a function which maps every vector v in \mathbb{R}^n to a vector $T(\mathbf{v})$ in \mathbb{R}^m .



Definition. A *transformation* T from \mathbb{R}^n to \mathbb{R}^m is a function which maps every vector v in \mathbb{R}^n to a vector $T(\mathbf{v})$ in \mathbb{R}^m .



It's just a function, like in calculus.

Definition. For a vector \mathbf{v} , the *image* of \mathbf{v} under the transformation T is the vector $T(\mathbf{v})$.

the transformation T is the vector $T(\mathbf{v})$.

Definition. The range of a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of all possible images under T.

- Definition. For a vector v, the *image* of v under

the transformation T is the vector $T(\mathbf{v})$.

Definition. The range of a transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is the set of all possible images under T.

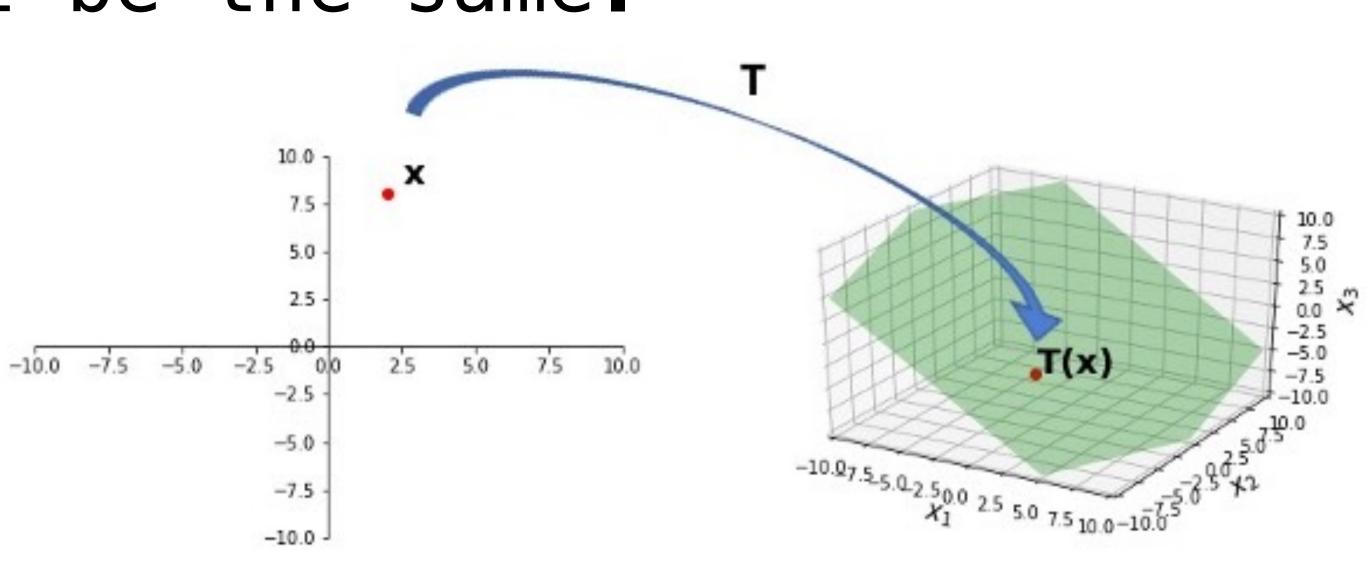
- Definition. For a vector v, the *image* of v under

 - $ran(T) = \{T(\mathbf{v}) : v \in \mathbb{R}^n\}$

image of v under $T \equiv \text{output of } T$ applied to v range of $T \equiv all possible output of T$

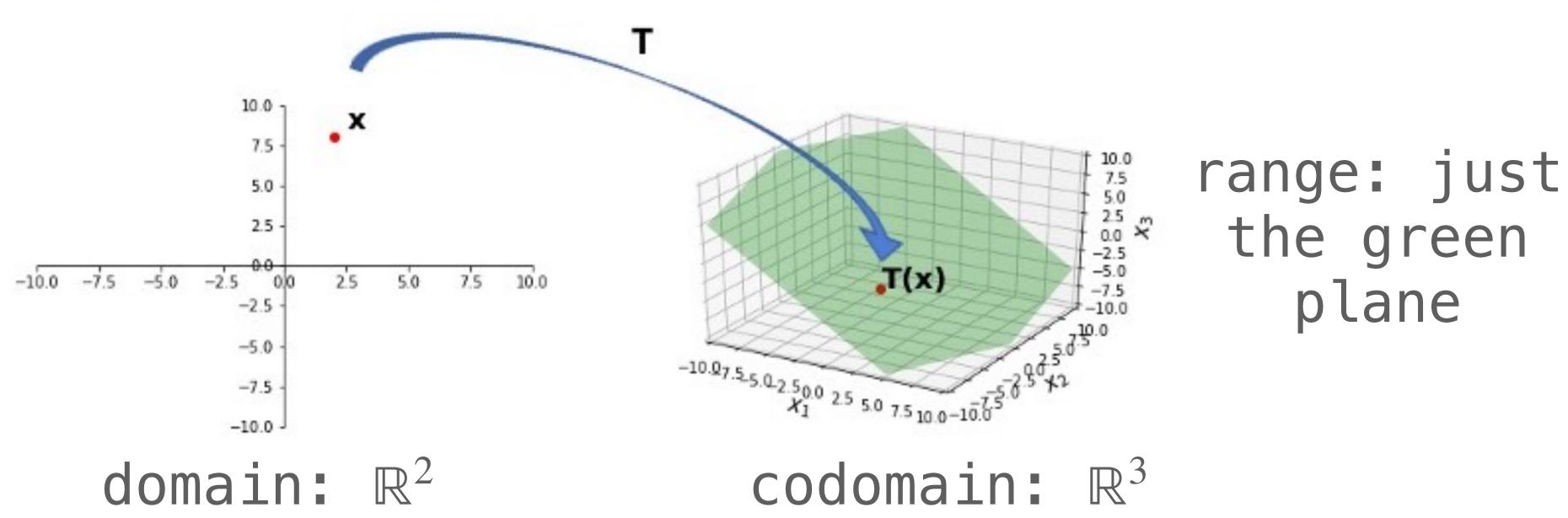
Codomain and Range

The codomain and range of a transformation may or may not be the same.



