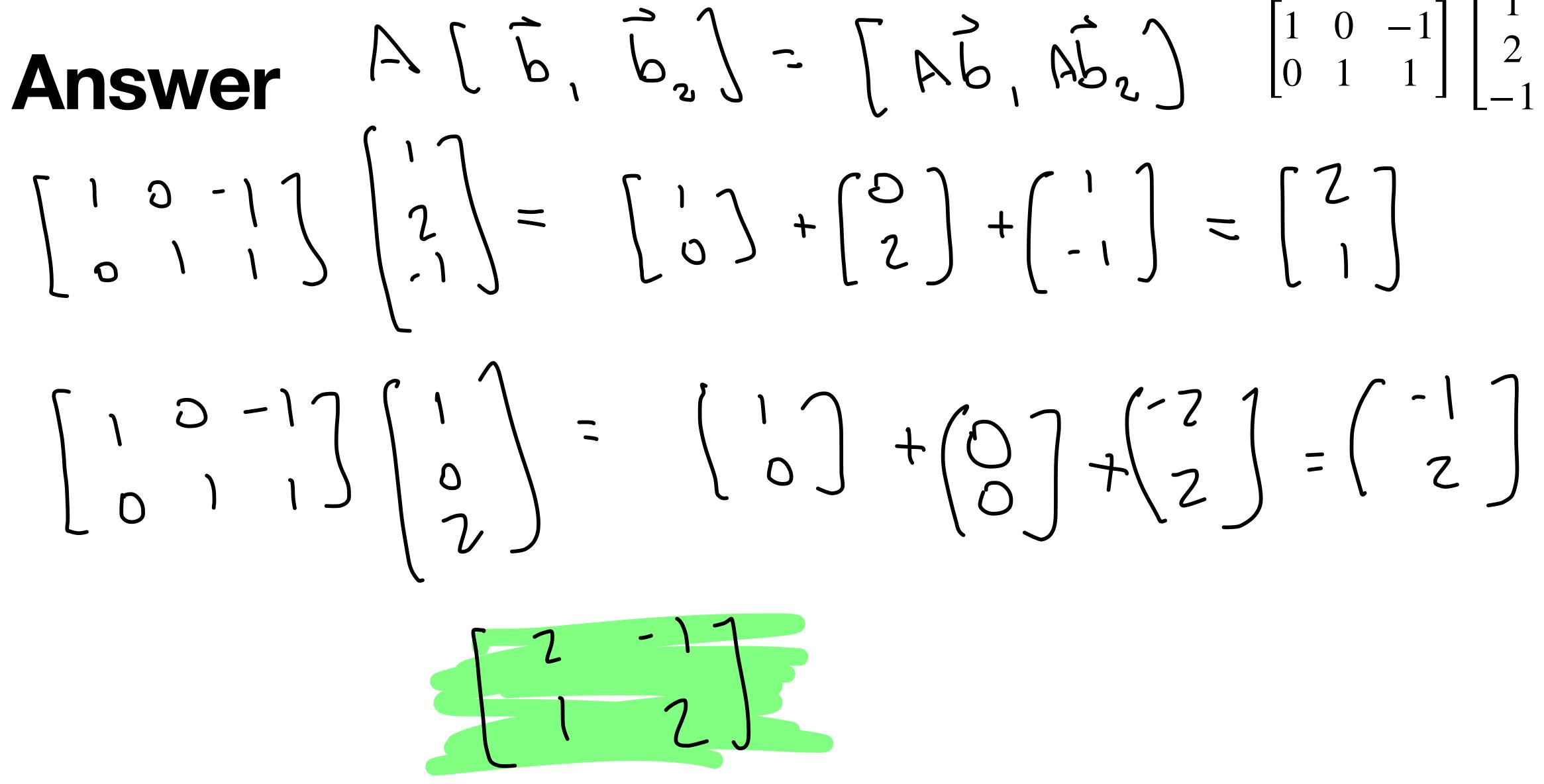
Matrix Inverses **Geometric Algorithms** Lecture 11

CAS CS 132

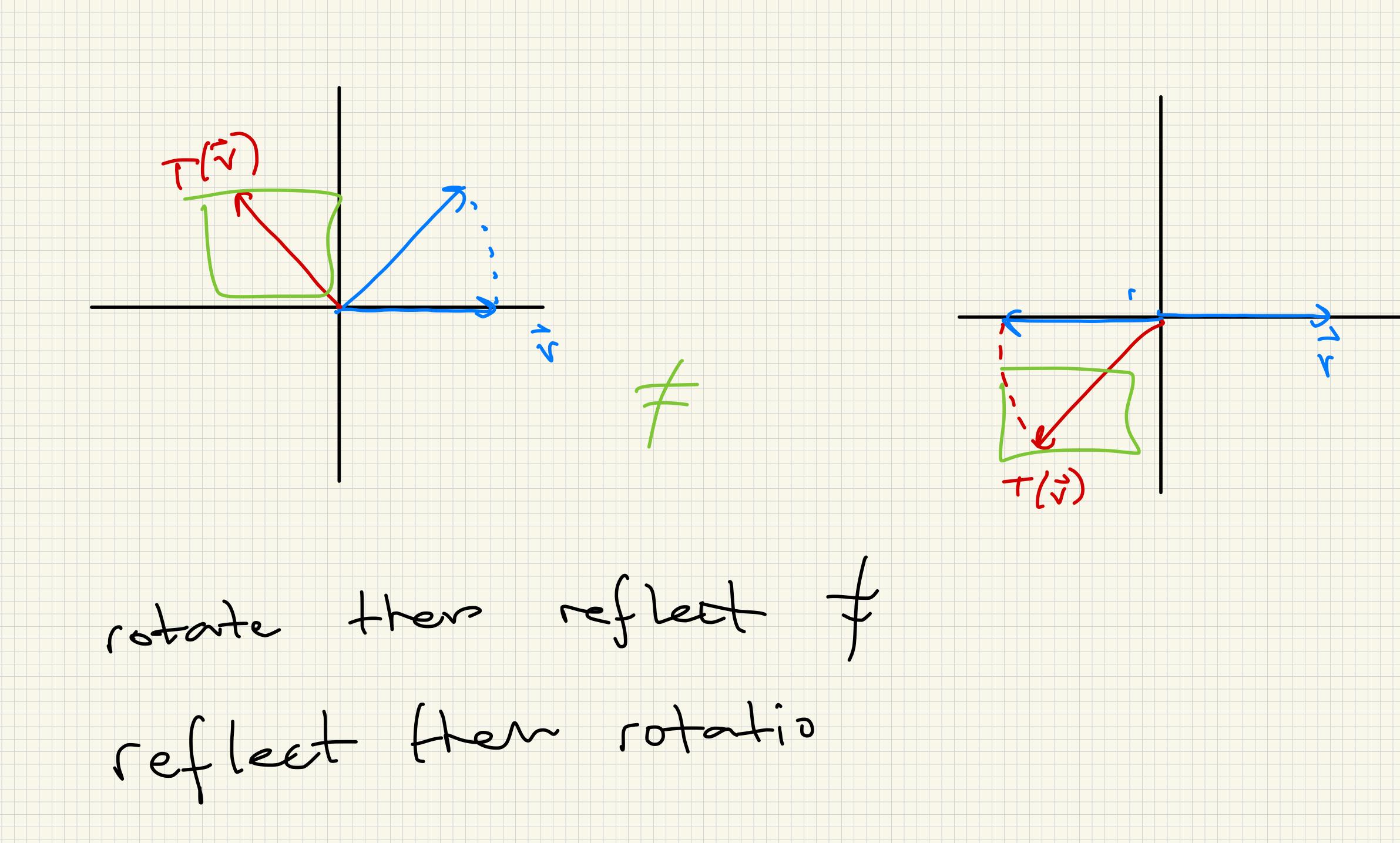
Practice Problem(s)

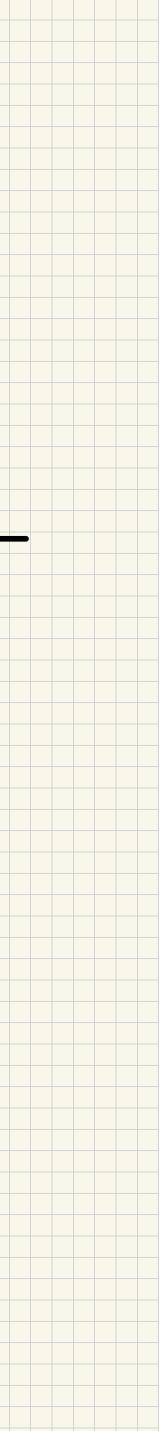
- **1.** Compute $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$
- same as T_2 followed by T_1 .

2. Find a pair of 2D linear transformations T_1 and T_2 such that T_1 followed by T_2 is not the



Answer $A[\overline{b}, \overline{b}] = [A\overline{b}, A\overline{b}] \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$





Objectives

- 2. Motivate and define matrix inverses
- 3. Connect everything(!)

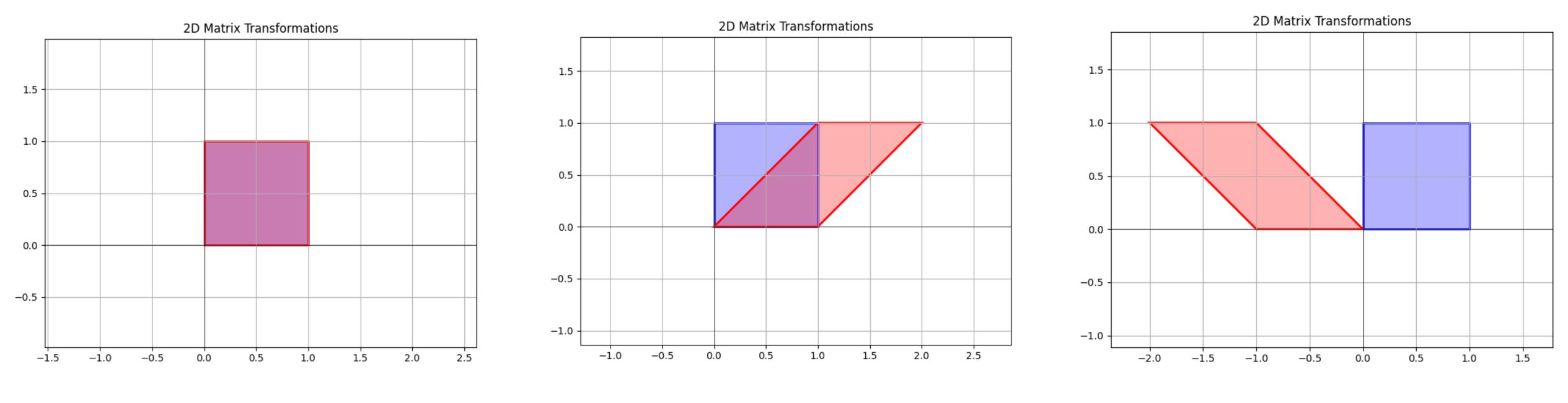
1. Define a few more important matrix operations

Keywords

Matrix Transpose Inner Product Matrix Power Square Matrix Matrix Inverse Invertible Transformation 1–1 Correspondence numpy.linalg.inv eterminant Invertible Matrix Theorem

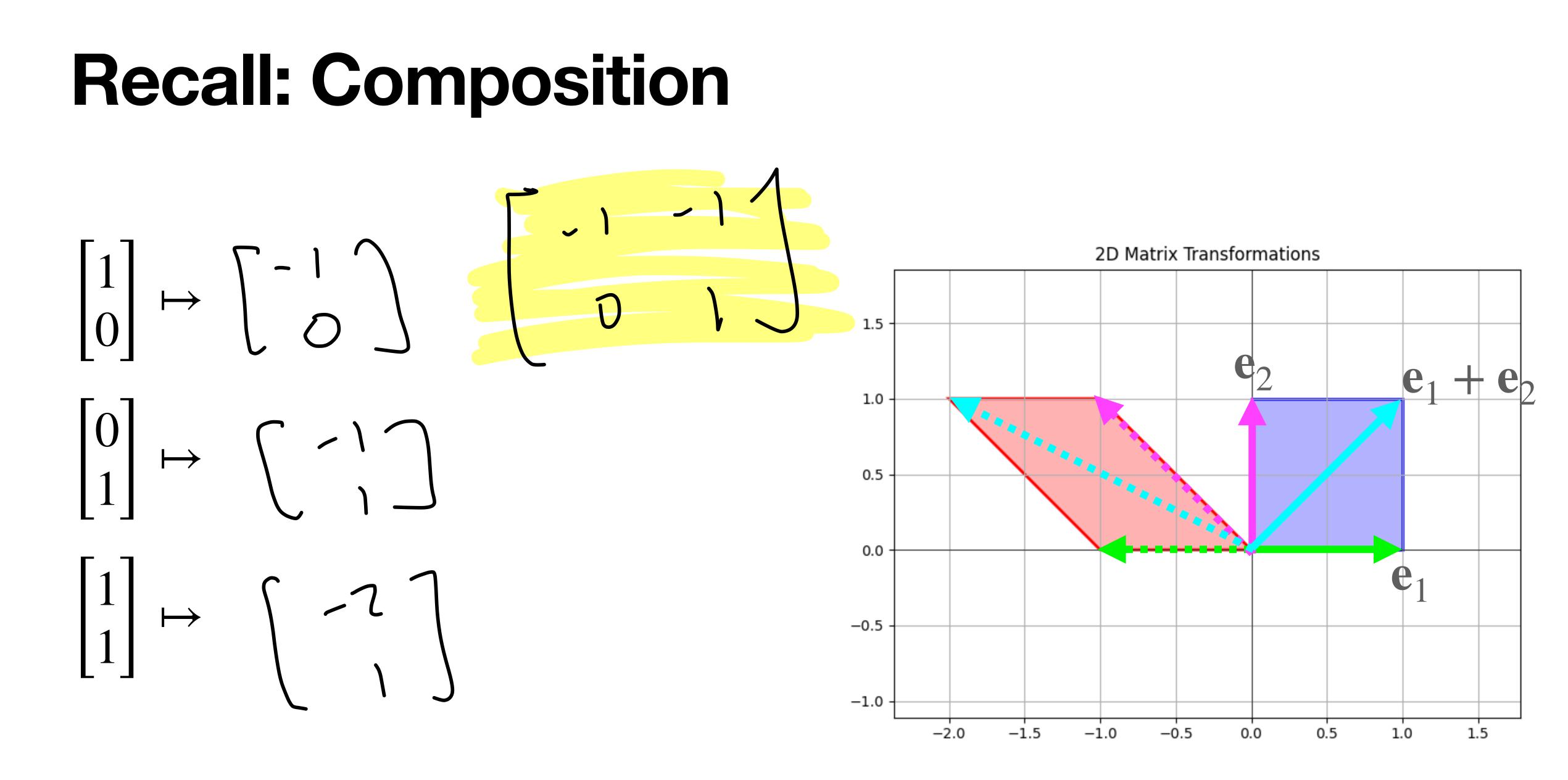
Recap: Matrix Multiplication

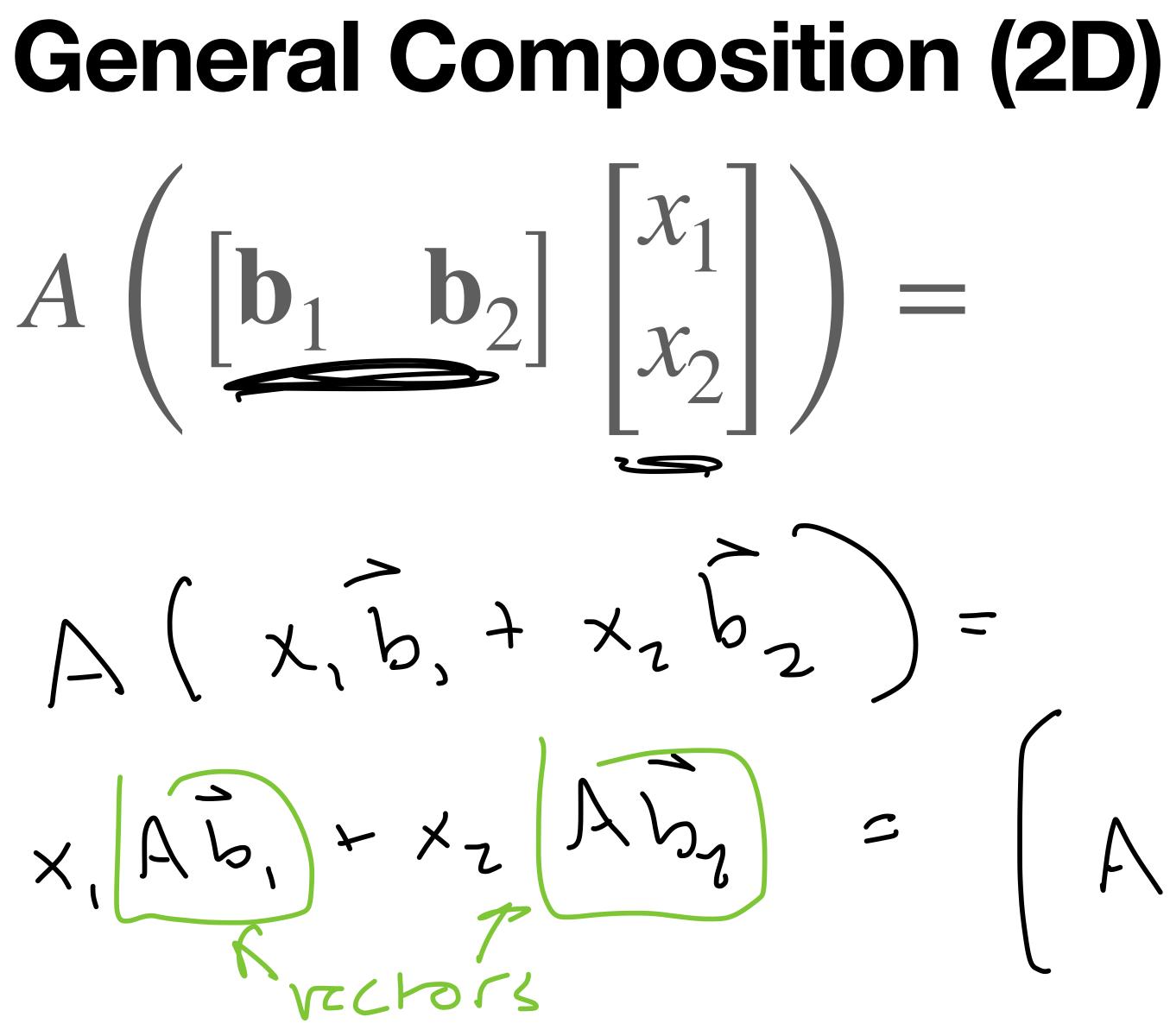
Recall: Composition

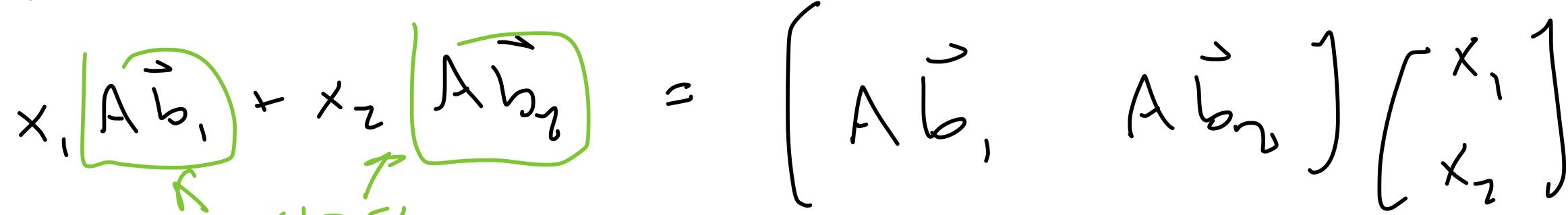


shear

reflect





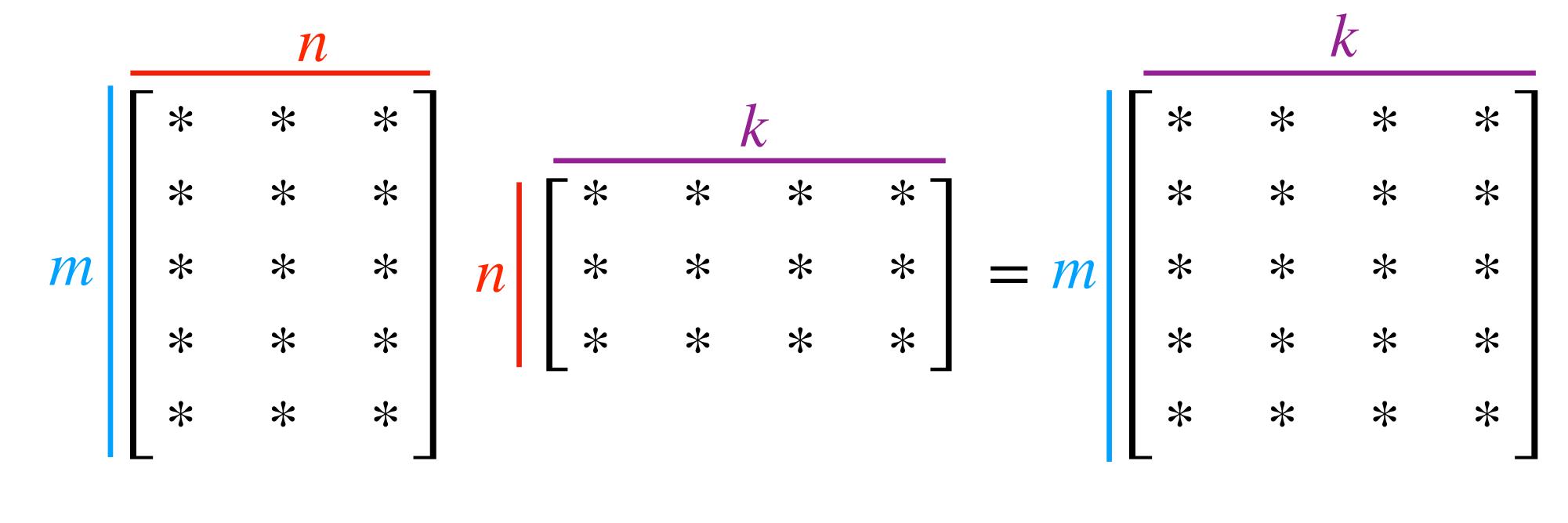


Matrix Multiplication

Definition. For a $m \times n$ matrix A and a $n \times p$ matrix B with columns $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_p$ the product ABis the $m \times p$ matrix given by $AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$

Replace each column of B with A multiplied by that column.

Tracking Dimensions



 $(m \times n)$

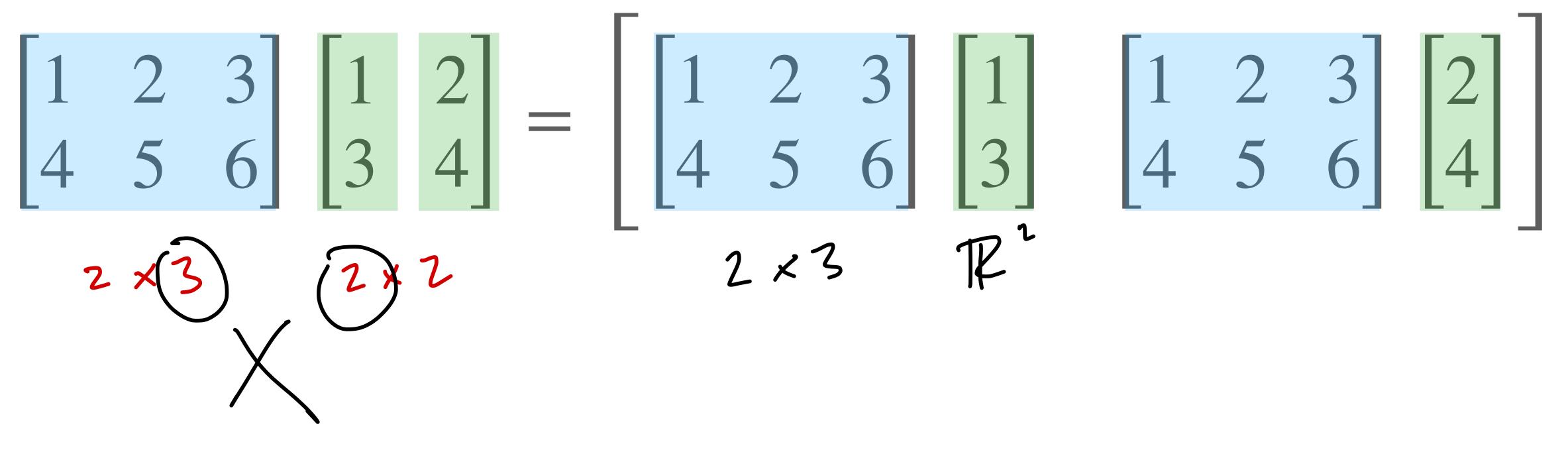
this only works if the number of <u>columns</u> of the left matrix matches the number of <u>rows</u> of the right matrix

 $(m \times k)$

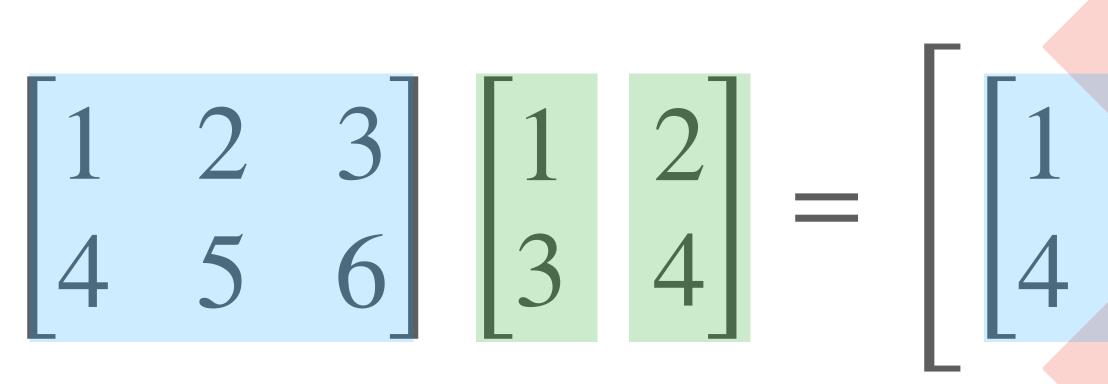
Important Note

Even if *AB* is defined, it may be that *BA* is <u>not</u> defined

Non-Example



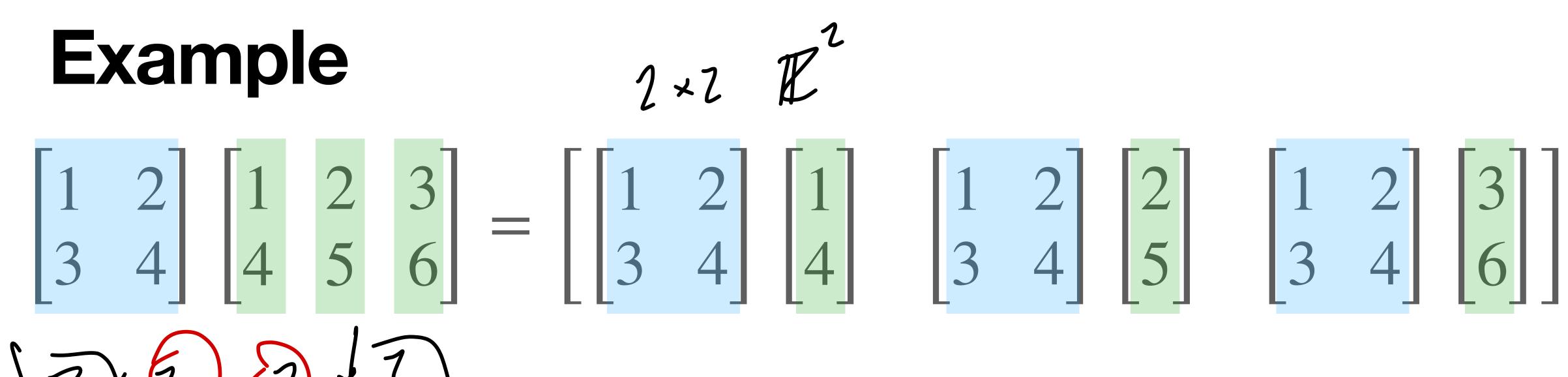
Non-Example



$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

These are not defined.

Example 2×2 R



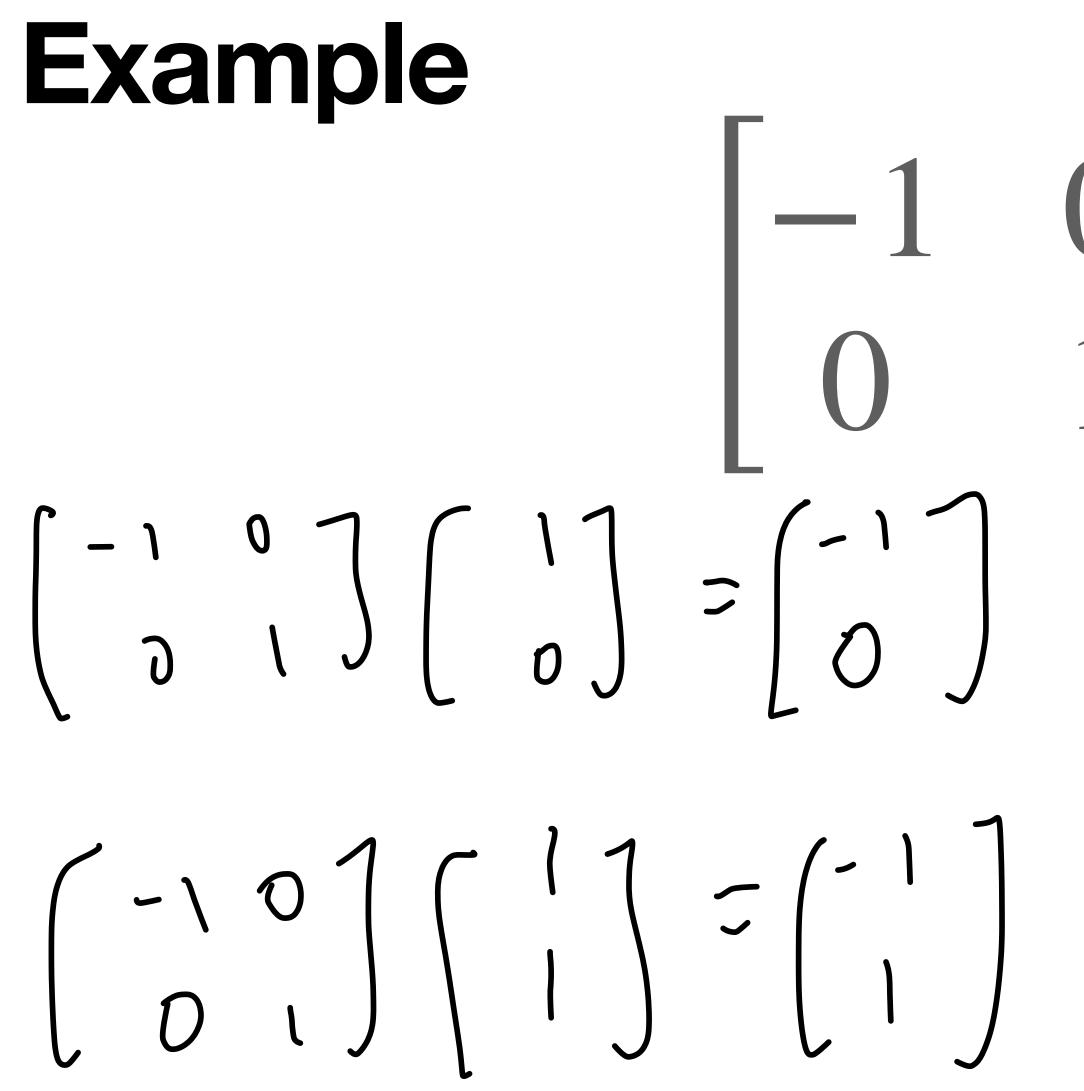
2 × 2

The Key Fact (Restated)

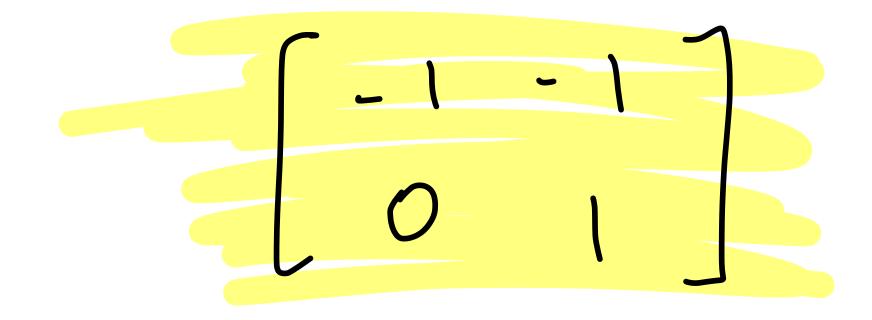
For any matrices A and B (such that AB is defined) and any vector v

The matrix implementing the composition is the product of the two underlying matrices.

$A(B\mathbf{v}) = (AB)\mathbf{v}$



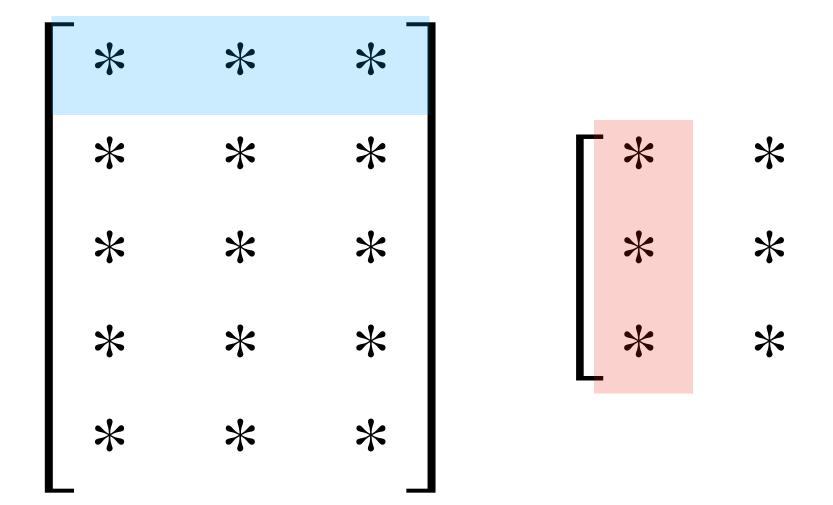
$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} =$



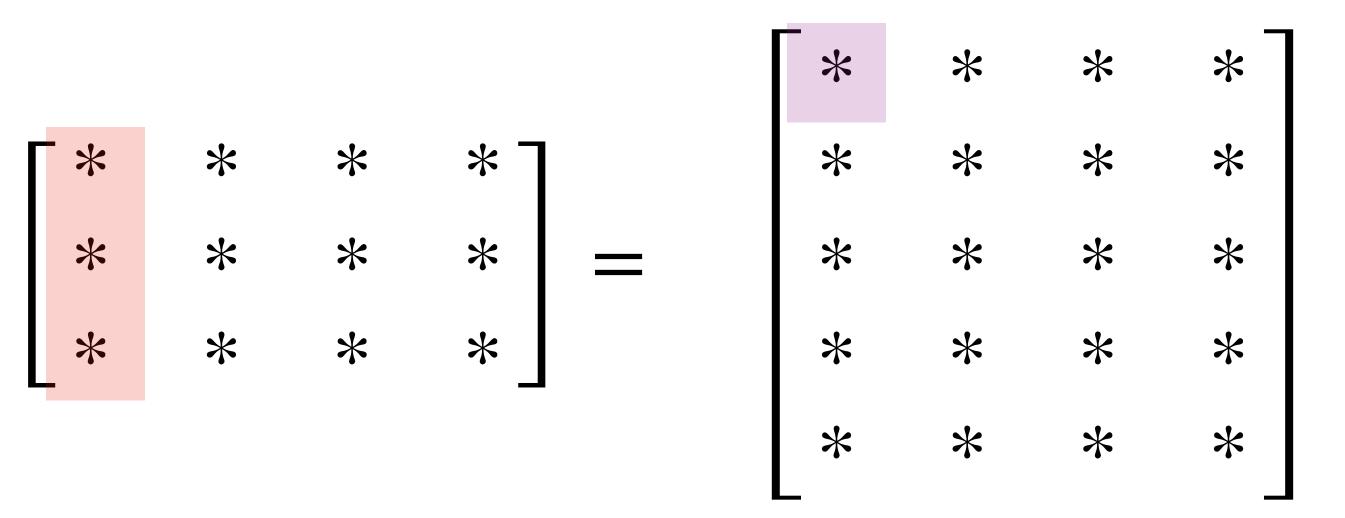
Row-Column Rule

Given a $m \times n$ matrix A and a $n \times p$ matrix B, the entry in row i and column j of AB is defined above.