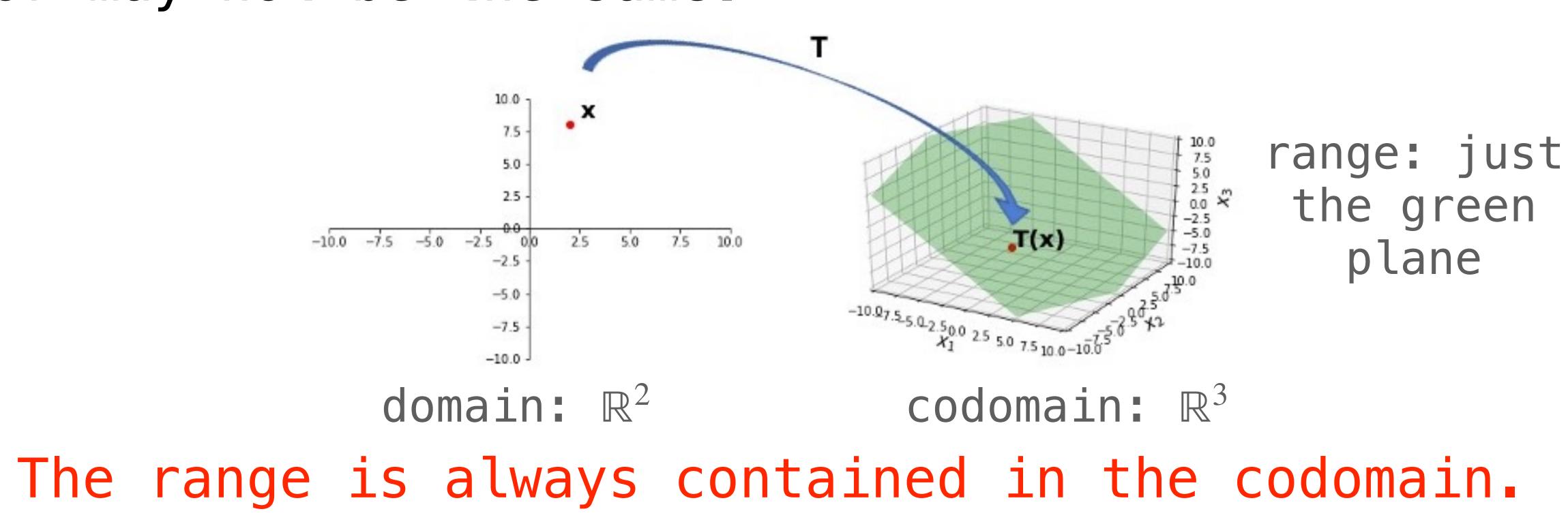
Codomain and Range

The codomain and range of a transformation may or may not be the same.



Codomain and Range

The codomain and range of a transformation may or may not be the same.



Matrix Transformations

The transformation of $a (m \times n)$ matrix A is the function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

$T(\mathbf{v}) = A\mathbf{v}$

The transformation of $a (m \times n)$ matrix A is the function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

given v, return A multiplied by v

$T(\mathbf{v}) = A\mathbf{v}$

The transformation of a $(m \times n)$ matrix A is the function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

given v, return A multiplied by v **e.g.** $T(\mathbf{v}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{v}$ ▲ _

$T(\mathbf{v}) = A\mathbf{v}$

The span of the columns of a matrix A is the set of all possible *images* under A.

The span of the columns of a matrix A is the set of all possible *images* under A.

 $span\{a_1, a_2, ..., a_n\} = ran([a_1 \ a_2 \ ... \ a_n])$

The span of the columns of a matrix A is the set of all possible *images* under A.

 $span\{a_1, a_2, ..., a_n\} = ran([a_1 \ a_2 \ ... \ a_n])$ The transformation of a vector v under the matrix A always lies in the span of its columns.

Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

Linear Transformations

Recall: Algebraic Properties

Matrix-vector multiplication satisfies the following two properties:

 $2 \quad A(c\mathbf{v}) = c(A\mathbf{v})$

1. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$ (additivity) (homogeneity)

$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{pmatrix} = 2 \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{pmatrix}$

Example $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix} =$

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} =$

 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$

Example

$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{pmatrix} =$

Linear Transformations

Definition. A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is *linear* if it satisfies the following two properties.

1. T(u + v) = T(u) + T(v)2. $T(c\mathbf{v}) = cT(\mathbf{v})$

(additivity) (homogeneity)

Linear Transformations

Definition. A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear if it satisfies the following two properties.

1. T(u + v) = T(u) + T(v)2. $T(c\mathbf{v}) = cT(\mathbf{v})$

Matrix transformations are linear transformations.

(additivity) (homogeneity)

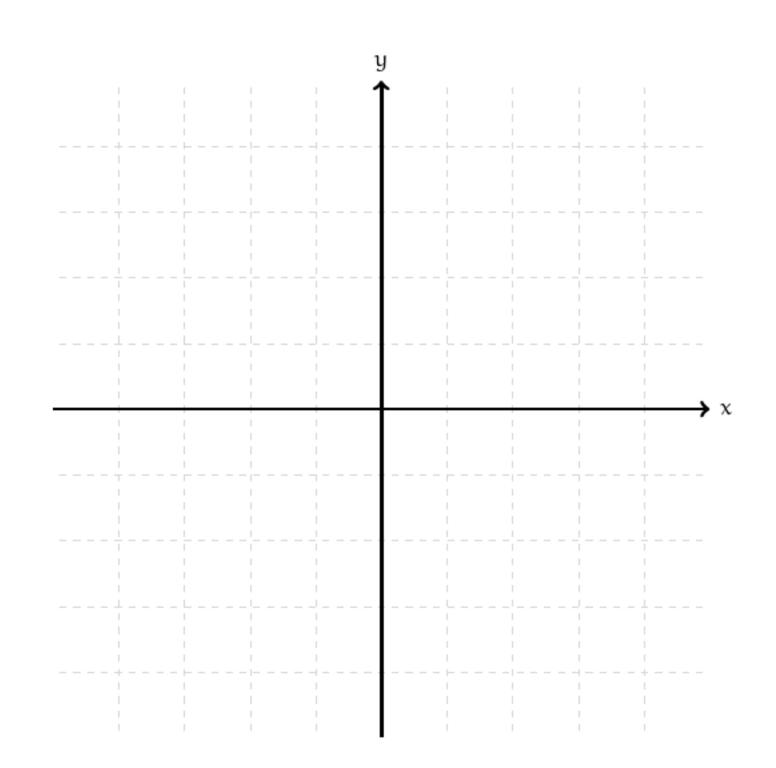
Example: Identity

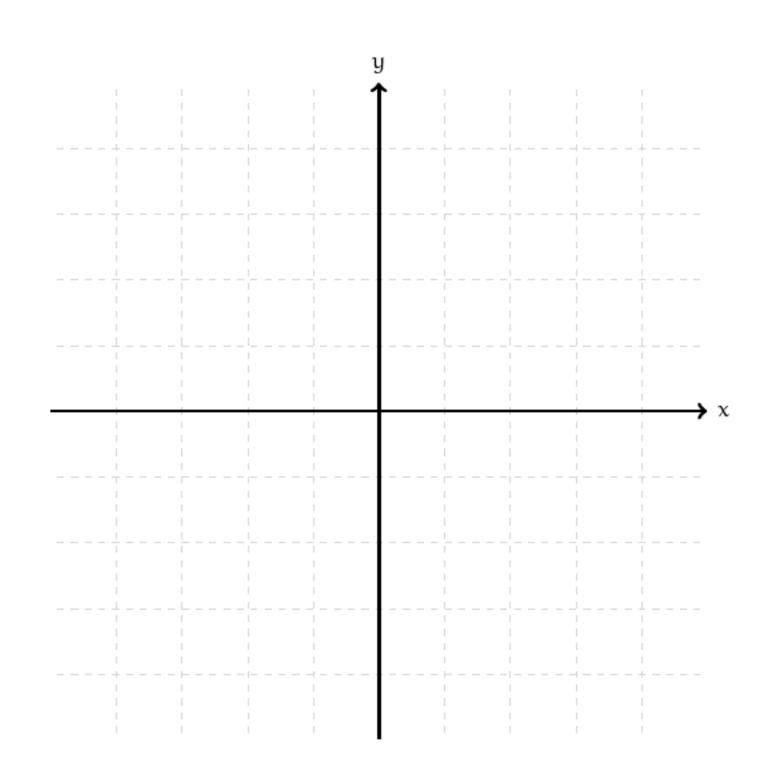
$T(\mathbf{v}) = \mathbf{v}$

Example: Zero

$T(\mathbf{v}) = \mathbf{0}$

Example: Rotation We'll see this on Thursday, but we can reason about it geometrically for now.





Example: Indefinite I

T(f) =

 $T(f+g) = \int (f+g)(x)dx = \int f(x) + g(x)dx$ $T(cf) = \int (cf)(x)dx = \int dx$ the same goes

ntegrals
=
$$\int f(x) dx$$
 Disclaimers
Advanced
Material
 $f(x) dx = \int f(x) dx + \int g(x) dx = T(f) + T(g)$
 $cf(x) dx = c \int f(x) dx = cT(f)$
for derivatives

(how are functions vectors???)

Example: Expectation

This is exactly <u>linearity</u> of expectation.

$T(X) = \mathbb{E}[X]$

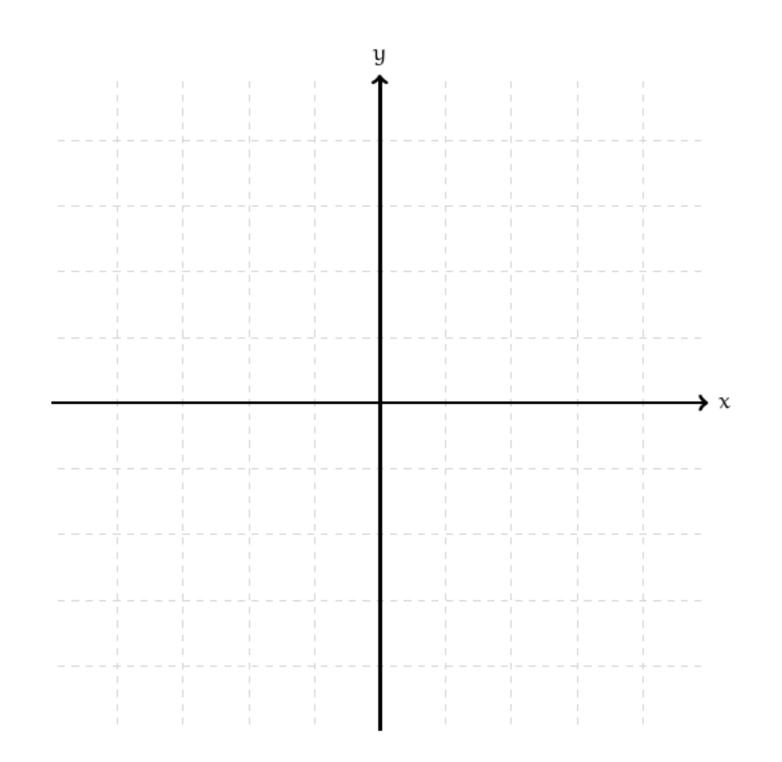
Disclaimer: Advanced Material

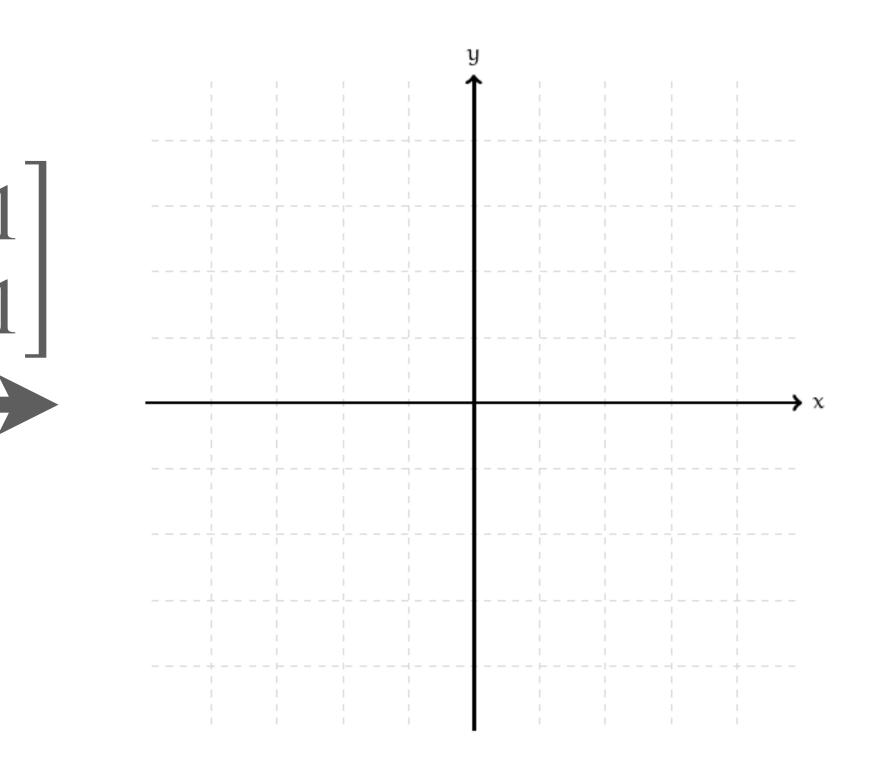
(how are random variables vectors???)

Non-Example: Squares

$T(x) = x^2$ Note that $T: \mathbb{R}^1 \to \mathbb{R}^1$

Non-Example: Translation





Example (Understanding Check) $T(\mathbf{v}) = 5\mathbf{v}$

Example (Understanding Check)

$T(x) = e^x$

Properties of Linear Transformations

T(0) = ???

T(0) = 0

The zero vector is *fixed* by linear transformations.

T(0) = 0

T(0) = 0Note: These may be different dimensions! The zero vector is *fixed* by linear transformations.