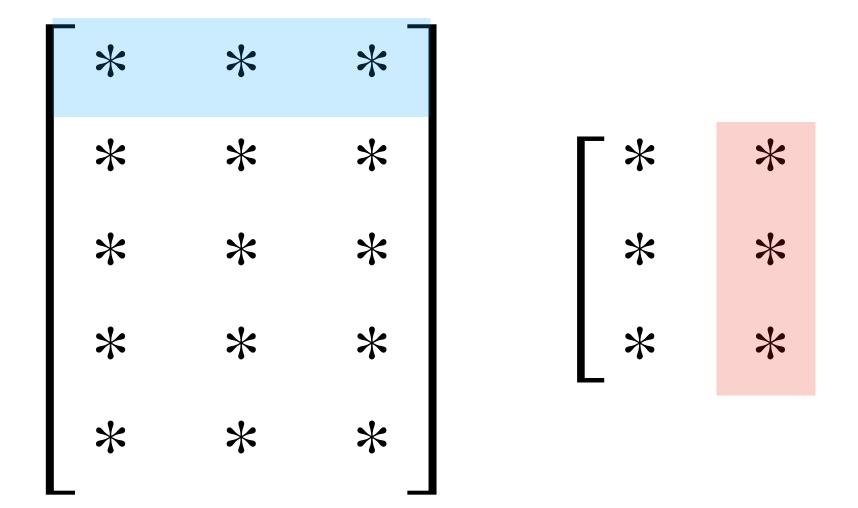
N $(AB)_{ij} = \sum A_{ik} B_{kj}$ k=1



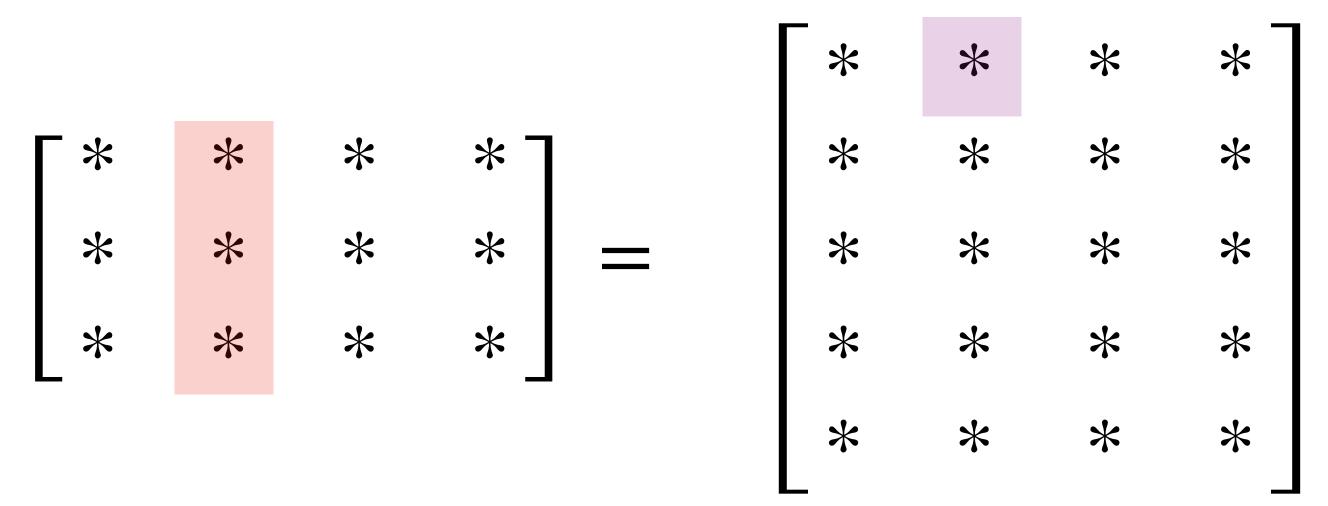
 $(AB)_{ij} =$



k = 1

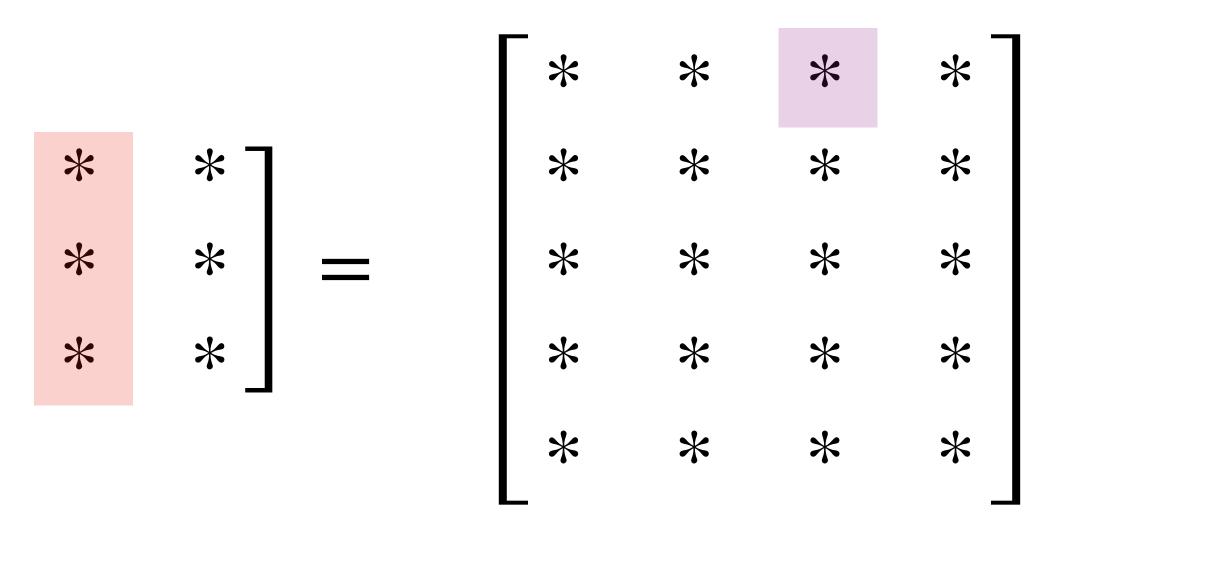


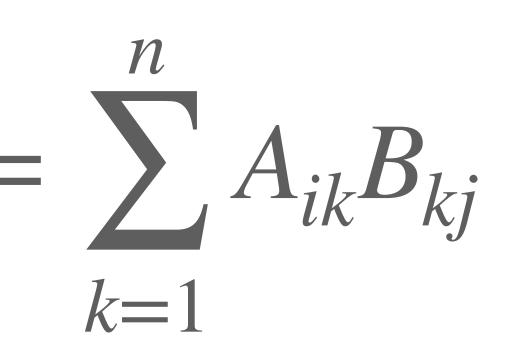
 $(AB)_{ij} =$



k=1

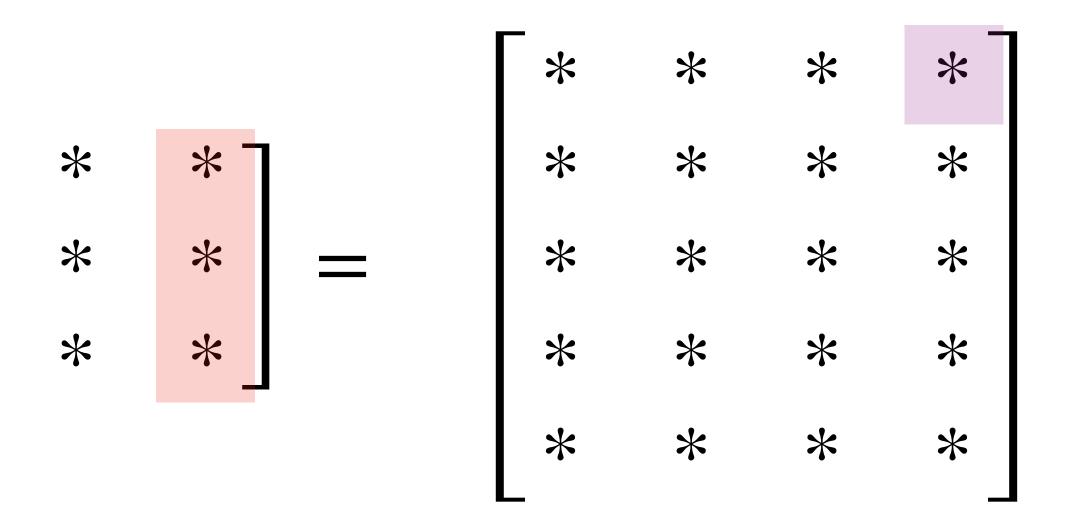
*	*	*	
*	*	*	► *
*	*	*	*
*	*	*	*
*	*	*	



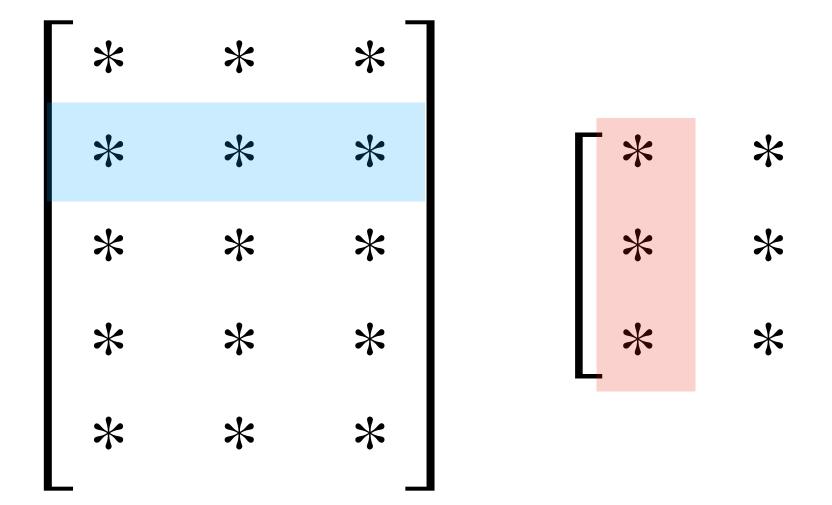


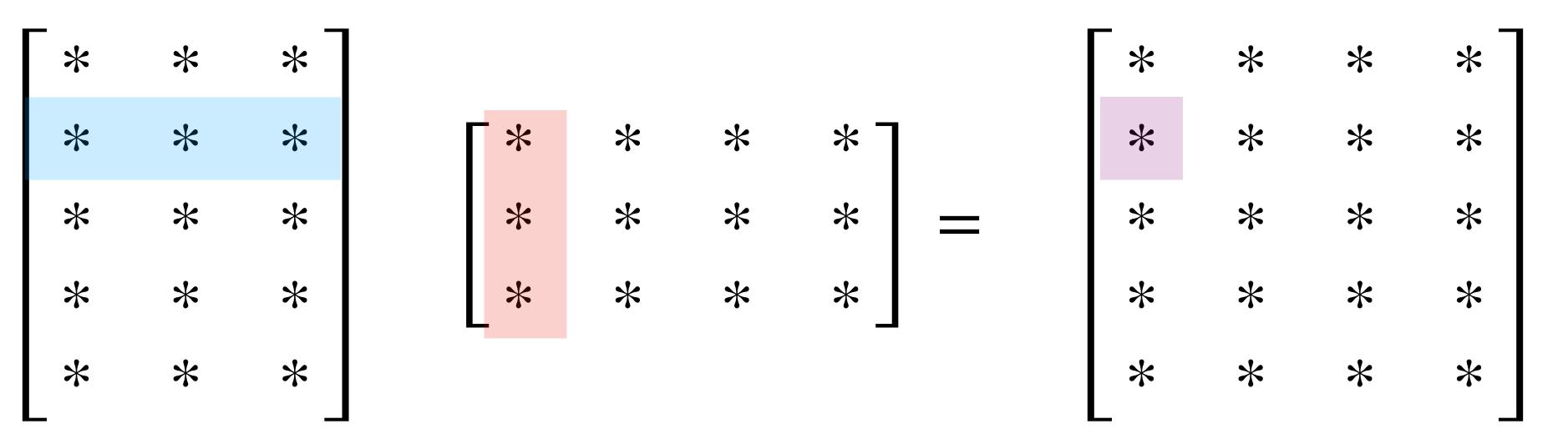
*	*	*		
*	*	*	۲*	
*	*	*	*	
*	*	*	*	
*	*	*		

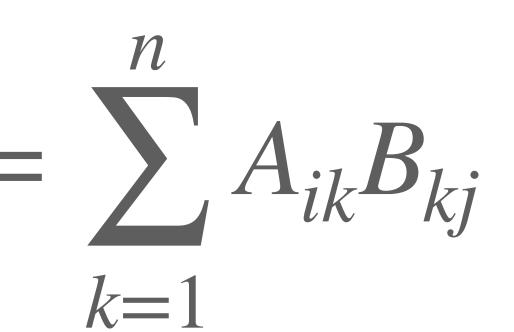
 $(AB)_{ij} =$

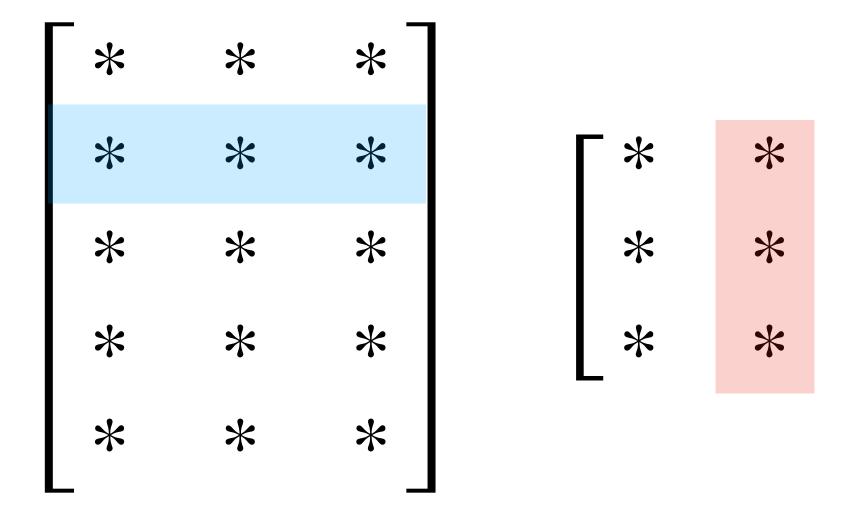


k=1

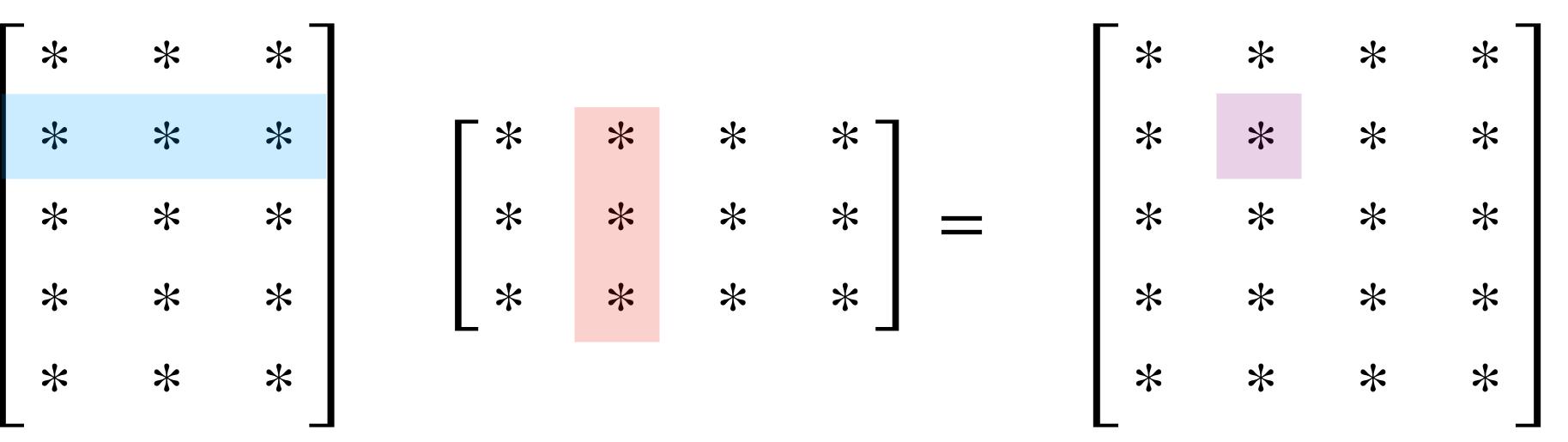




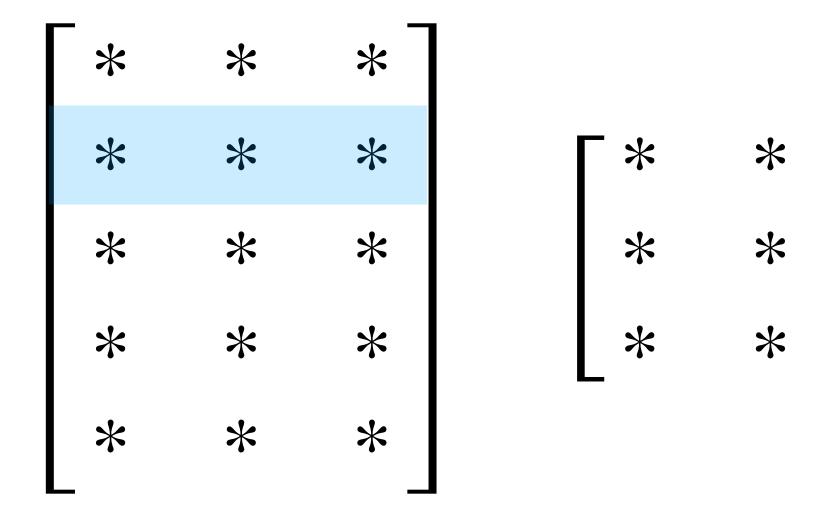


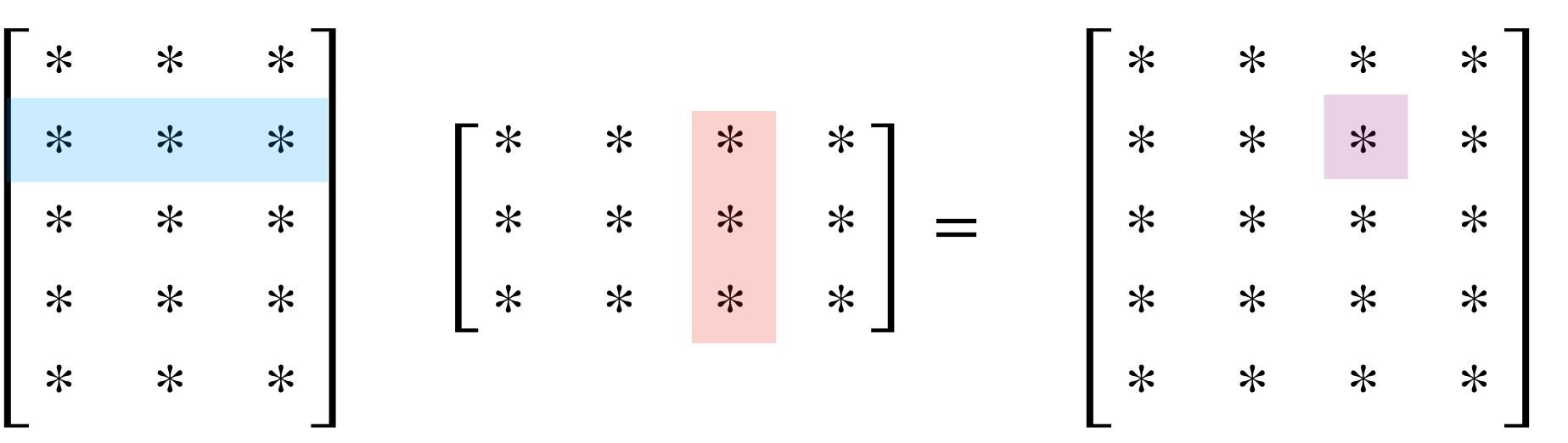


 $(AB)_{ij} =$

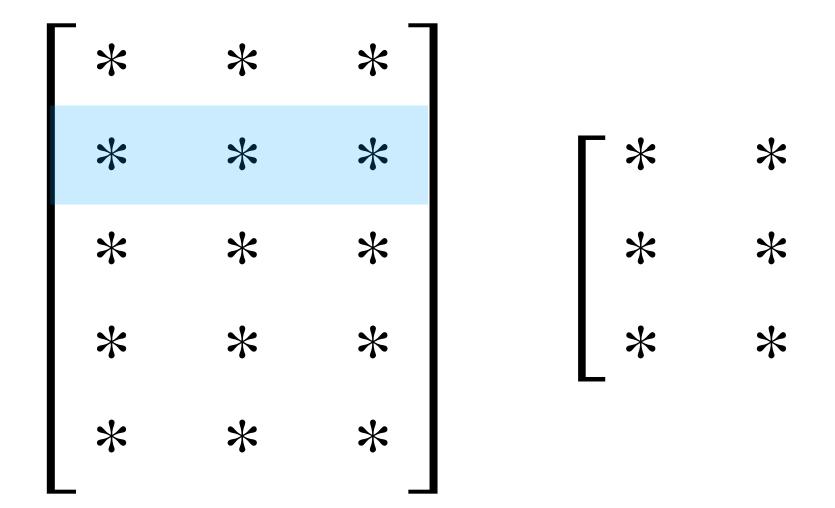


k = 1

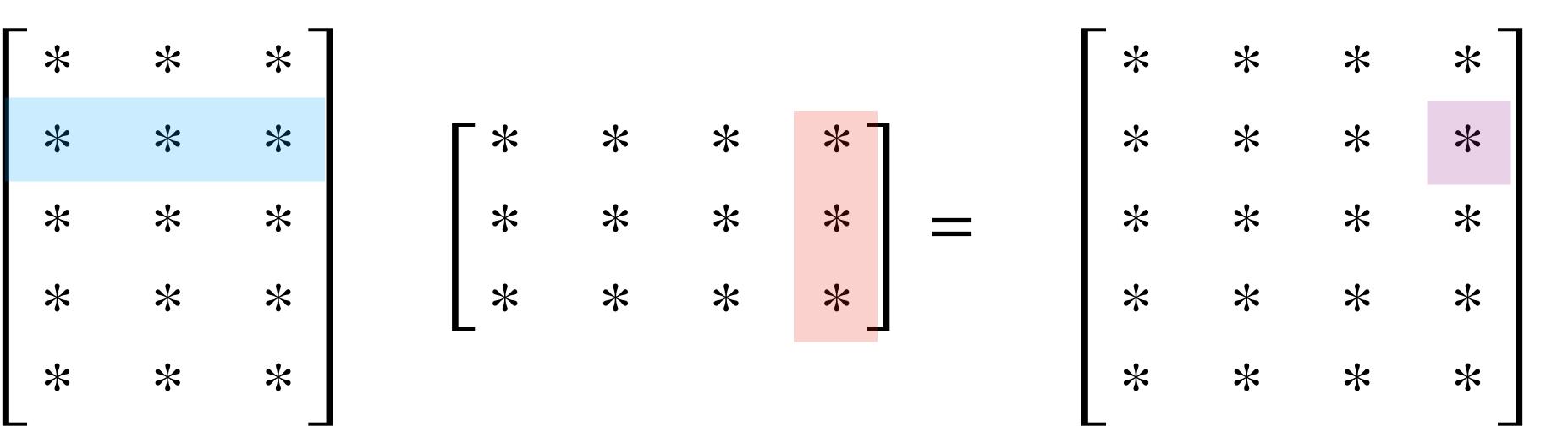




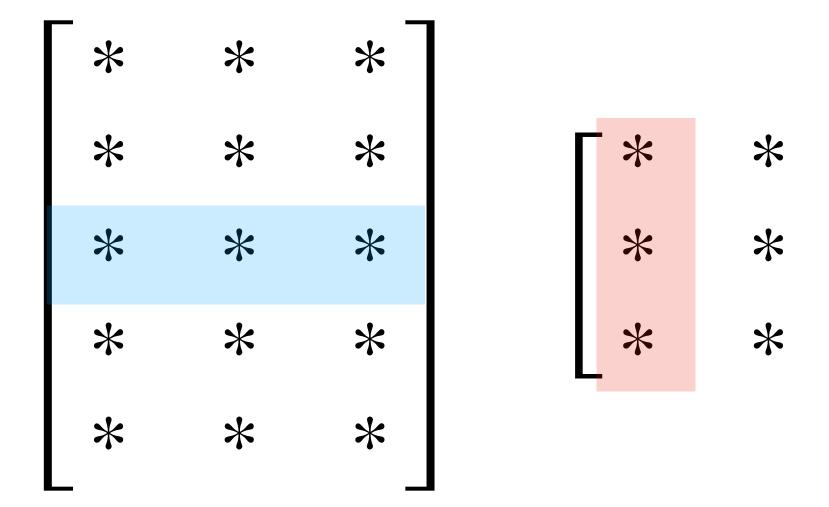




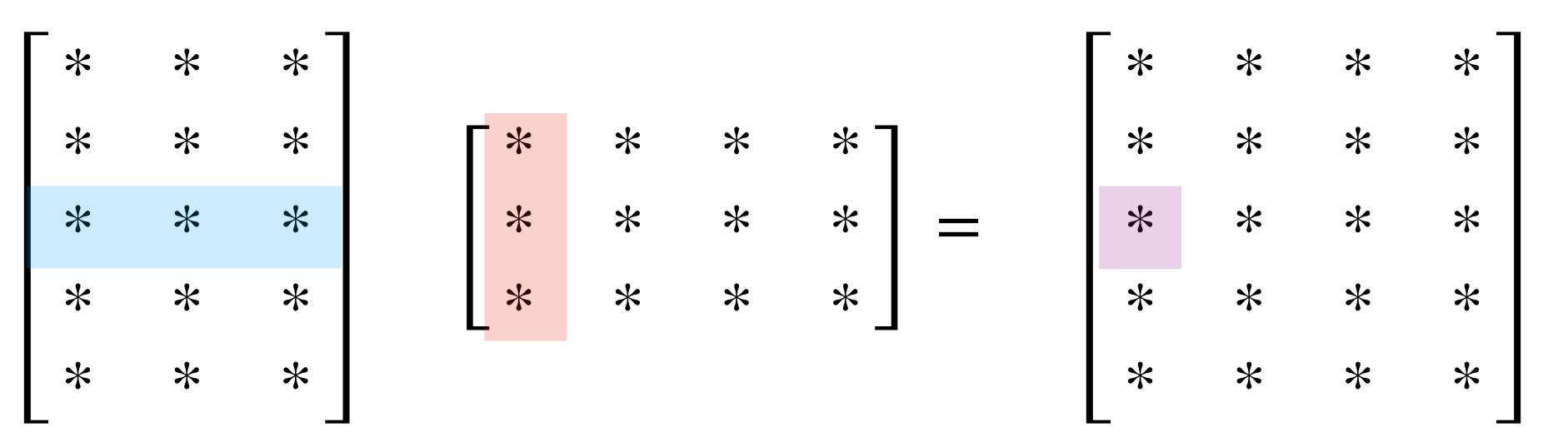
 $(AB)_{ij} =$

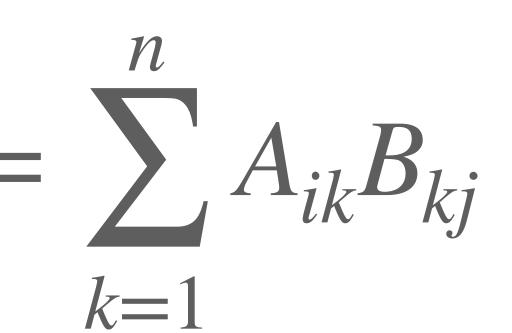


k = 1

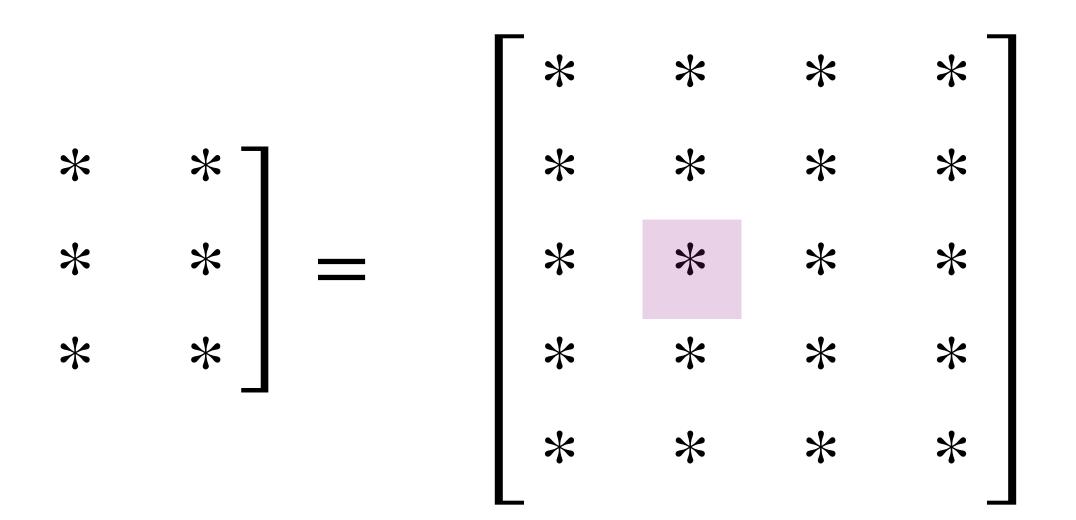


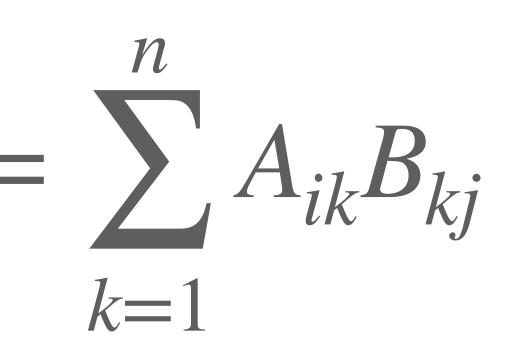
 $(AB)_{ij} =$



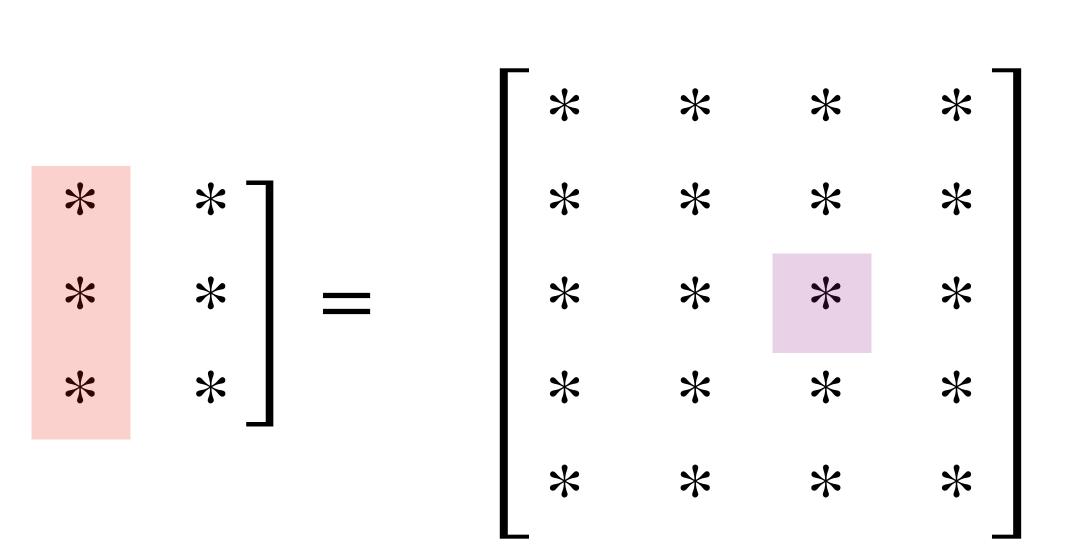


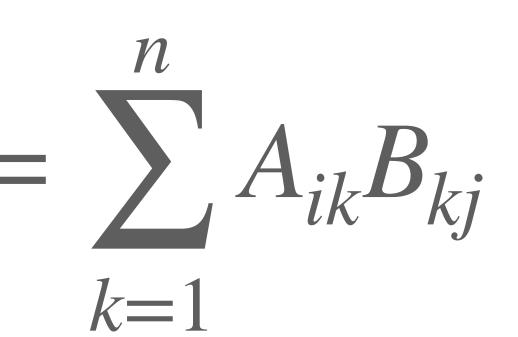
*	*	*		
*	*	*	۲*	*
*	*	*	*	*
*	*	*	*	*
*	*	*		