We can combine our linearity conditions:

We can combine our linearity conditions: $T(a\mathbf{v} + b\mathbf{u})$

We can combine our linearity conditions: $T(a\mathbf{v} + b\mathbf{u})$ (additivity) $= T(a\mathbf{v}) + T(b\mathbf{u})$

We can combine our linearity conditions: $T(a\mathbf{v} + b\mathbf{u})$ (additivity) $= T(a\mathbf{v}) + T(b\mathbf{u})$ (homogeneity for each term) $= aT(\mathbf{v}) + bT(\mathbf{u})$

if and only if for any vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^m and any real numbers a and b,

Theorem. A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear

A Single Condition

Theorem. A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is linear if and only if for any vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^m and any real numbers a and b,

It's often easiest to show this single condition.

 $T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$

Linear Combinations

combination.

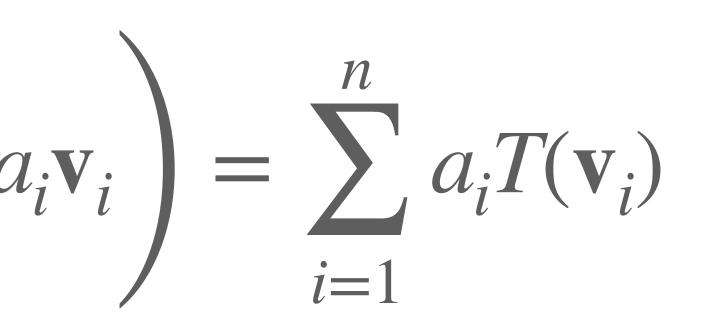
$T(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n) = a_1T(\mathbf{v}_1) + a_2T(\mathbf{v}_2) + \dots + a_nT(\mathbf{v}_n)$

We can generalize this condition to any linear

Linear Combinations

$$T\left(\sum_{i=1}^{n} a_i \mathbf{v}_i\right)$$

We can generalize this combination.



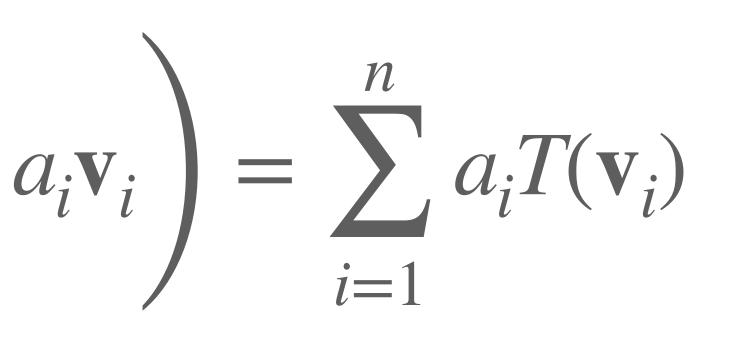
We can generalize this condition to any linear

Linear Combinations

$$T\left(\sum_{i=1}^{n} a_i \mathbf{v}_i\right)$$

We can generalize this combination.

This is the most useful form.



We can generalize this condition to any linear

Geometry of Matrix Transformations

Motivating Questions

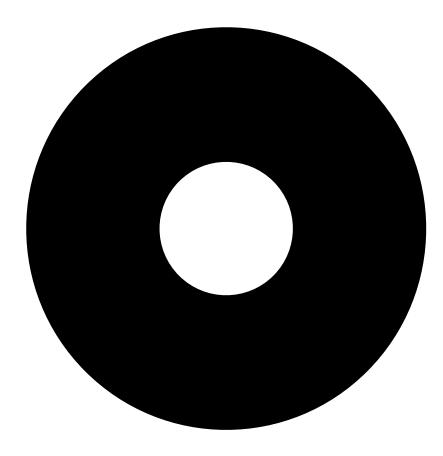
What kind of functions can we define in this way?

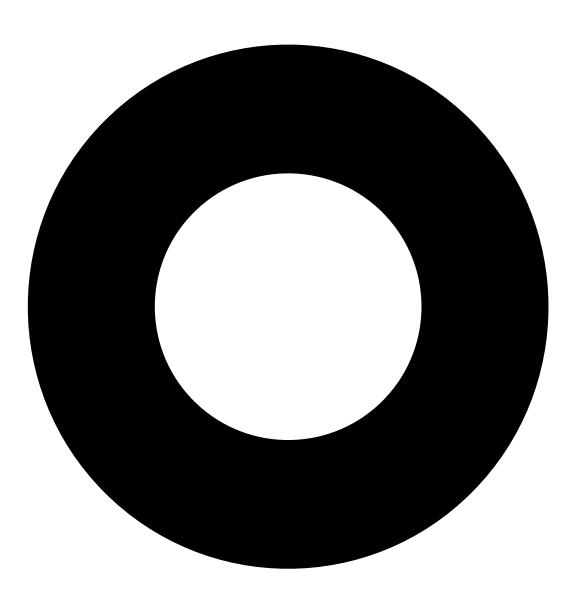
How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

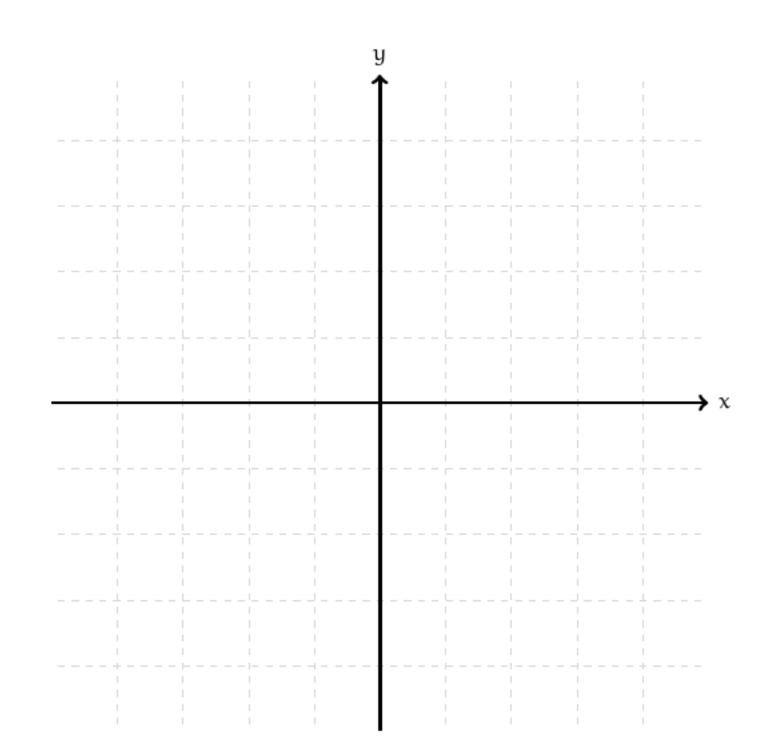
Matrix transformations change the "shape" of a set of set of vectors (points).