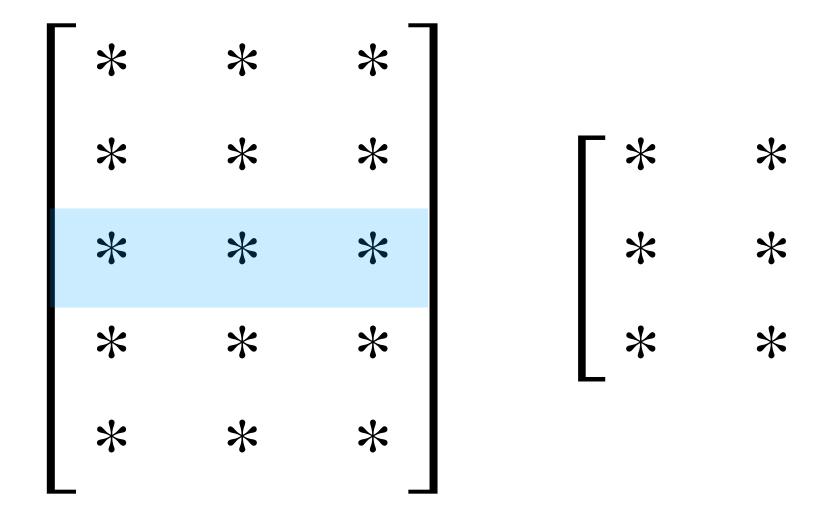


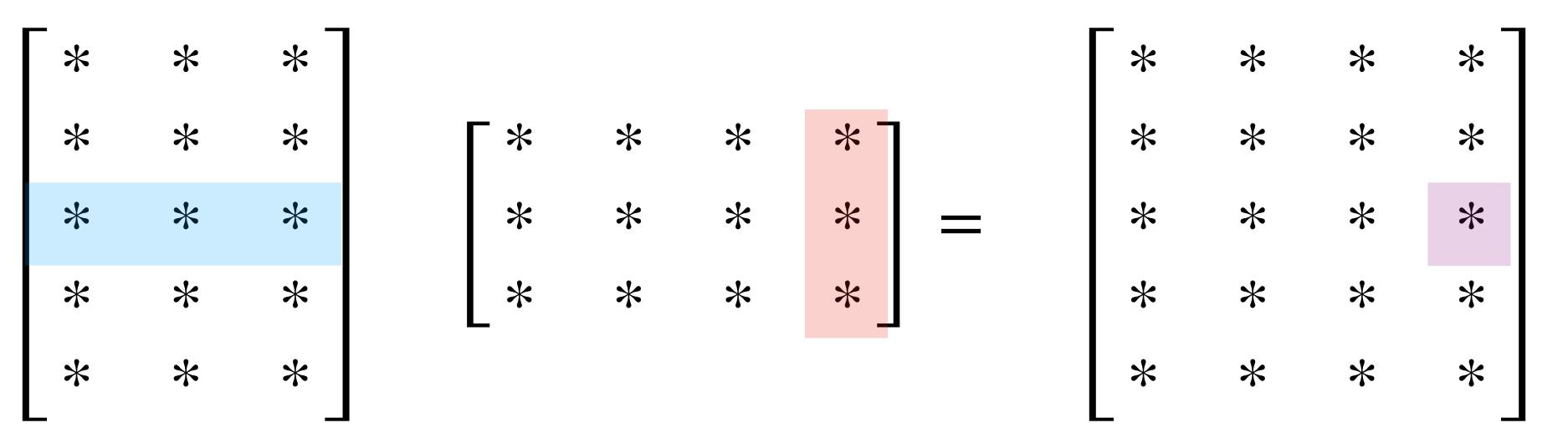


*	*	*		
*	*	*	Γ*	*
*	*	*	*	*
*	*	*	*	*
*	*	*		

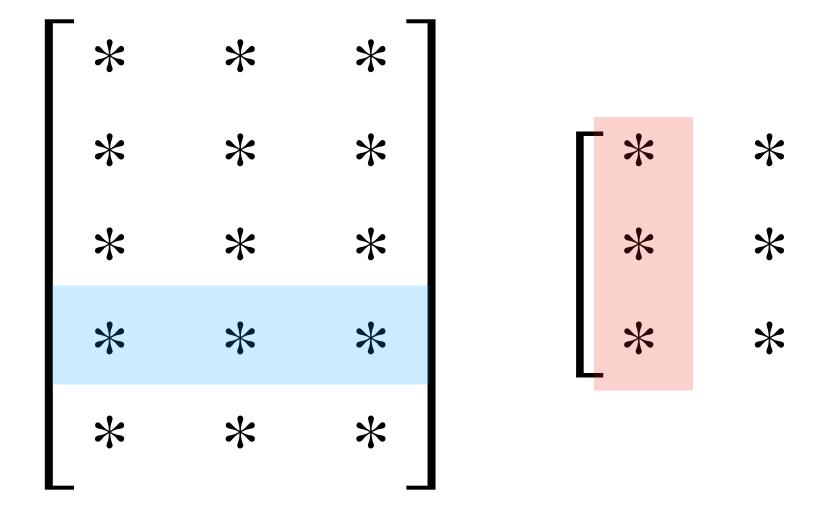


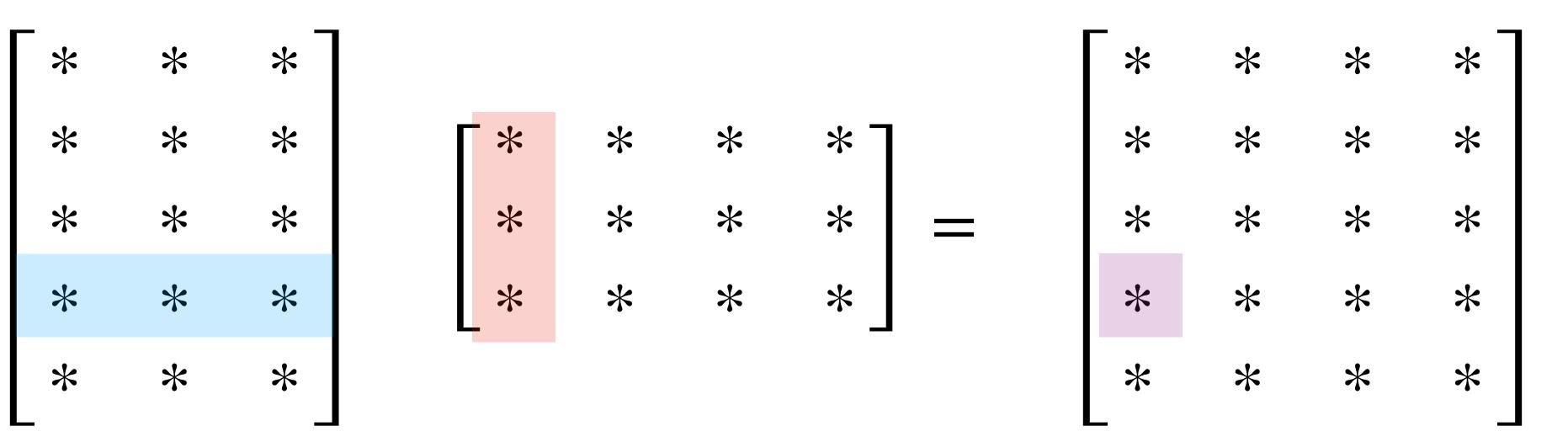


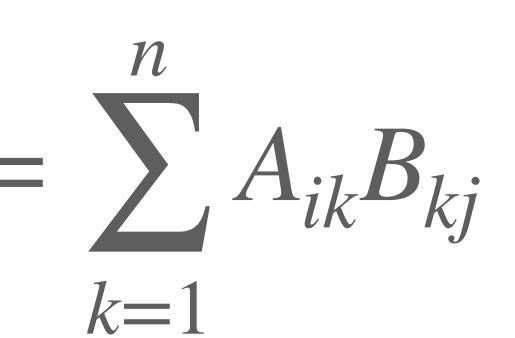


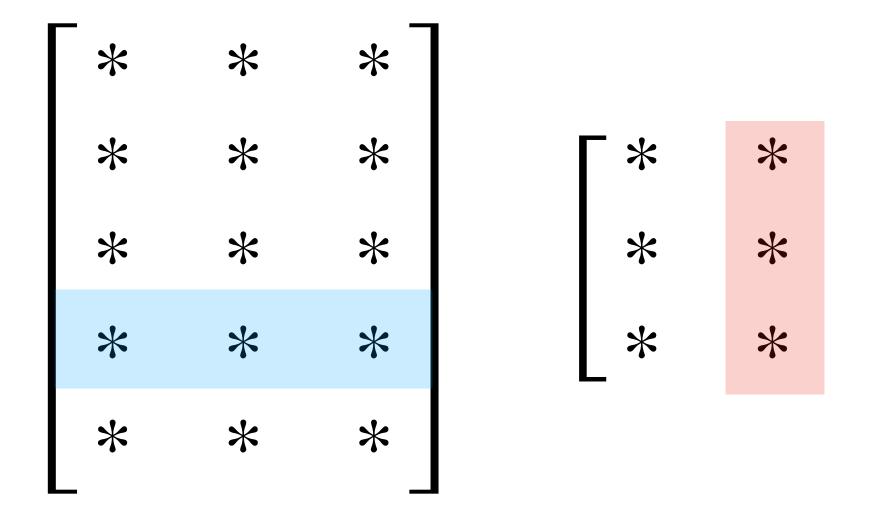


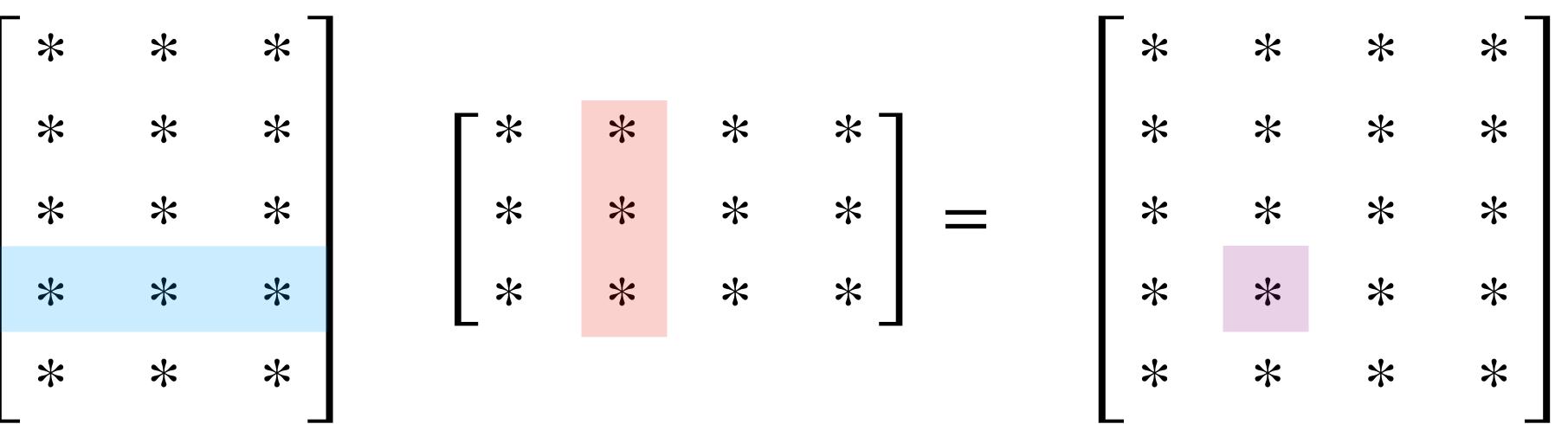
k = 1

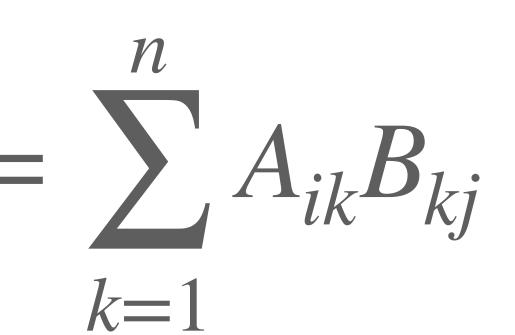


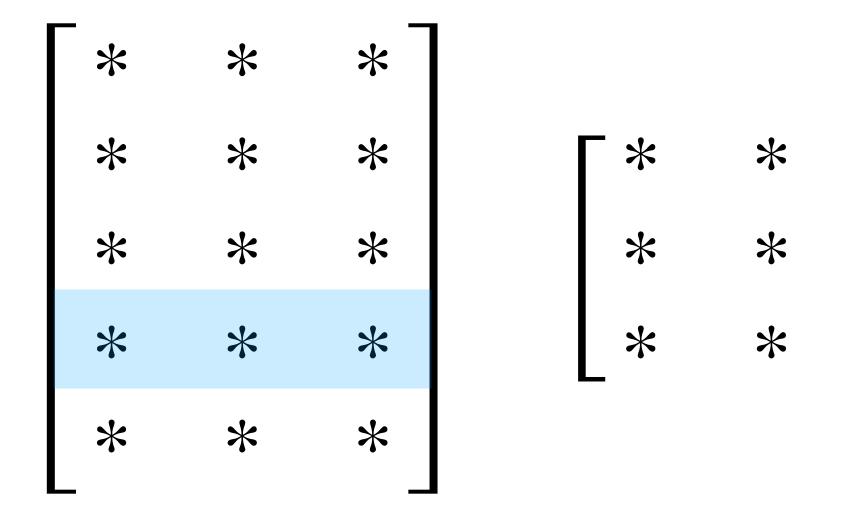




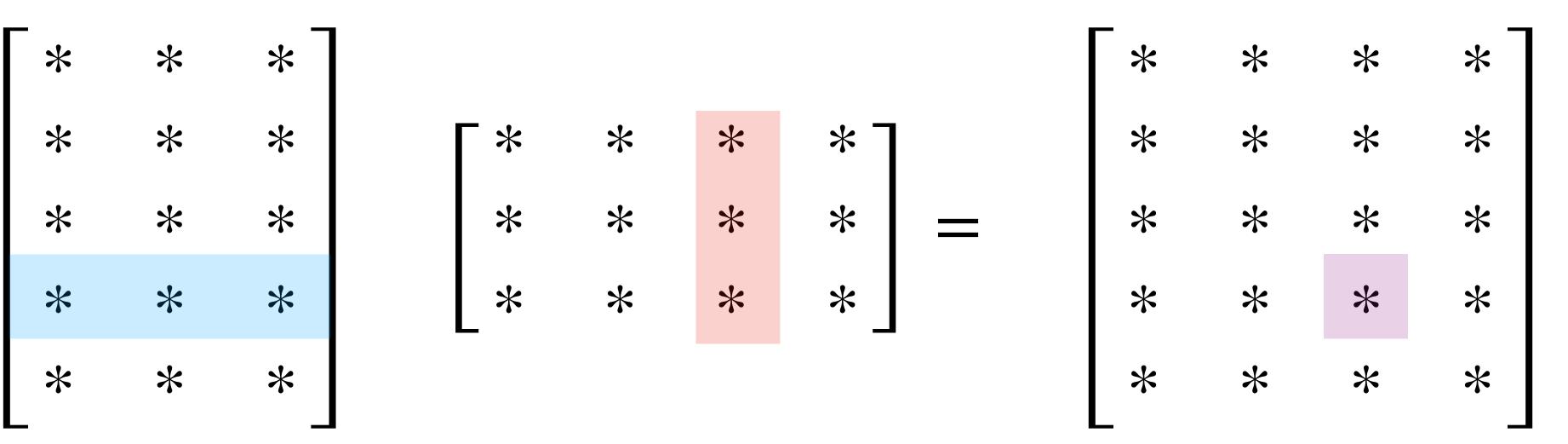




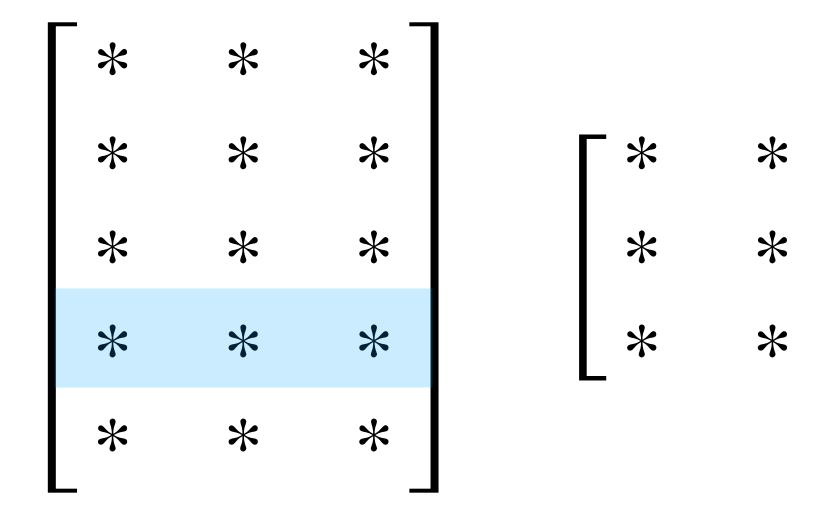


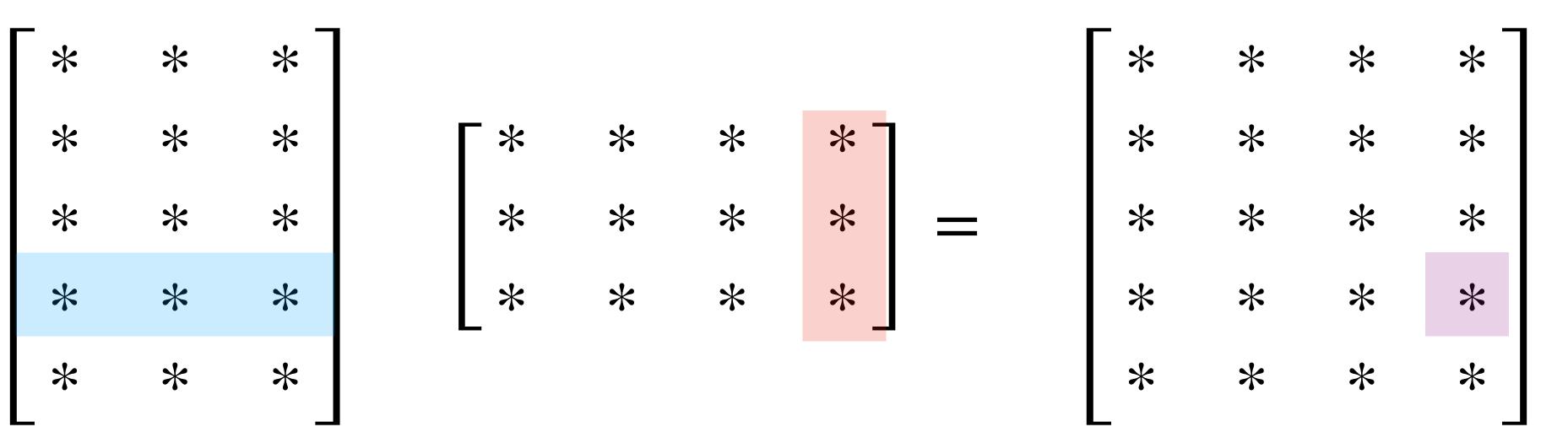


 $(AB)_{ij} =$

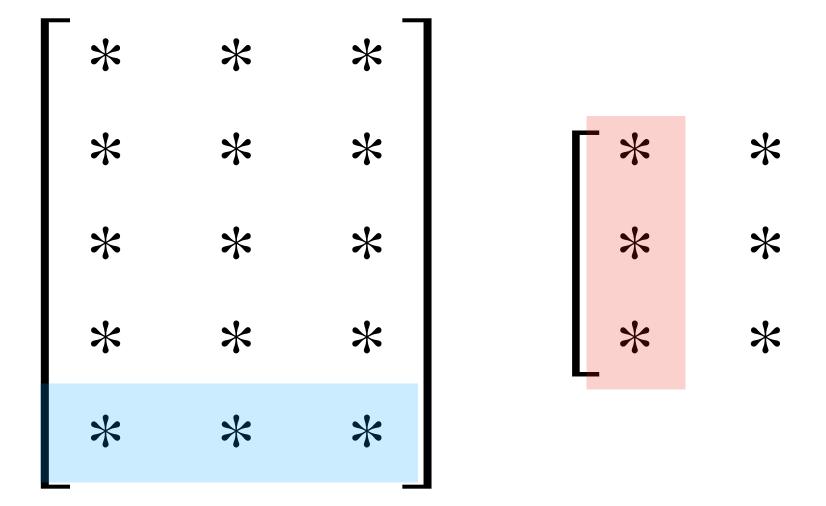




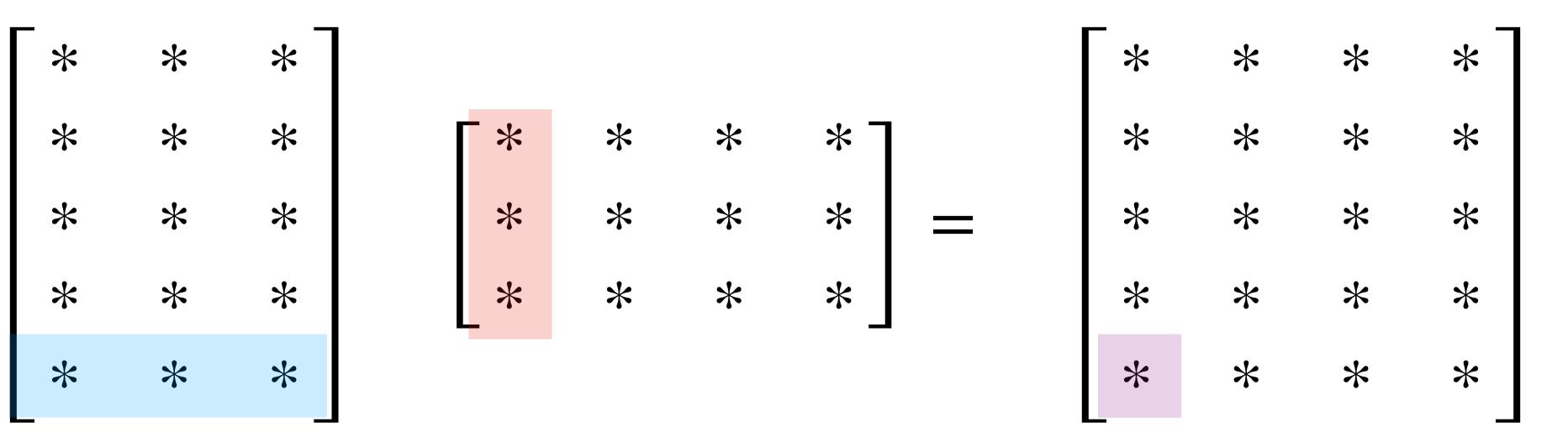




k = 1

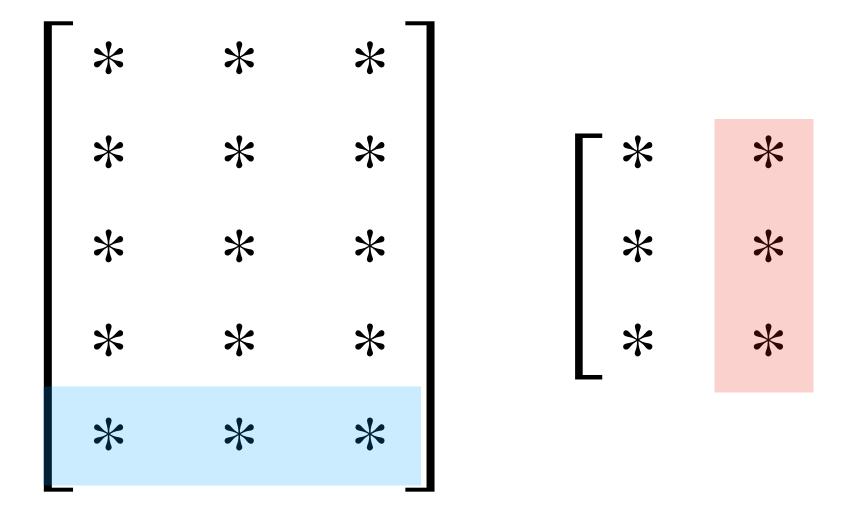


 $(AB)_{ij} =$

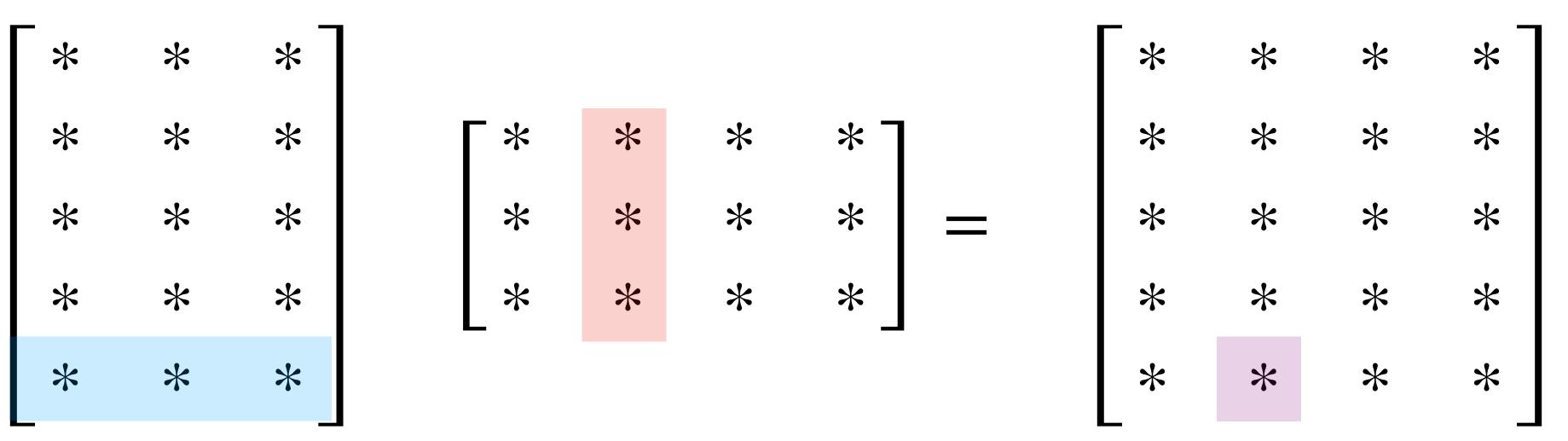


k = 1

Row-Column Rule (Pictorially)

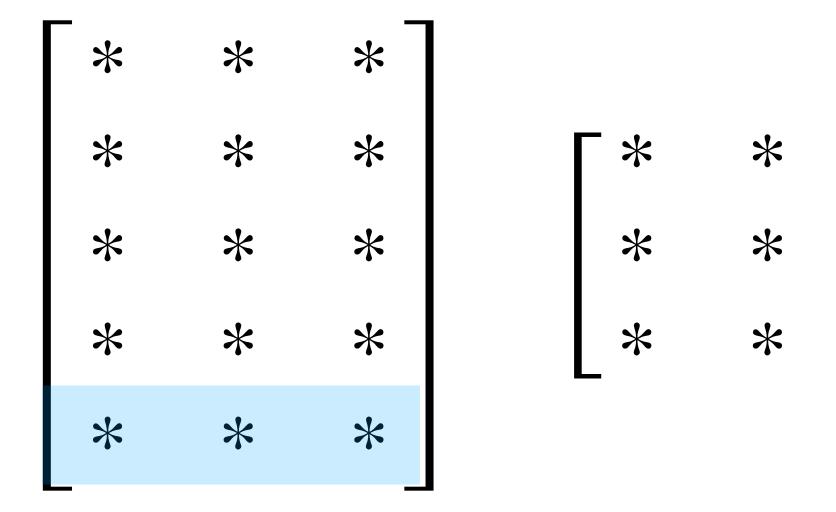


 $(AB)_{ij} =$

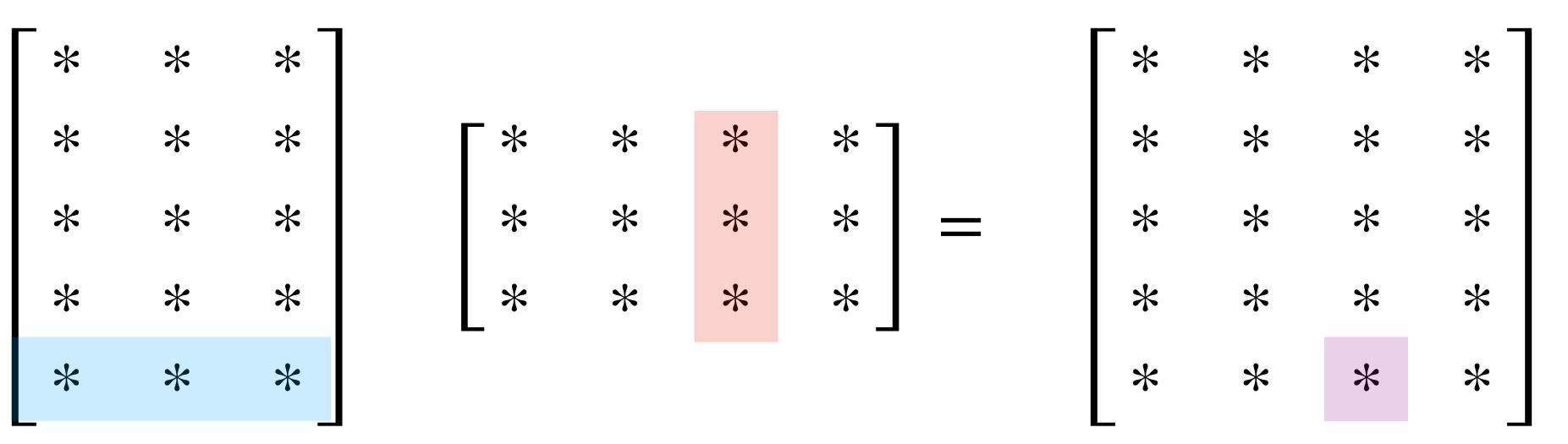


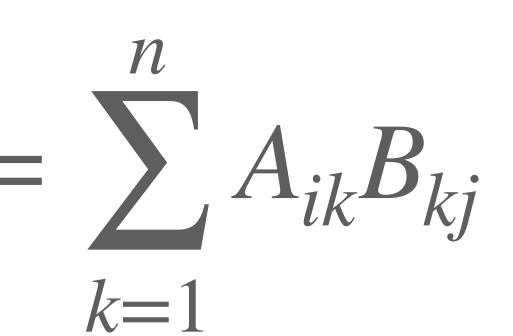
k = 1

Row-Column Rule (Pictorially)

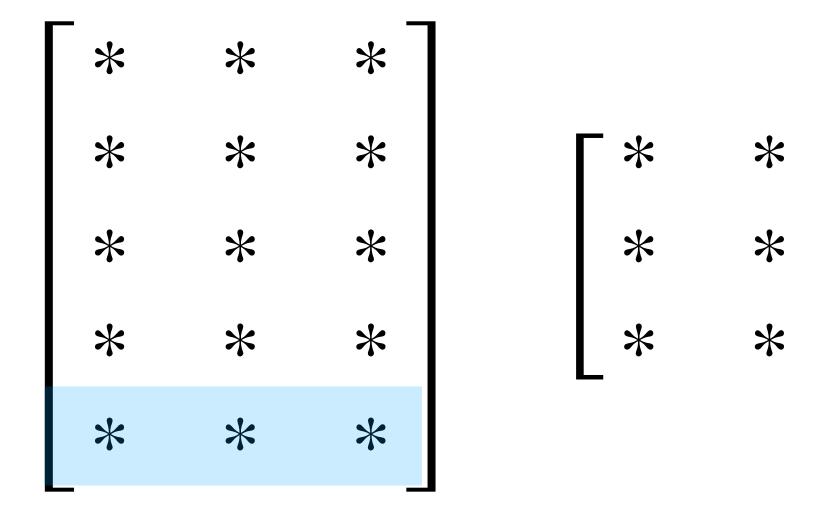


 $(AB)_{ij} =$

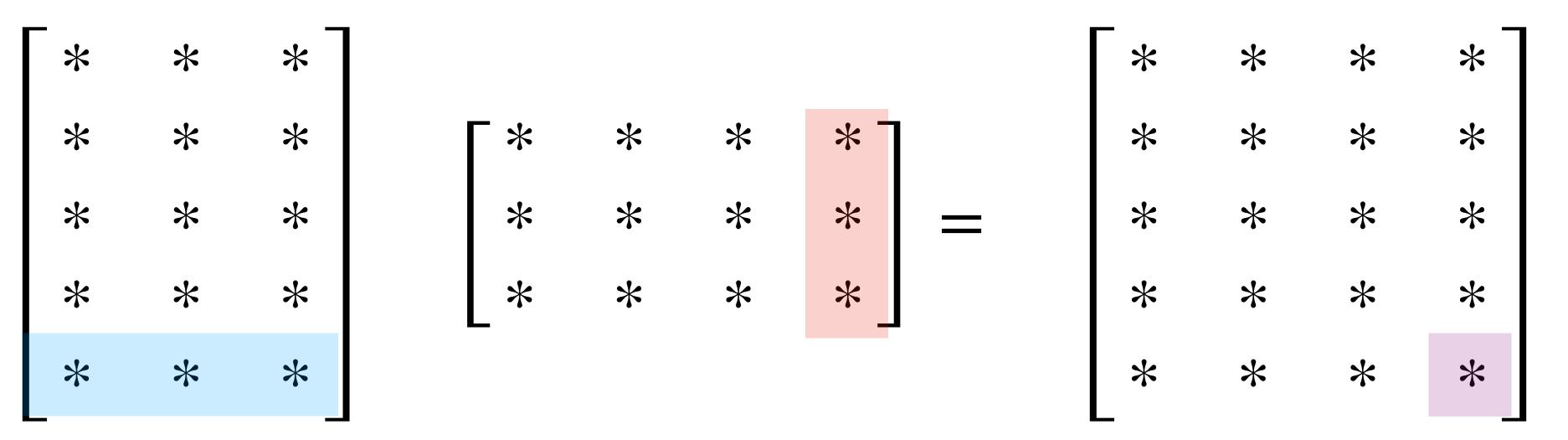


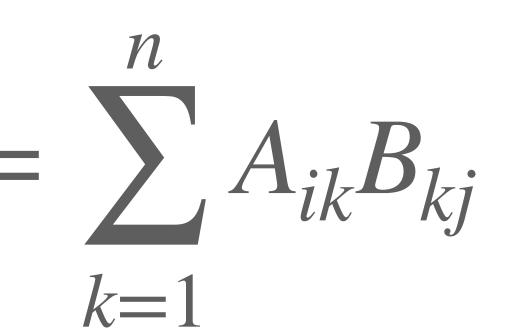


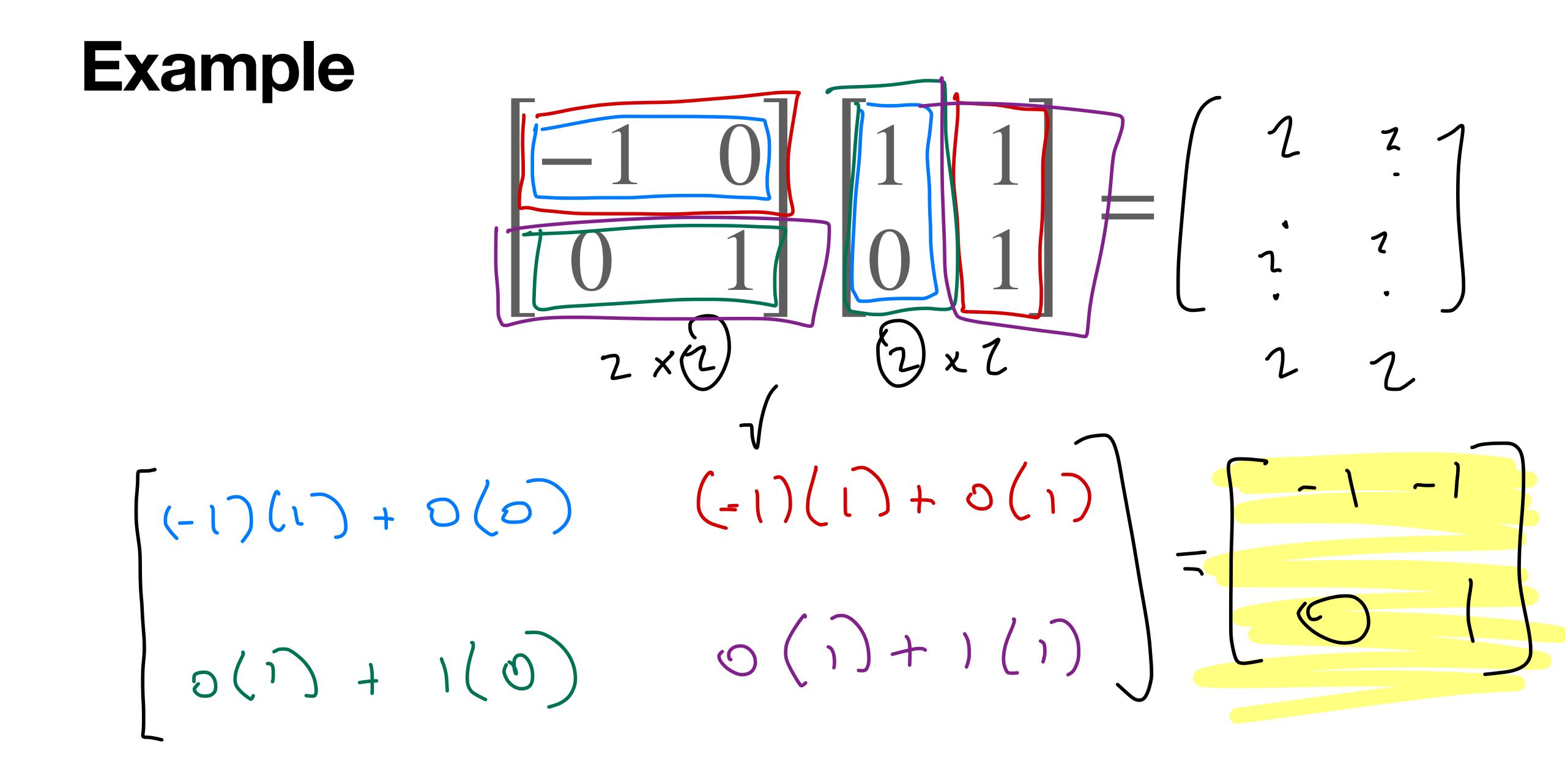
Row-Column Rule (Pictorially)



 $(AB)_{ij} =$







Matrix Operations

What about when the right matrix is a single column?

What about when the right matrix is a single column?

 $A[b_1] = [Ab_1] = Ab_1$

What about when the right matrix is a single column?

 $A[b_1] = [Ab_1] = Ab_1$ This is just vector multiplication.

What about when the right matrix is a single column?

$A[b_1] = [Ab_1] = Ab_1$ This is just vector multiplication. We can think of $|A\mathbf{b}_1 A\mathbf{b}_2 \dots A\mathbf{b}_p|$ as collection of simultaneous matrix-vector multiplications



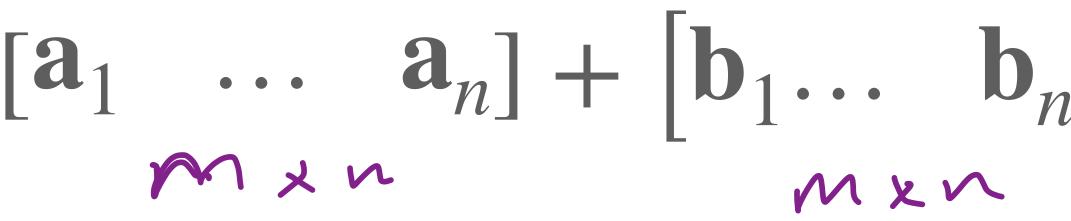
Matrix "Interface"

what does AB mean when A and multiplication *B* are matrices? addition what does A + B mean when A and *B* are matrices? what does cA mean when A is scaling matrix and c is a real number?

Matrix "Interface"

what does AB mean when A and multiplication *B* are matrices? addition what does A + B mean when A and *B* are matrices? what does cA mean when A is scaling matrix and c is a real number? These should be consistent with matrix-vector interface and vector interface

Matrix Addition



$[\mathbf{a}_1 \ \dots \ \mathbf{a}_n] + [\mathbf{b}_1 \dots \ \mathbf{b}_n] = [(\mathbf{a}_1 + \mathbf{b}_1) \ \dots \ (\mathbf{a}_n + \mathbf{b}_n)]$ Addition is done column-wise (or equivalently, element-wise)

e.g. $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 2 & 3 \\ -2 & -3 \end{vmatrix} = \begin{vmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{vmatrix} = \begin{vmatrix} 3 & 5 \\ 1 & 1 \end{vmatrix}$

Matrix Addition

$$[\mathbf{a}_1 \dots \mathbf{a}_n] + [\mathbf{b}_1 \dots \mathbf{b}_n]$$

element-wise)

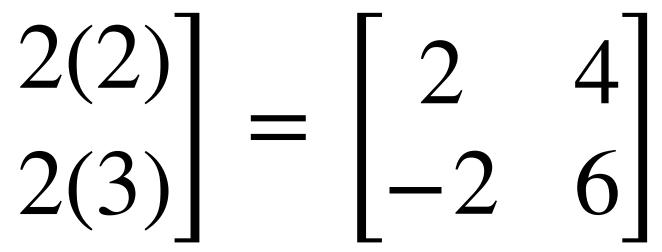
e.g. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$

This is exactly the same as vector addition, but for matrices.

$|_{n}| = |(\mathbf{a}_{1} + \mathbf{b}_{1}) \dots (\mathbf{a}_{n} + \mathbf{b}_{n})|$ Addition is done column-wise (or equivalently,

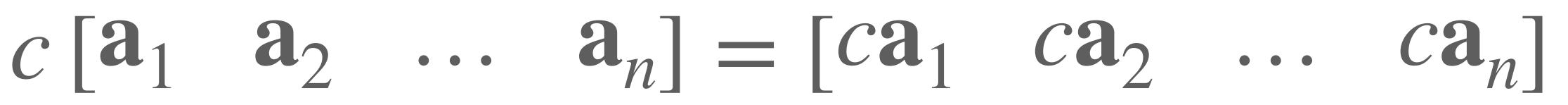
Matrix Addition and Scaling

Scaling and adding happen element-wise (or, equivalently, column-wise). e.g. $2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$



Matrix Addition and Scaling

Scaling and adding happen element-wise (or, equivalently, column-wise). e.g. $2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$



This is exactly the same as vector scaling, but for matrices.

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the same size and rand s are scalars (\mathbb{R})

We need to know/memorize these.

A + B = B + A(A + B) + C = A + (B + C)A + 0 = Ar(A + B) = rA + rB(r+s)A = rA + sAr(sA) = (rs)A

Algebraic Properties (Addition and Scaling)

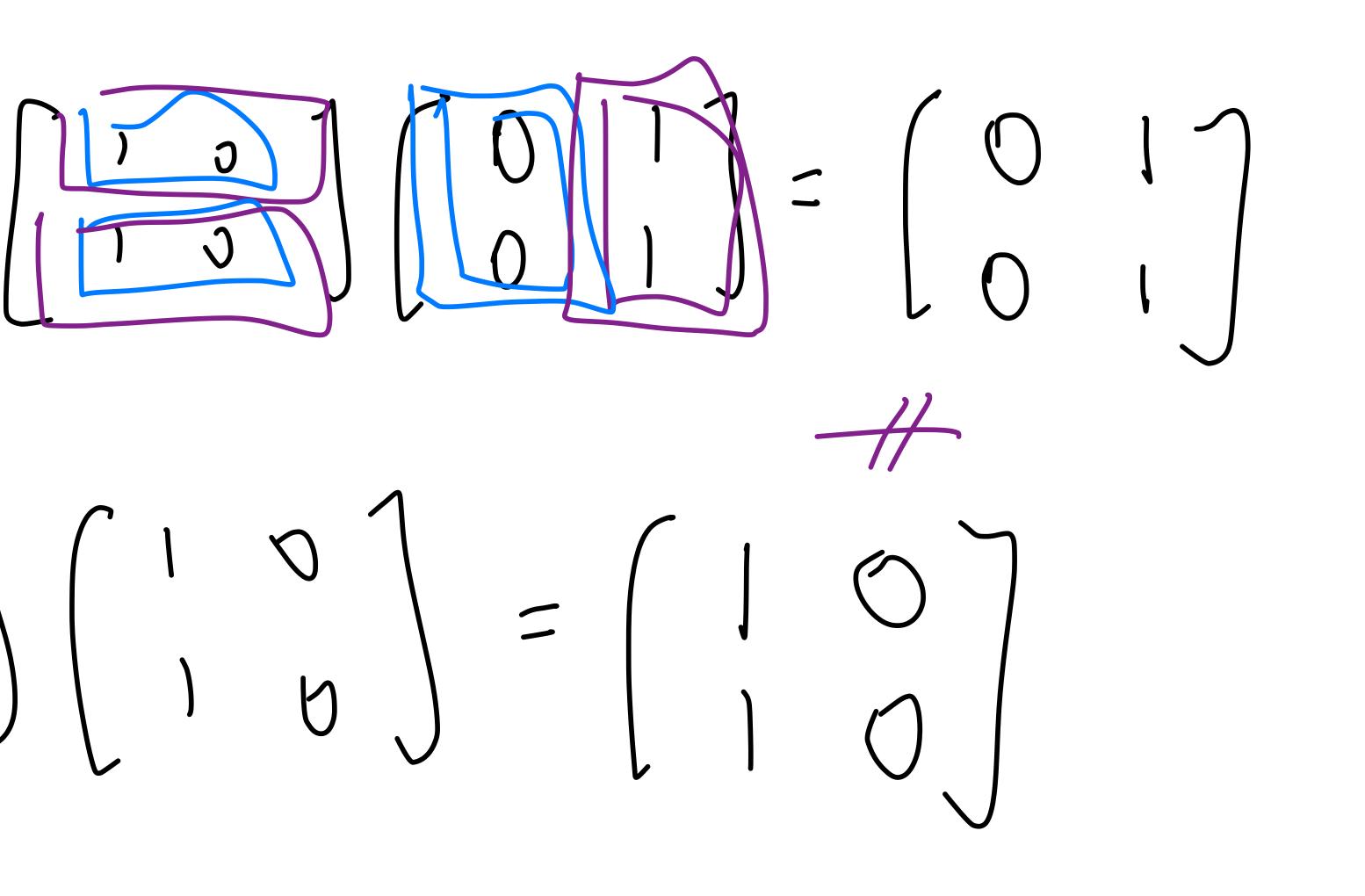
In these properties A, B, and C are matrices of the appropriate size so that everything is defined, and r is a scalar

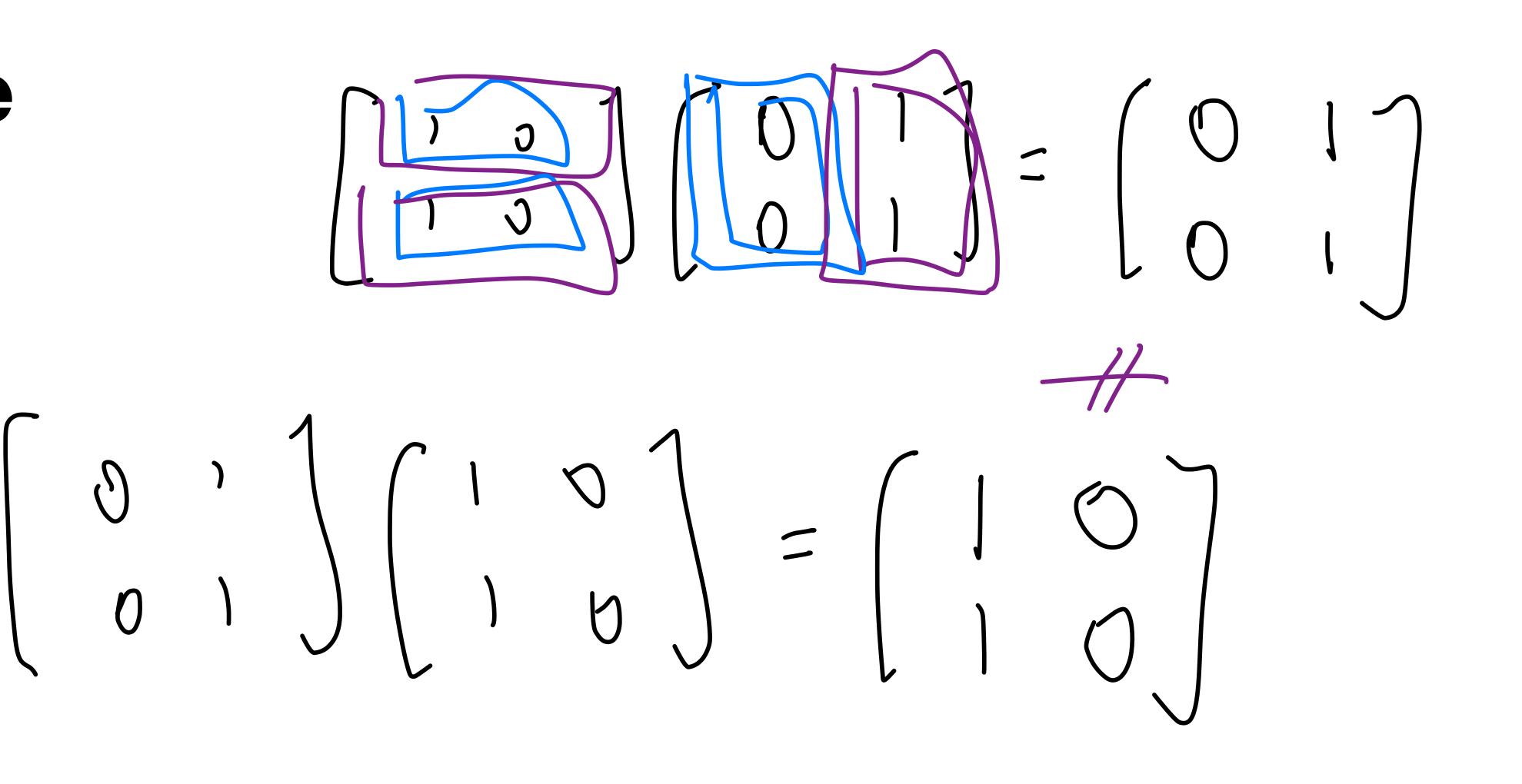
We need to know/memorize these.

A(BC) = (AB)CA(B + C) = AB + AC(B + C)A = 222 + CAB + CAB + CAB + CAB + CA

Matrix Multiplication is not Commutative

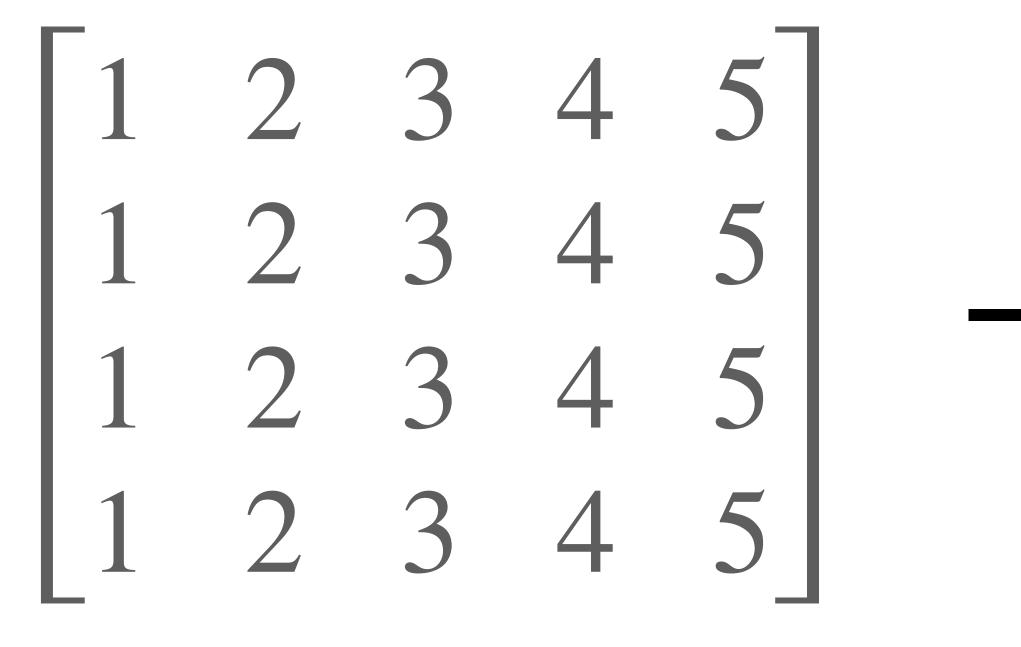
Important. AB may not be the same as BA (it may not even be defined)





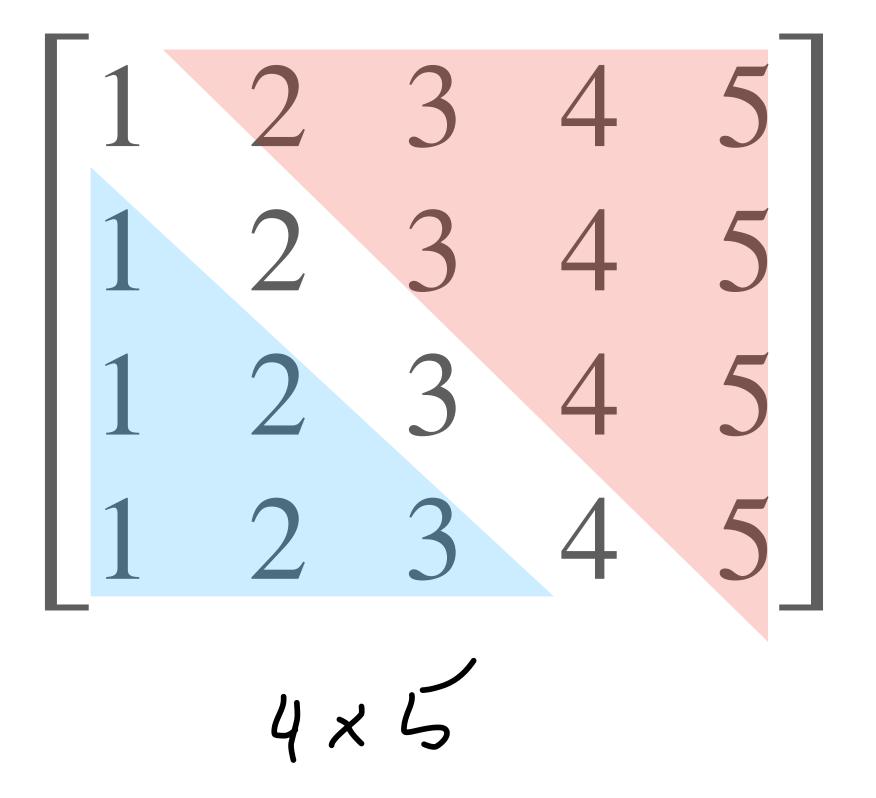
More Matrix Operations

Transpose (Pictorially)



$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 \end{bmatrix}$

Transpose (Pictorially)



Transpose

Definition. For a $m \times n$ matrix A, the **transpose** of A, written A^T , is the $n \times m$ matrix such that

 $(A^T)_{ii} = A_{ii}$

Example.