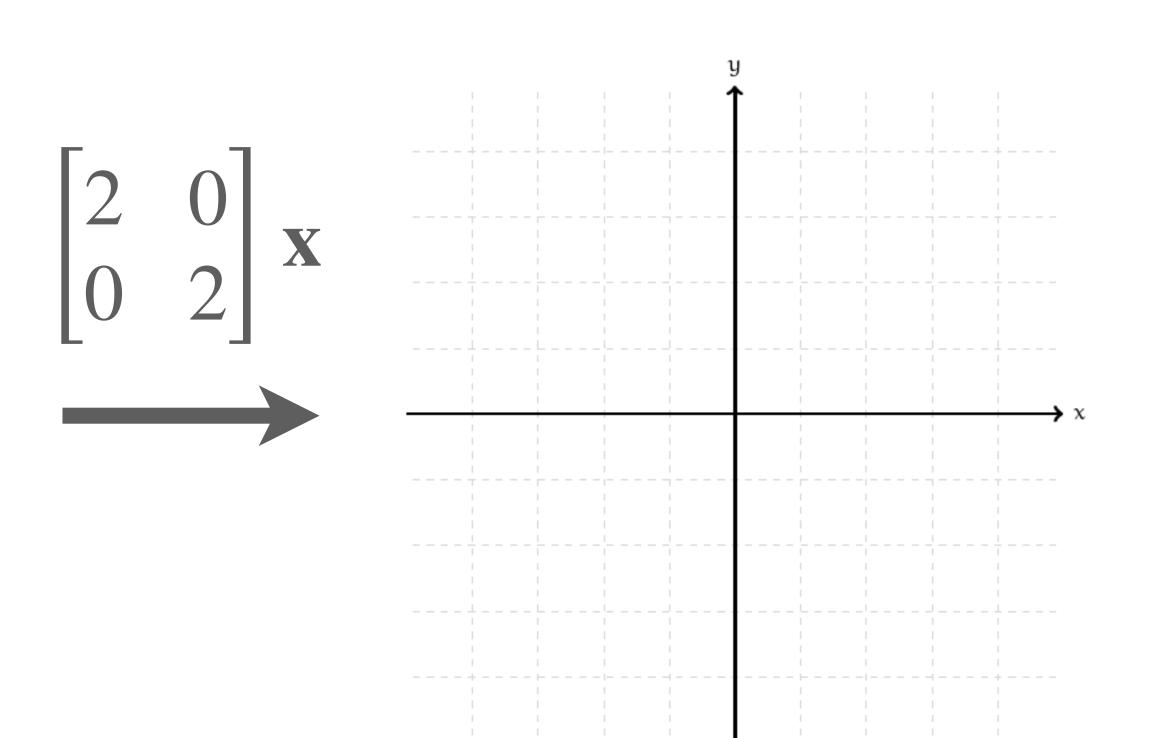
Example: Dilation

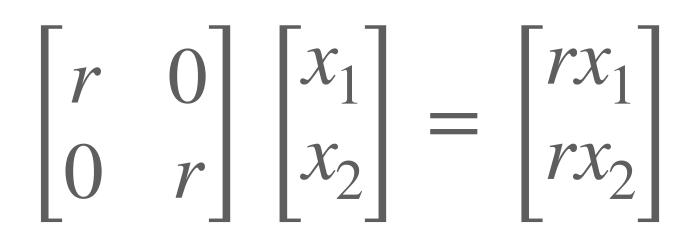




Example: Dilation

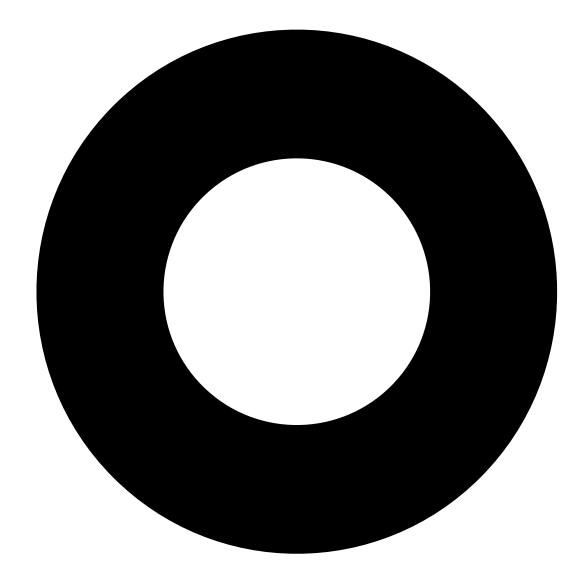


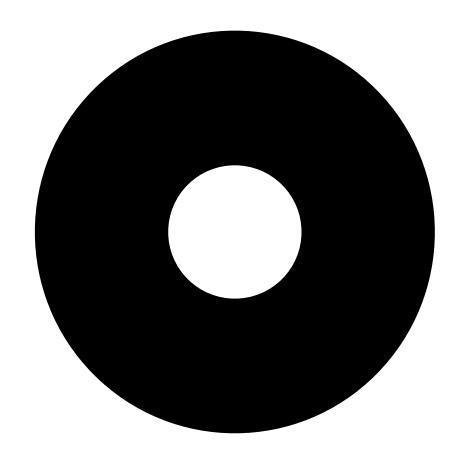




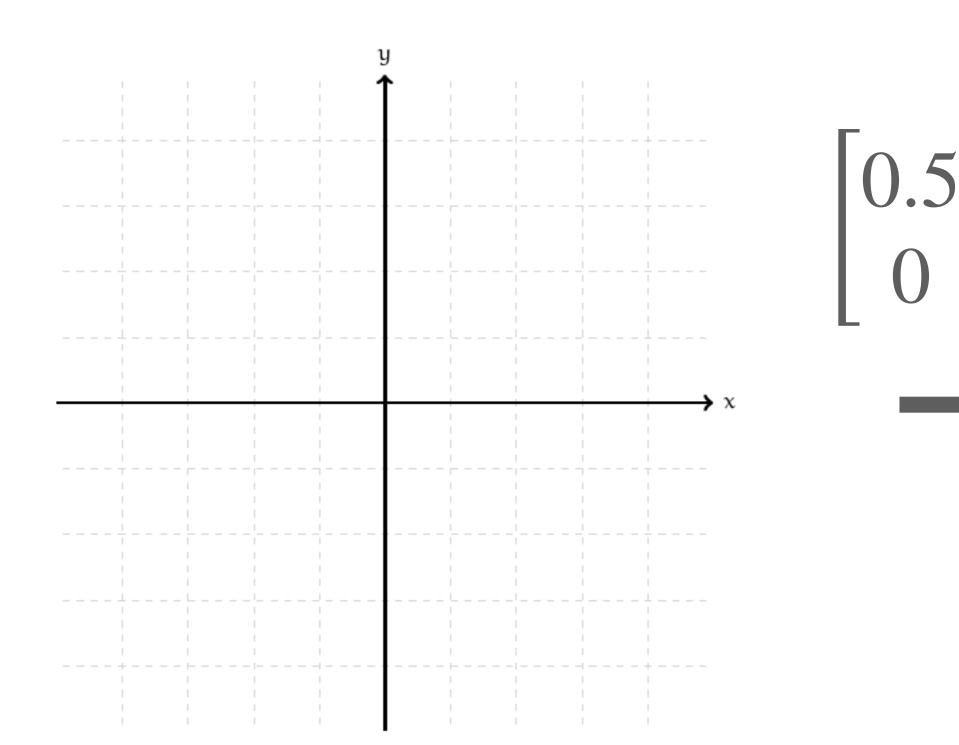
if r > 1, then the transformation pushes points away from the origin.

Example: Contraction

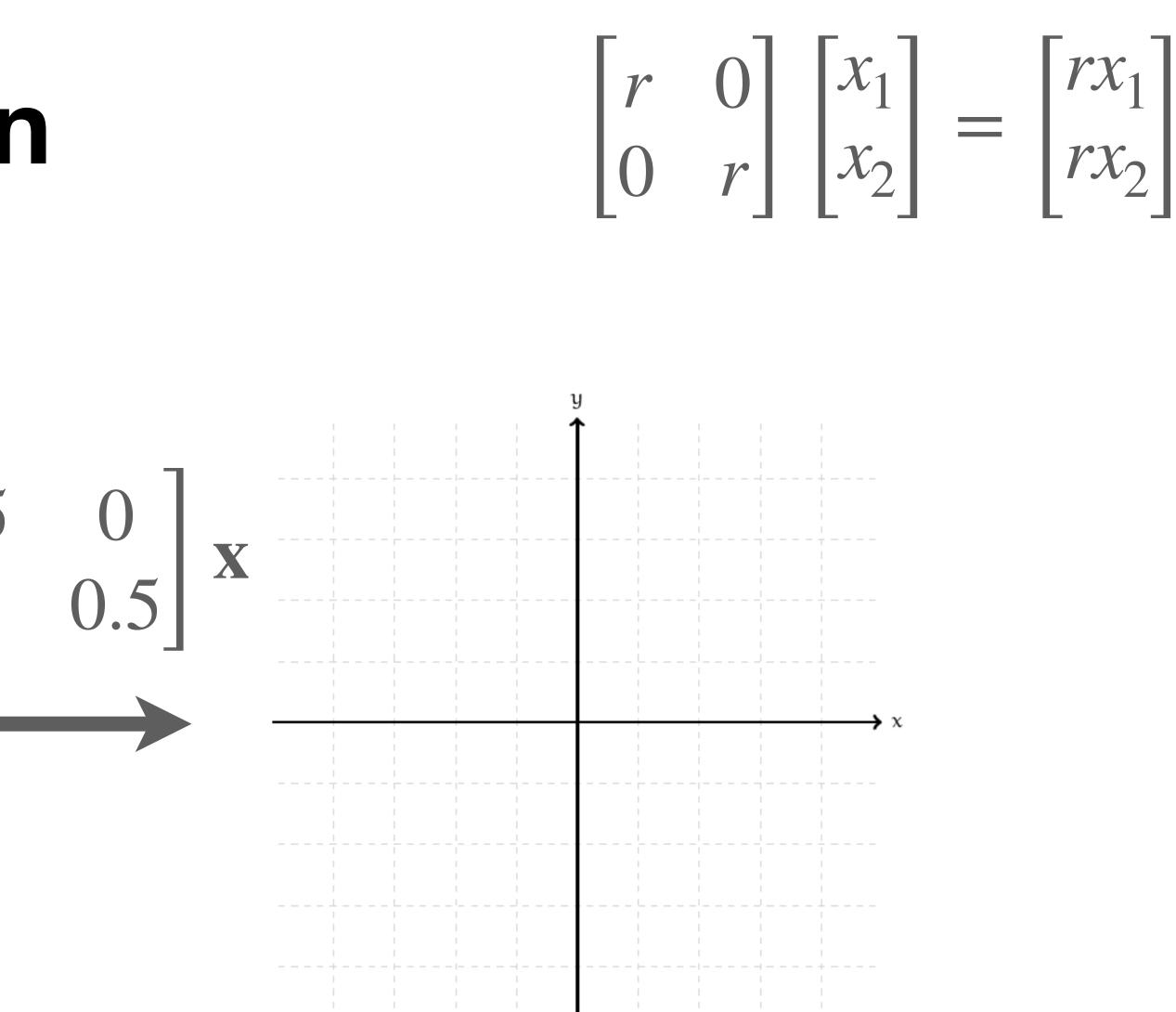




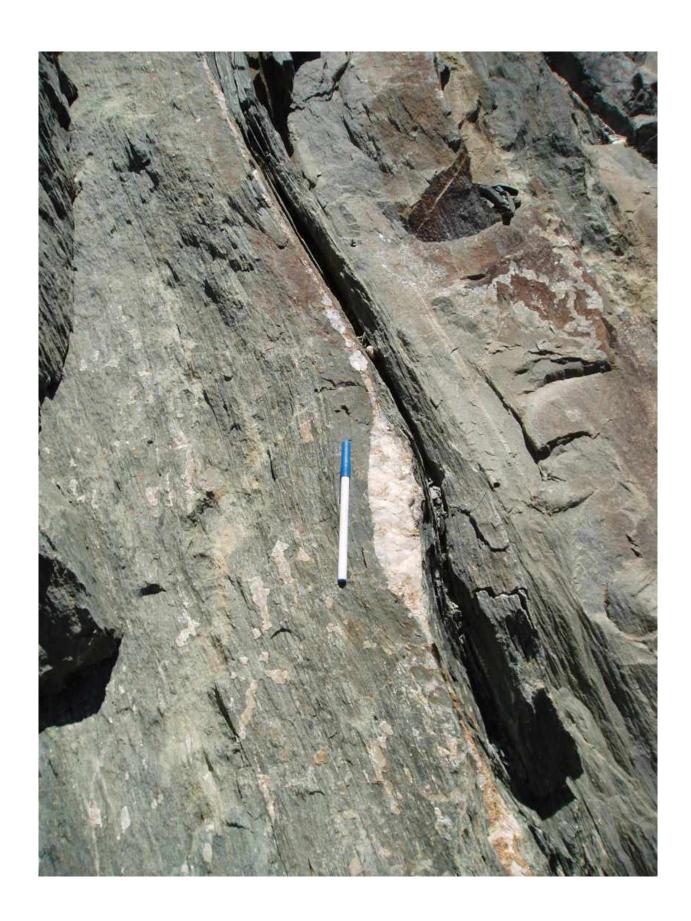
Example: Contraction



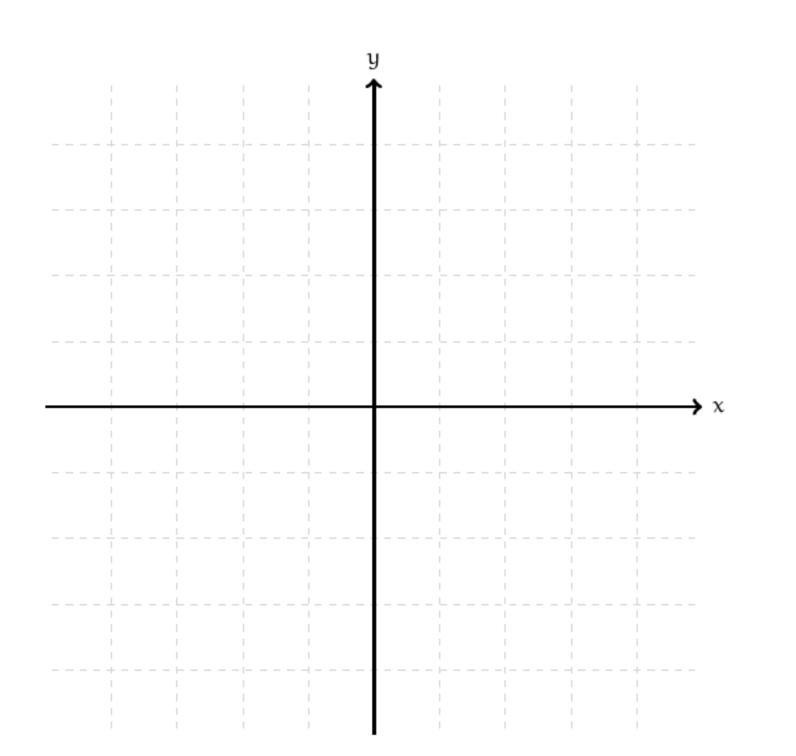
if $0 \le r \le 1$, then the transformation pulls points towards the origin.