$\alpha - t [i] [j] = \alpha [j] ;$

 $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^{I} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$

Algebraic Properties (Transpose)

$$(A^{T})^{T} = A$$
$$(A + B)^{T} = A^{T} + B^{T}$$
$$(cA)^{T} = cA^{T} \text{ (where } c \text{ is a}$$
$$(AB)^{T} = B^{T}A^{T}$$

scalar)

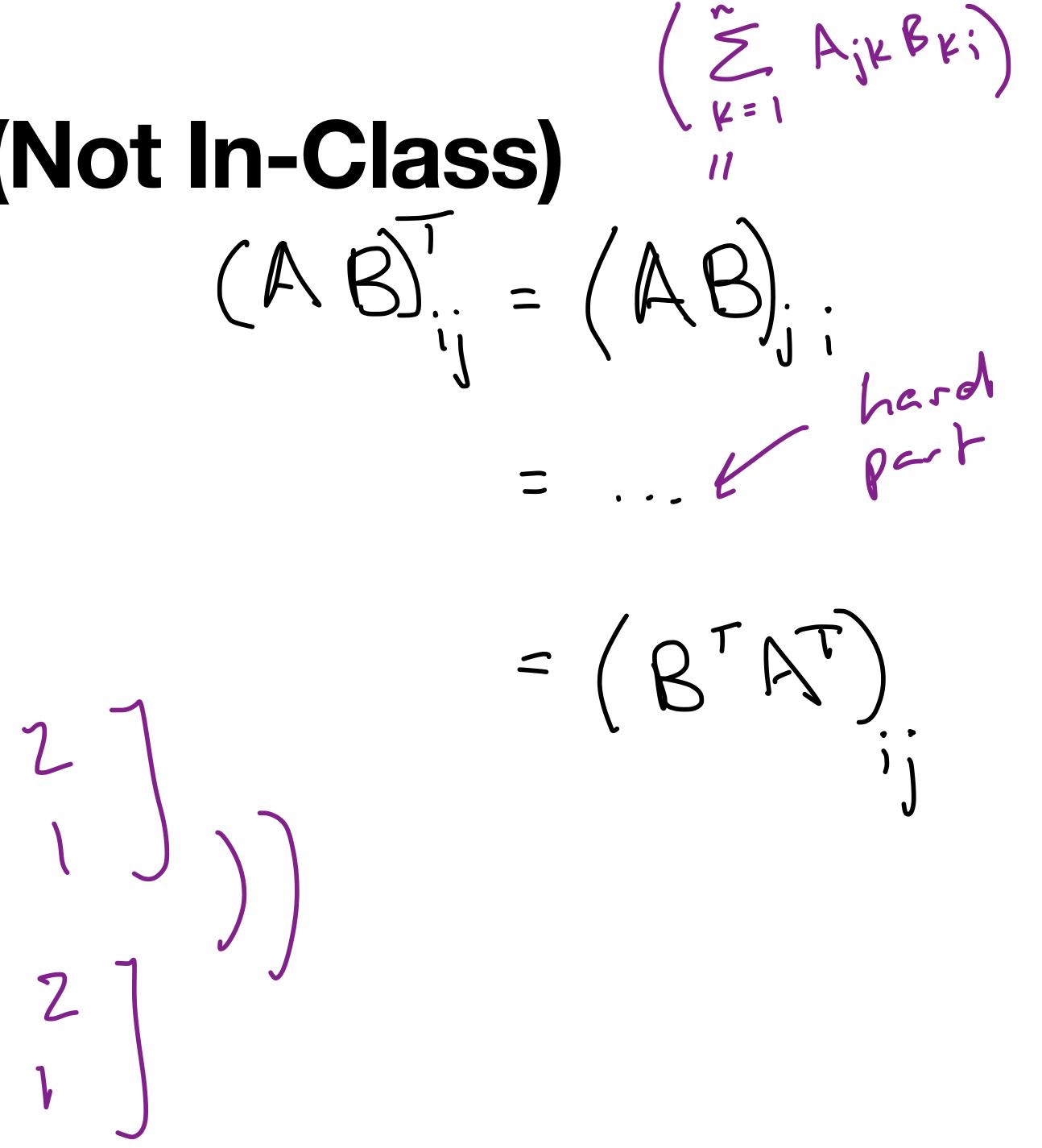
Algebraic Properties (Transpose)

$$(A^{T})^{T} = A$$
$$(A + B)^{T} = A^{T} + B^{T}$$
$$(cA)^{T} = cA^{T} \text{ (where } c \text{ is a}$$
$$(AB)^{T} = B^{T}A^{T} \text{ Important:}$$

scalar)
the order reverses!

Challenge Problem (Not In-Class)

Show that $(AB)^T = B^T A^T$. Example: $\begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}^{T}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$



Transposes and Inner Products \downarrow^{n} \downarrow^{n} For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ?

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ?

It's a $1 \times n$ matrix.

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ?

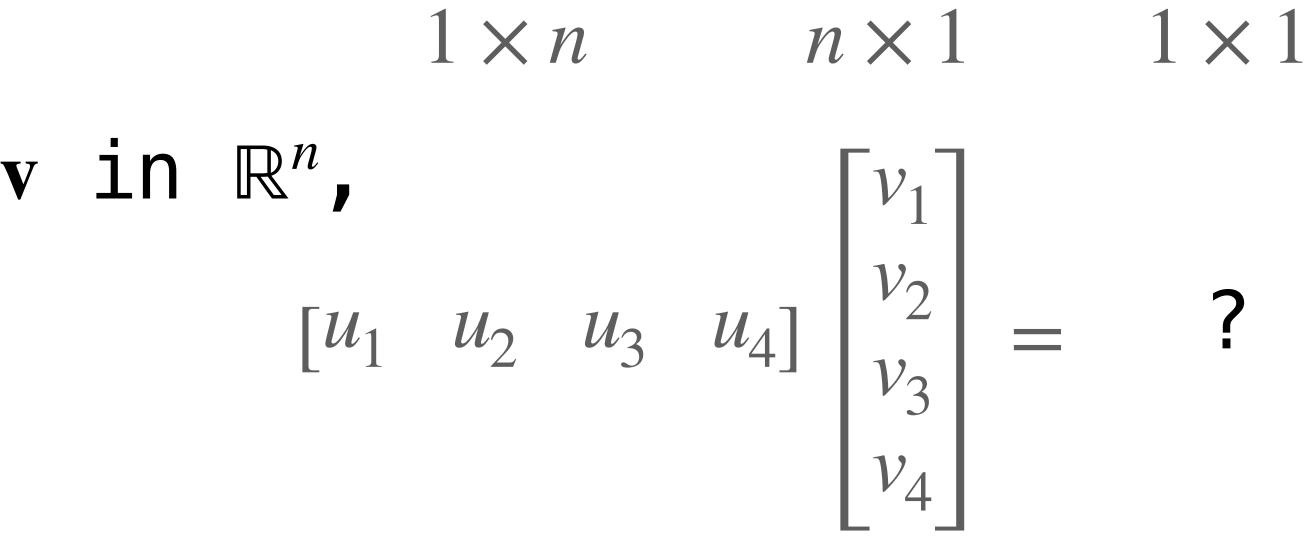
It's a $1 \times n$ matrix.

For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , is $\mathbf{u}^T \mathbf{v}$, defined? 1xm mxl 1x1

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ?

It's a $1 \times n$ matrix.

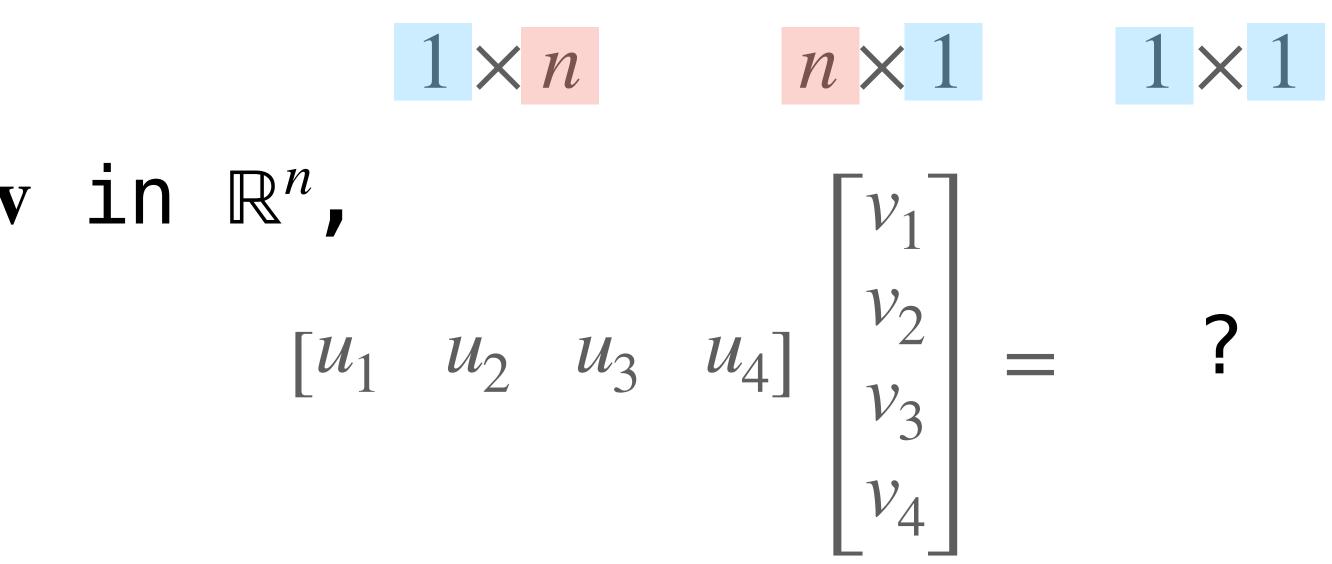
For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , is $\mathbf{u}^T \mathbf{v}$ defined?

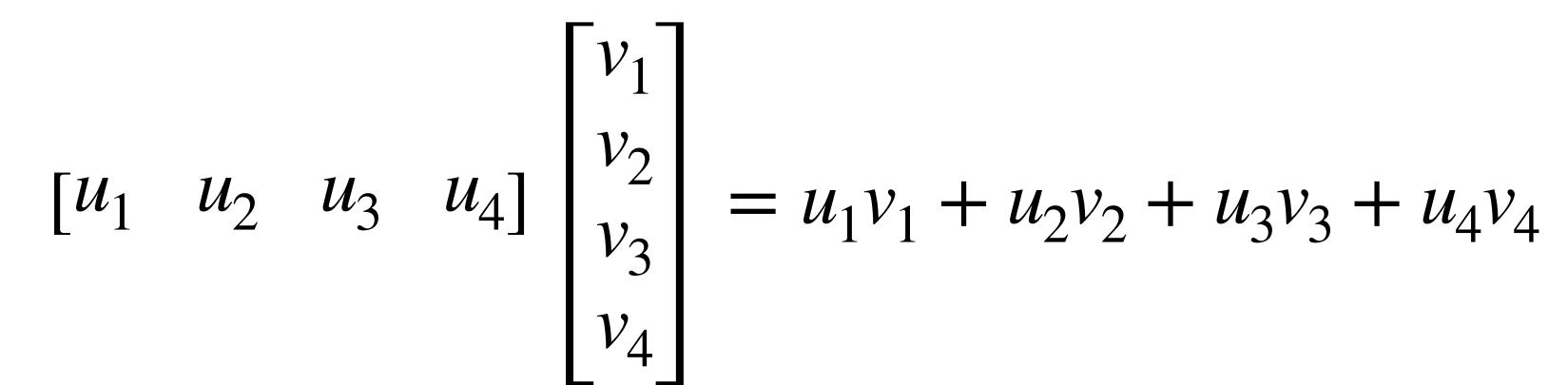


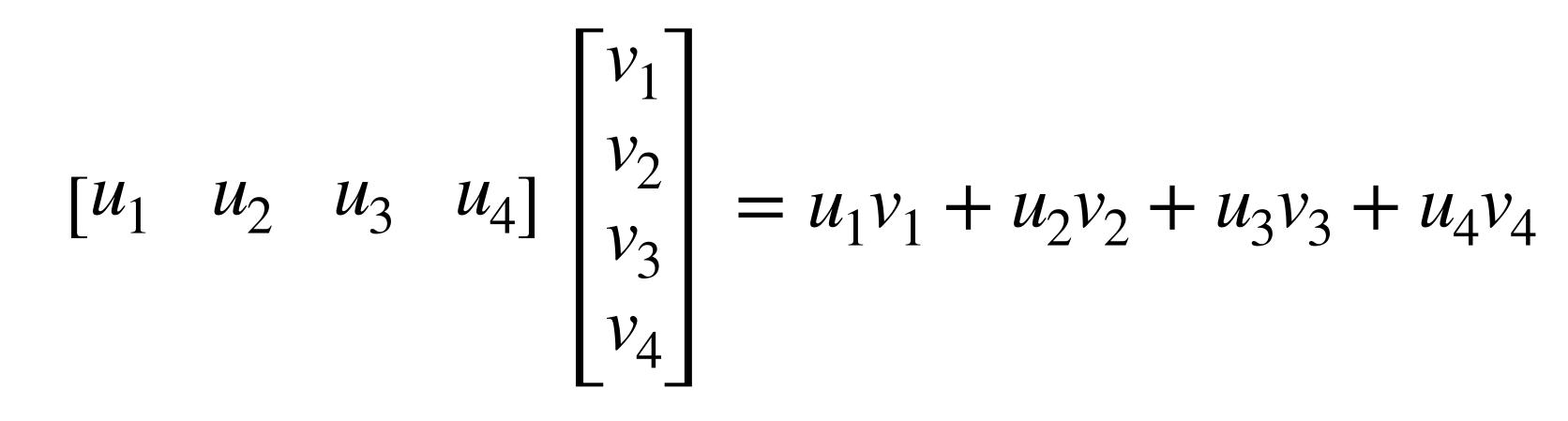
For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ?

It's a $1 \times n$ matrix.

For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , is $\mathbf{u}^T \mathbf{v}$ defined?







Definition. The inner product of two vectors u and v in \mathbb{R}^n is $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$ mult.

If A is an $n \times n$ matrix, then the product AA is defined.

If A is an $n \times n$ matrix, then the product AA is defined.

Definition. For a $n \times n$ matrix A, we write A^k for the k-fold product of A with itself.

If A is an $n \times n$ matrix, then the product AA is defined.

the k-fold product of A with itself.

What should A⁰ be?

Definition. For a $n \times n$ matrix A, we write A^k for

If A is an $n \times n$ matrix, then the product AA is defined.

the k-fold product of A with itself.

What should A^0 be?

 $10^0 \neq 1$, so it stands to reason that $A^0 = I$.

Definition. For a $n \times n$ matrix A, we write A^k for

If A is an $n \times n$ matrix, then the product AA is defined.

the k-fold product of A with itself.

What should A⁰ be?

 $10^0 = 1$, so it stands to reason that $A^0 = I$.

(we want $A^0A^k = A^{0+k} = A^k$) TAZZAK

Definition. For a $n \times n$ matrix A, we write A^k for

Matrix Powers (Computationally)

We can use numpy.linalg.matrix_power This can be *much* faster than doing a sequence of matrix multiplications, e.g., in the case of

Why?:

$$A^{16} = (A^{8}) A^{3}$$

$$A^{4}A^{3}$$

$$A^{2}A^{3}$$

$$A^{2}A^{3}$$

1. AB is not necessarily equal to BA, even if both are defined.

1. AB is not necessarily equal to BA, even if both are defined.

2. If AB = AC then it is not necessary that B = C. $P \neq P \neq P \neq P$

1. AB is not necessarily equal to BA, even if both are defined.

2. If AB = AC then it is not necessary that B = C.

3. If AB = 0 (the zero matrix) it is not necessarily the case that A = 0 or B = 0.

ノメ=の 一メ=0 メ=0

Question

Find two nonzero 2×2 matrices A and B such that AB = 0

Challenge. Choose A and B such that they have all nonzero entries.

$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

transpose

 A^T

transpose scaling A^T

transpose scaling addition (subtraction)

 A^{T} cA $A + B \qquad A + (-1)B = A - B$

transpose
scaling
addition (subtraction)
multiplication (powers)

 A^{T} cA A + B A + (-1)B = A - B AB A^{k}

transpose scaling addition (subtraction) multiplication (powers)

 A^T cA $A + B \qquad A + (-1)B = A - B$ A^k AB

What's missing?

Matrix Inverses

The identity matrix implements the "do nothing" transformation. For any v,

 $I \mathbf{v} = \mathbf{v}$

transformation. For any v,

It is the "1" of matrices. For any A

- The identity matrix implements the "do nothing"
 - $I \mathbf{v} = \mathbf{v}$
 - IA = AI = A

The identity matrix implements the "do nothing" transformation. For any v,

It is the "1" of matrices. For any A

Iv = v

IA = AI = A

These may be different sizes

$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$ $2 \times 2 \quad 2 \times 4 \qquad 2 \times 4 \qquad 4 \times 4 \qquad 2 \times 4$

 $I_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$

Definition. The $n \times n$ identity matrix is the matrix whose diagonal contains all 1s, and all other entries are 0s.

Definition. The *n*×*n* **identity matrix** is the matrix whose diagonal contains all 1s, and all other entries are 0s.

Example.

 $I_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$

 $\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

2x = 10

How do we solve this equation?

2x = 10

How do we solve this equation? Divide on both sides by 2 to get x = 5.

2x = 10

How do we solve this equation? Divide on both sides by 2 to get x = 5. Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

$2\chi = 1()$

How do we solve this equation? Divide on both sides by 2 to get x = 5. Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

$2\chi = 1()$

$\stackrel{1}{-}$ is the **reciprocal** or **multiplicative inverse** of 2.

Basic Algebra $2^{-1}(2x) = 2^{-1}(10)$ How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

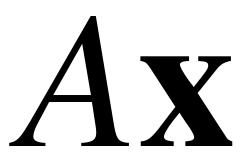
- $\stackrel{1}{-}$ is the **reciprocal** or **multiplicative inverse** of 2.

How do we solve this equation? Divide on both sides by 2 to get x = 5. Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

 $1_{X} = 5$

$\stackrel{1}{-}$ is the **reciprocal** or **multiplicative inverse** of 2.

 $\chi = 5$ How do we solve this equation? Divide on both sides by 2 to get x = 5. Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} . $\stackrel{1}{-}$ is the **reciprocal** or **multiplicative inverse** of 2.



Ax = b

How do we solve this equation?

Ax = b

How do we solve this equation? Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

Ax = b

How do we solve this equation? Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$. A^{-1} is the multiplicative inverse of A

Ax = h

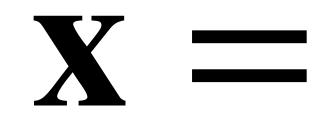
Wouldn't it be nice... $A^{-1}A\mathbf{x} = A^{-1}\mathbf{h}$

How do we solve this equation? Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

- A^{-1} is the multiplicative inverse of A

Wouldn't it be nice... $I_X = A^{-1}h$ How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$. A^{-1} is the multiplicative inverse of A



How do we solve this equation? Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$. A^{-1} is the multiplicative inverse of A

$\mathbf{X} = A^{-1}\mathbf{b}$

Do all matrices have inverses?

Do all matrices have inverses?

No. If they did, then every linear system would have a solution.

When does a matrix have an inverse?

Square Matrices

Definition. A $m \times n$ matrix A is square if m = n

i.e., it has same number of rows as columns.

*	*	*
*	*	* * *
*	*	*
*	*	*

They are the only kind of matrices...

They are the only kind of matrices... » that can have a pivot in every row <u>and</u> every column.

- They are the only kind of matrices...
- » that can have a pivot in every row and every column.

» whose transformations can be both 1-1 and onto.

- They are the only kind of matrices...
- » that can have a pivot in every row and every column.
- » whose transformations can be both 1-1 and onto. » whose columns can have full span and be
- linearly independent.

- They are the only kind of matrices...
- » that can have a pivot in every row and every column.
- » whose transformations can be both 1-1 and onto. » whose columns can have full span and be
- linearly independent.
- » that can have inverses.

Definition. For a $n \times n$ matrix A, an **inverse** of A is a $n \times n$ matrix B such that

 $AB = I_n$ and $BA = I_n$

is a $n \times n$ matrix B such that it is **singular**.