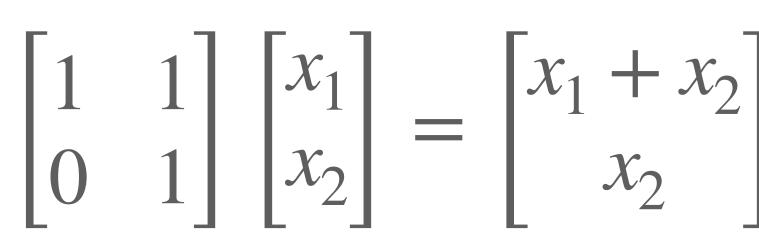


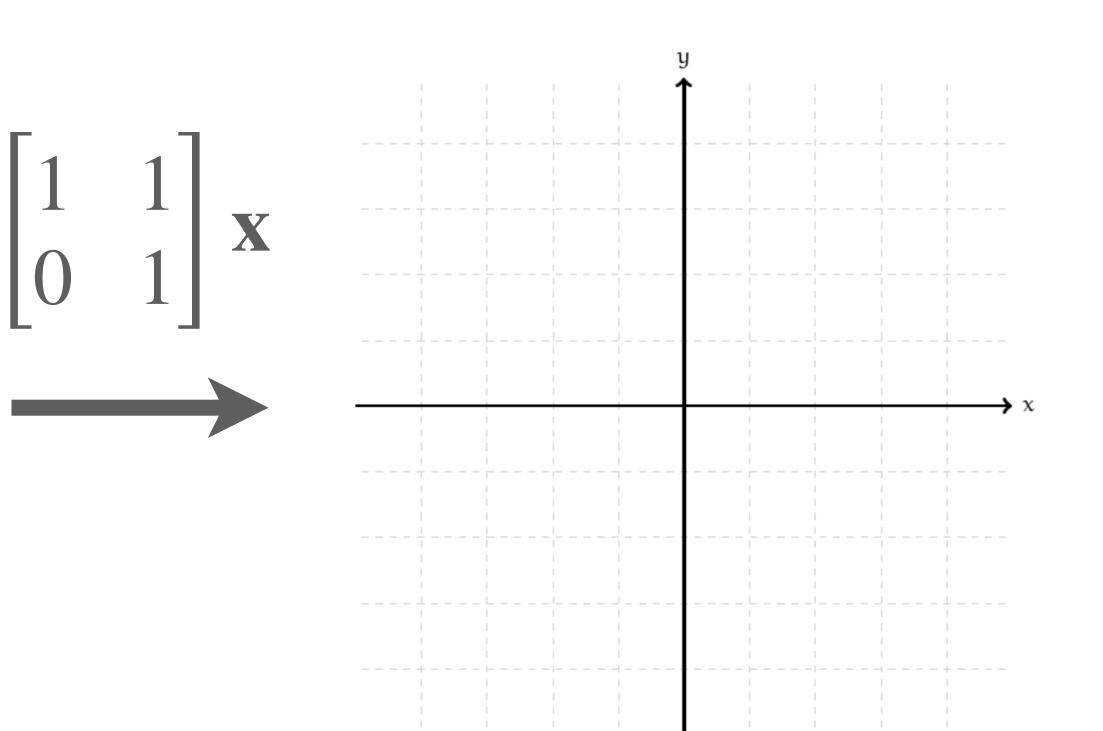
Example: Shearing



Example: Shearing

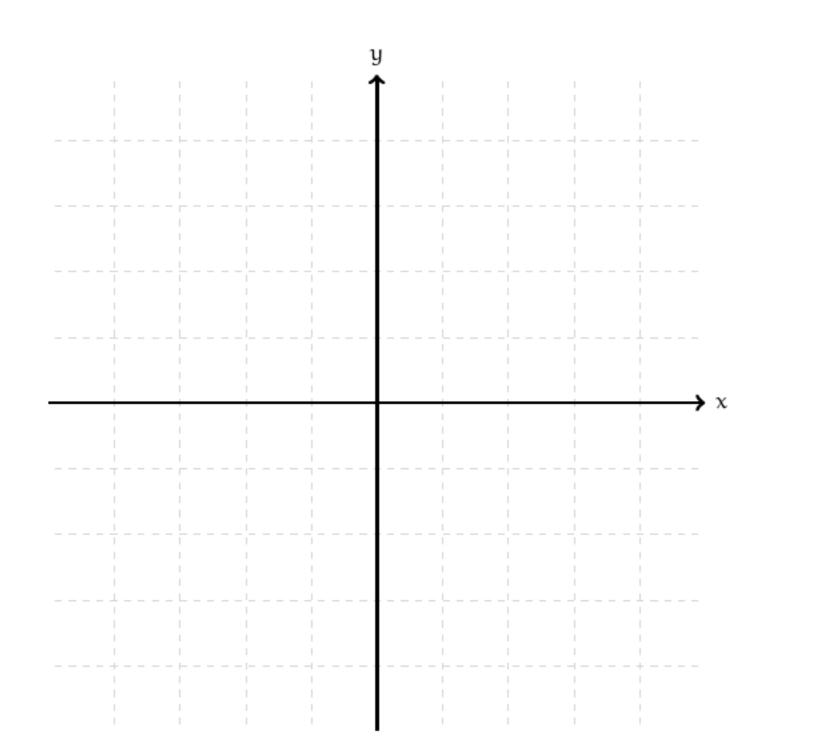


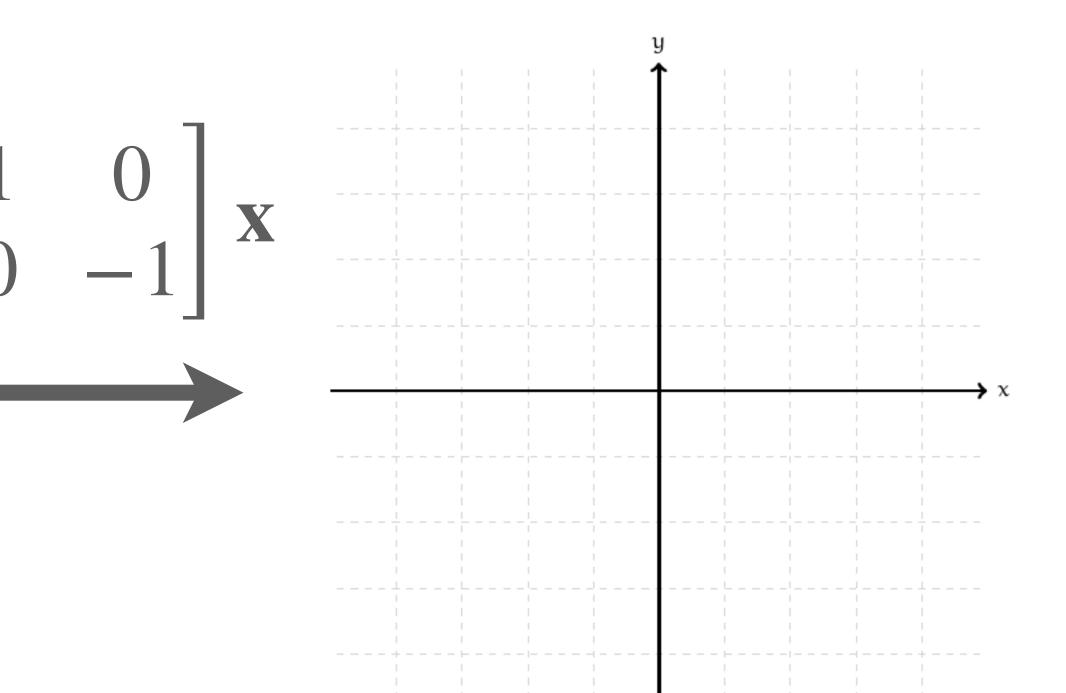




Imagine shearing like with rocks or metal.

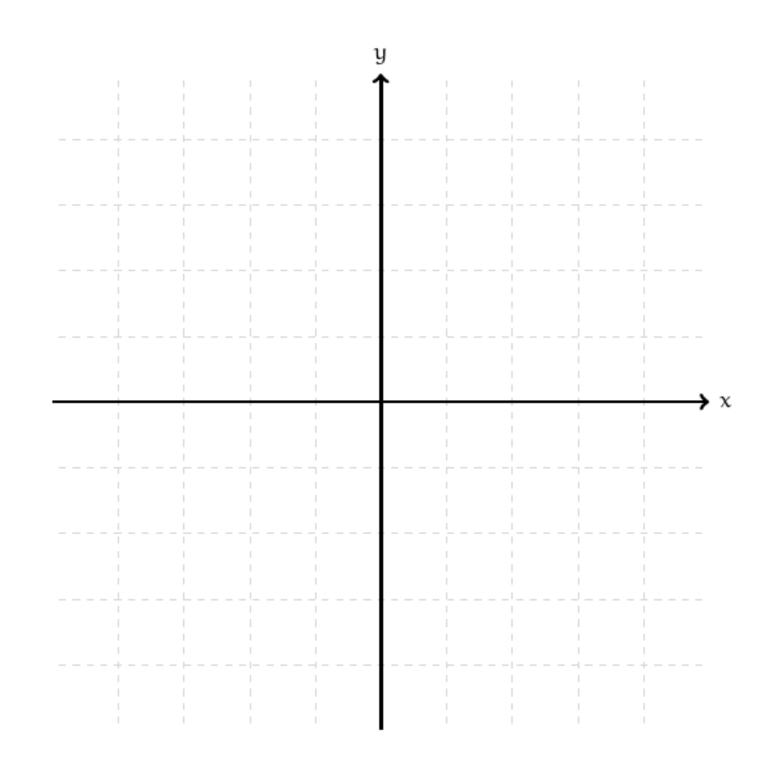
Question

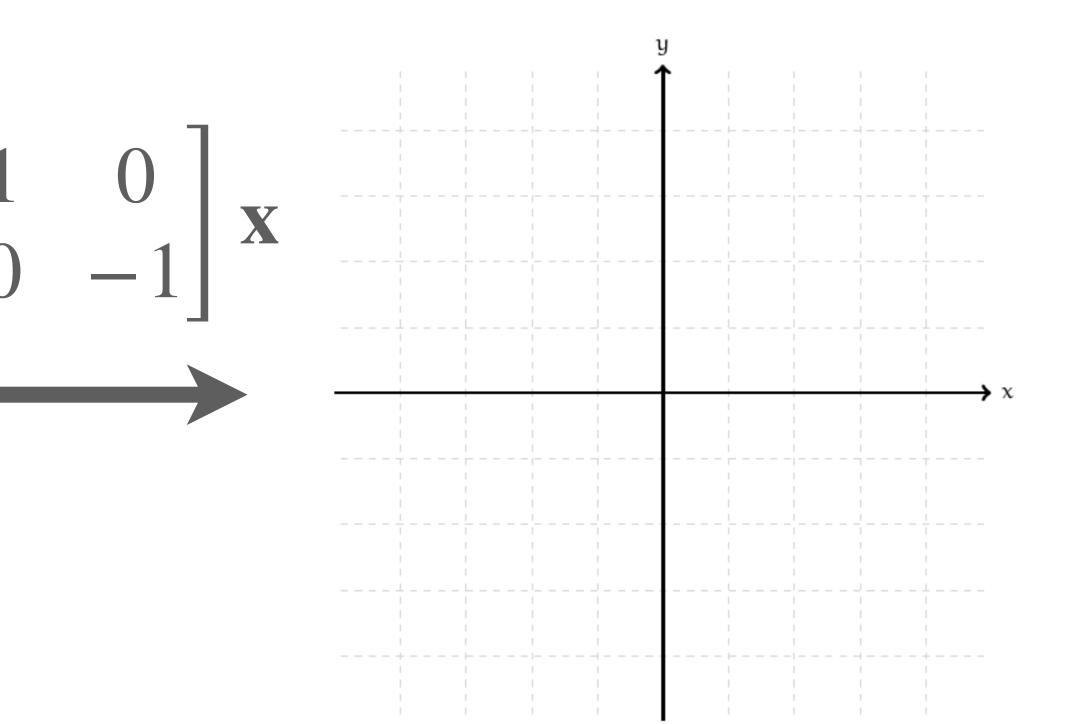




Draw how this matrix transforms points. What kind of transformation does it represent?

Answer: Reflection





Summary

Matrices can be viewed as linear transformations.

Matrix transformations change the "shape" of points sets.

to linear combinations.

Linear transformations behave well with respect