Definition. For a $n \times n$ matrix A, an inverse of A

 $AB = I_n$ and $BA = I_n$

A is **invertible** if it has an inverse. Otherwise

is a $n \times n$ matrix B such that it is **singular**. **Example.** $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$

- **Definition.** For a $n \times n$ matrix A, an **inverse** of A
 - $AB = I_n$ and $BA = I_n$
- A is **invertible** if it has an inverse. Otherwise

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

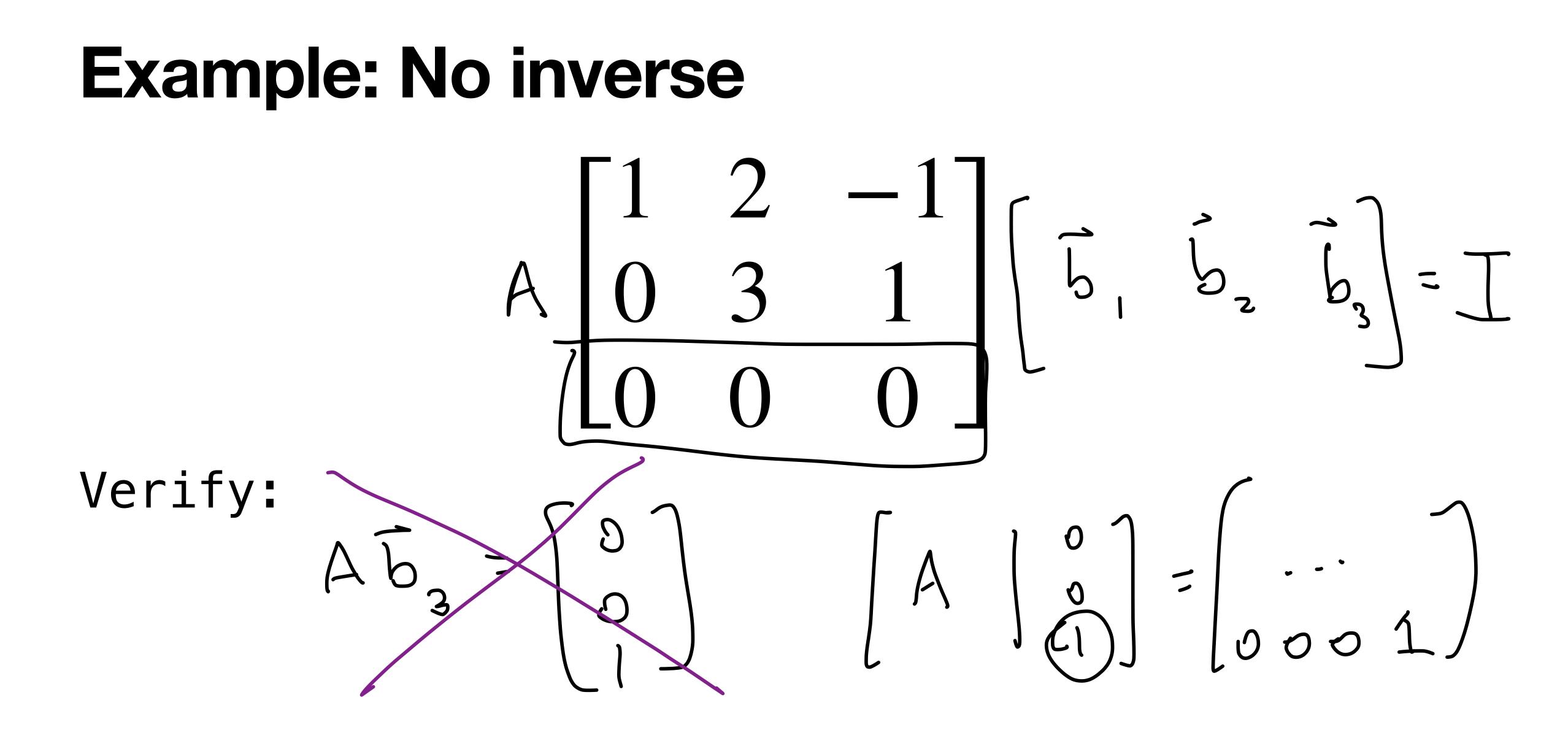
Example: Geometric

Reflection across the inverse.

Verify:

Reflection across the x_1 -axis in \mathbb{R}^2 is it's own

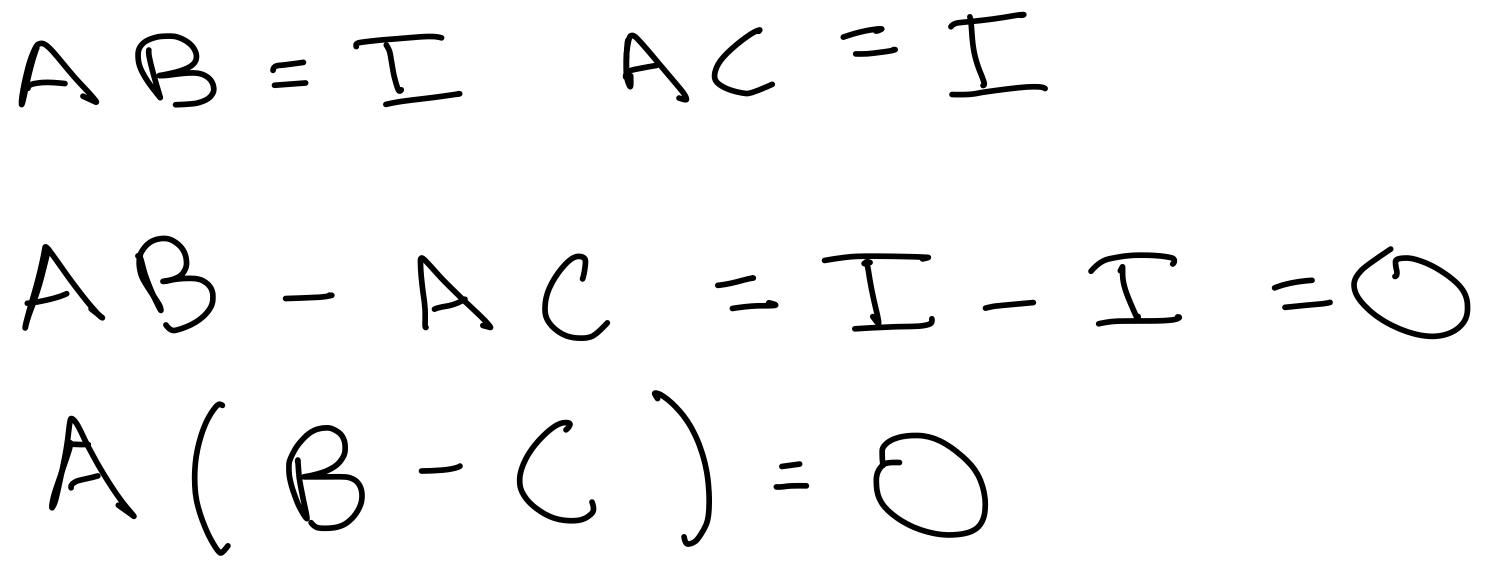
$\begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$



Inverses are Unique

Theorem. If B and C are inverses of A, then B = C

Verify:



Inverses are Unique

Theorem. If *B* and *C* are inverses of *A*, then B = C.

Verify:

If A is invertible, then we write A^{-1} for the inverse of A.

Solutions for Invertible Matrix Equations

then

has a <u>unique</u> solution for any choice of b. Verify:

Theorem. For a $n \times n$ matrix A, if A is invertible

- $A\mathbf{x} = \mathbf{b}$

Unique Solutions

If Ax = b has a <u>unique</u> solution for any choice of b, then it has

» <u>exactly one</u> solution for any choice of b

Unique Solutions

- of b, then it has
- » <u>at least one</u> solution for any choice of b
- » <u>at most one</u> solution for any choice of b

If $A\mathbf{x} = \mathbf{b}$ has a <u>unique</u> solution for any choice

Unique Solutions

- of b, then it has
- $\gg T$ is <u>onto</u>
- » T is <u>one-to-one</u>
- where T is implemented by A

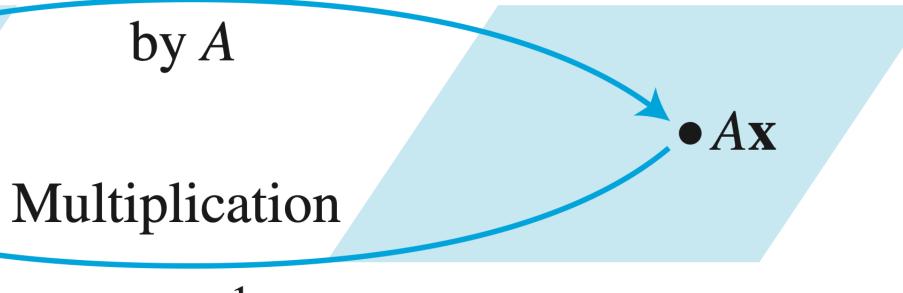
If Ax = b has a <u>unique</u> solution for any choice

Definition. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a linear transformation S such that

for any v in \mathbb{R}^n . Multiplication

X

$S(T(\mathbf{v})) = \mathbf{v}$ and $T(S(\mathbf{v})) = \mathbf{v}$



by A^{-1}

only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible.

Theorem. A $n \times n$ matrix A is invertible if and

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible.

A matrix is invertible if it's possible to "undo" its transformation without "losing information".

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible.

A matrix is invertible if it's possible to "undo" its transformation without "losing information".

Non-Example. Projection onto the x_1 -axis.

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of **exactly** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Connection to Transformations

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of **exactly** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

A transformation is a 1–1 correspondence if it is 1–1 and onto.

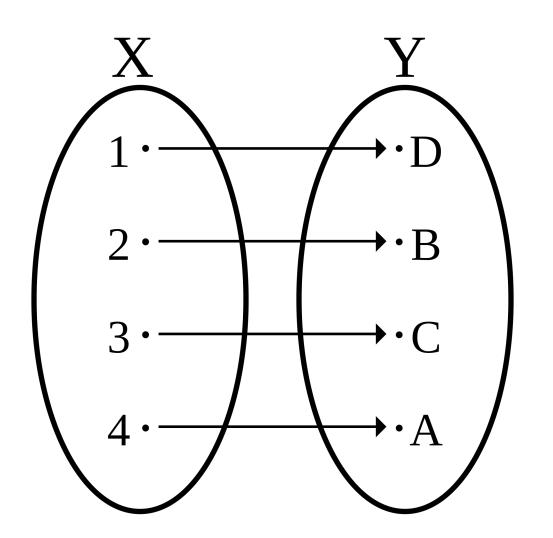
Connection to Transformations

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of **exactly** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

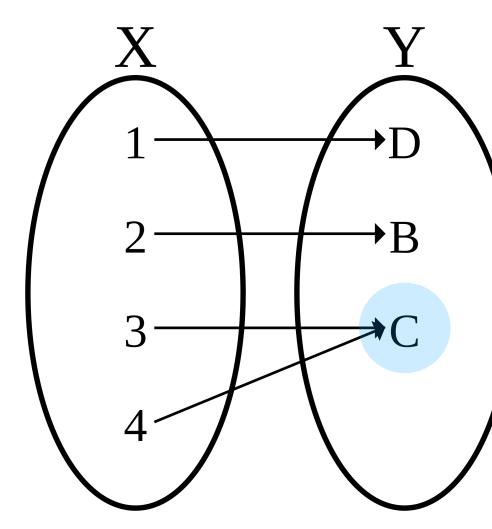
A transformation is a 1–1 correspondence if it is 1–1 and onto.

Invertible transformations are 1–1 correspondences.

Kinds of Transformations (Pictorially)

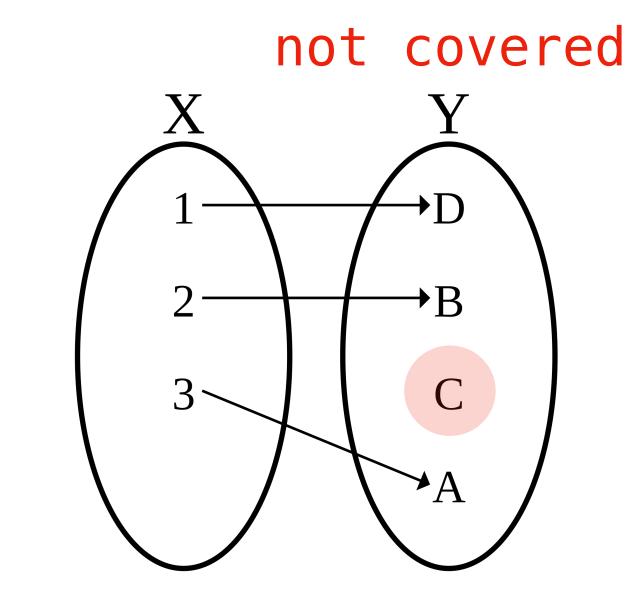


collision

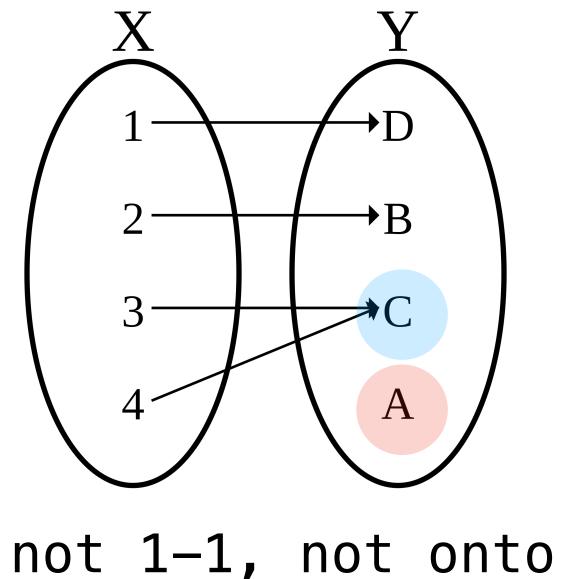


1-1 correspondence

onto, not 1-1



not covered collision



1-1 not onto

Computing Matrix Inverses

Fundamental Questions

How can we determine if a matrix has an inverse?

If a matrix has an compute it?

If a matrix has an inverse how do we

Fundamental Questions Answer 1: Try to compute it.

How can we determ: an inverse?

If a matrix has an compute it?

How can we determine if a matrix has

If a matrix has an inverse how do we

Fundamental Questions Answer 1: Try to compute it.

an inverse?

compute it?

How can we determine if a matrix has

If a matrix has an inverse how do we

Answer 2: the Invertible Matrix Theorem (IMT)

In General $A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} = I$ Can we solve for each \mathbf{b}_i ?:

In General $|A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad A\mathbf{b}_3| = I$ If we want a matrix B such that AB = I, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_i ?

Recall: In General $\begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & A\mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix}$ If we want a matrix B such that AB = I, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_i ?

Recall: In General

If we want a matrix B such that Can we solve for each \mathbf{b}_i ?

$A\mathbf{b}_1 = \mathbf{e}_1$ $A\mathbf{b}_2 = \mathbf{e}_2$ $A\mathbf{b}_3 = \mathbf{e}_3$ AB = I, then the above equation must hold (in the case B has 3 columns).

Recall: In General

- If we want a matrix B such that
- Can we solve for each \mathbf{b}_i ?

$A\mathbf{b}_1 = \mathbf{e}_1$ $A\mathbf{b}_2 = \mathbf{e}_2$ $A\mathbf{b}_3 = \mathbf{e}_3$

AB = I, then the above equation must hold (in the case B has 3 columns).

We need to solve 3 matrix equations.

Recall: How To: Matrix Inverses

- matrix A.
- **Solution.** Solve the equation $A\mathbf{x} = \mathbf{e}_i$ for every standard basis vector. Put those solutions s_1, s_2, \ldots, s_n into a single matrix

Question. Find the inverse of an invertible $n \times n$

 $\mathbf{S}_1 \quad \mathbf{S}_2 \quad \dots \quad \mathbf{S}_n$

Recall: How To: Matrix Inverses

matrix A.

Solution. Row reduce the matrix [A I] to a matrix $[I \ B]$. Then B is the inverse of A.

This is really the same thing. It's a simultaneous reduction.

Question. Find the inverse of an invertible $n \times n$

demo

Special Case: 2×2 **Matrice Inverses**

The **determinant** of a 2×2 matrix is the value ad - bc.

The **determinant** of a 2×2 matrix is the value ad - bc.

The inverse is defined is nonzero.

The inverse is defined only if the determinant

- The determinant of a 2ad bc.
- The inverse is defined is nonzero.

(see the notes on linear transformations for more information about determinants)

The determinant of a 2×2 matrix is the value

The inverse is defined only if the determinant

Example

$\begin{bmatrix} -6 & 14 \\ 3 & -7 \end{bmatrix}$

Is the above matrix invertible?

$\begin{bmatrix} -6 & 14 \\ 3 & -7 \end{bmatrix}$

Is the above matrix invertible? No. The determinant is (-6)(-7) - 14(3) = 42 - 42 = 0

$\begin{bmatrix} -6 & 14 \\ 3 & -7 \end{bmatrix}$

Algebra of Matrix Inverses

How To: Verifying an Inverse

- **Question.** Given an invertible matrix *B* and some matrix *C*, demonstrate that $B^{-1} = C$.
- **Answer.** Show that BC = I (or CB = I, but you don't have to do both).
 - This works because inverses are unique.

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A, the matrix A^{-1} is invertible and

- $(A^{-1})^{-1} = A$

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A, the matrix A^T is invertible and

- $(A^T)^{-1} = (A^{-1})^T$

Algebraic Properties (Matrix Inverses)

the matrix AB is invertible and

- **Theorem.** For a $n \times n$ invertible matrices A and B,
 - $(AB)^{-1} = B^{-1}A^{-1}$

Question

Suppose that A is a $n \times n$ invertible matrix such that $A = A^T$ and B is a $m \times n$ matrix.

Simplify the expression $A(BA^{-1})^T$ using the algebraic properties we've seen.

Answer: B^T

$A(BA^{-1})^T$ $A = A^T$

Motivation

Question. How do we know if a square matrix is invertible?

Answer. Every perspective we've taken so far can help us answer this question.

Then the following hold. 1. A^T is invertible Verify:

Theorem. Suppose A is a $n \times n$ invertible matrix.

- Then the following hold.

Verify:

Theorem. Suppose A is a $n \times n$ invertible matrix.

2. $A\mathbf{x} = \mathbf{b}$ has at <u>least</u> one solution for every **b** 3. $A\mathbf{x} = \mathbf{b}$ has at <u>most</u> one solution for every **b** 4. $A\mathbf{x} = \mathbf{b}$ has at <u>exactly</u> one solution for every **b**

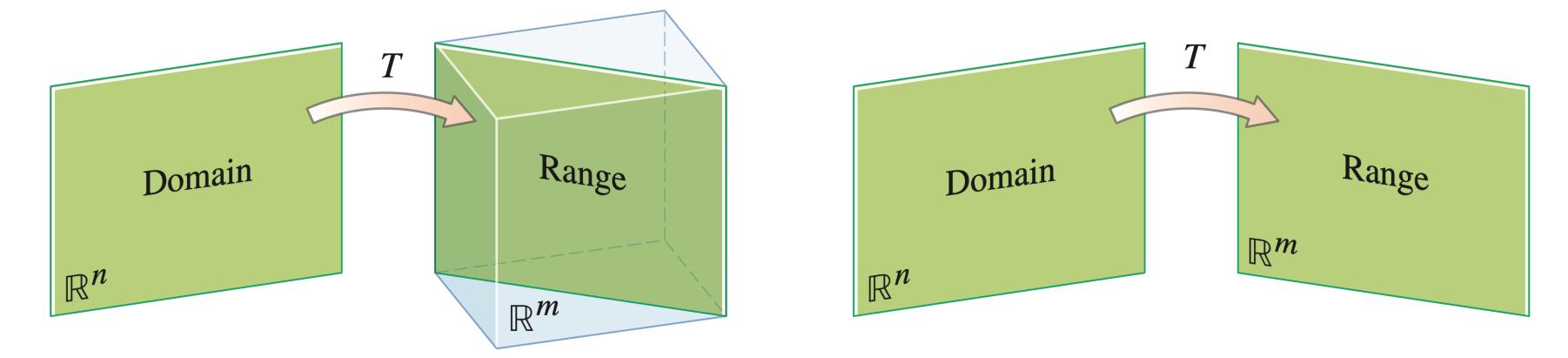
- **Theorem.** Suppose A is a $n \times n$ invertible matrix. Then the following hold.
- 5. A has a pivot in every <u>column</u> 6. A has a pivot in every <u>row</u> 7. A is row equivalent to I_n

- **Theorem.** Suppose A is a $n \times n$ invertible matrix. Then the following hold.
- 8. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution 9. The columns of A are linearly independent 10. The columns of A span \mathbb{R}^n

one vector v in \mathbb{R}^n (where T(v) = b).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector **b** in \mathbb{R}^m is the image of at least

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector **b** in \mathbb{R}^m is the **image of at least** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

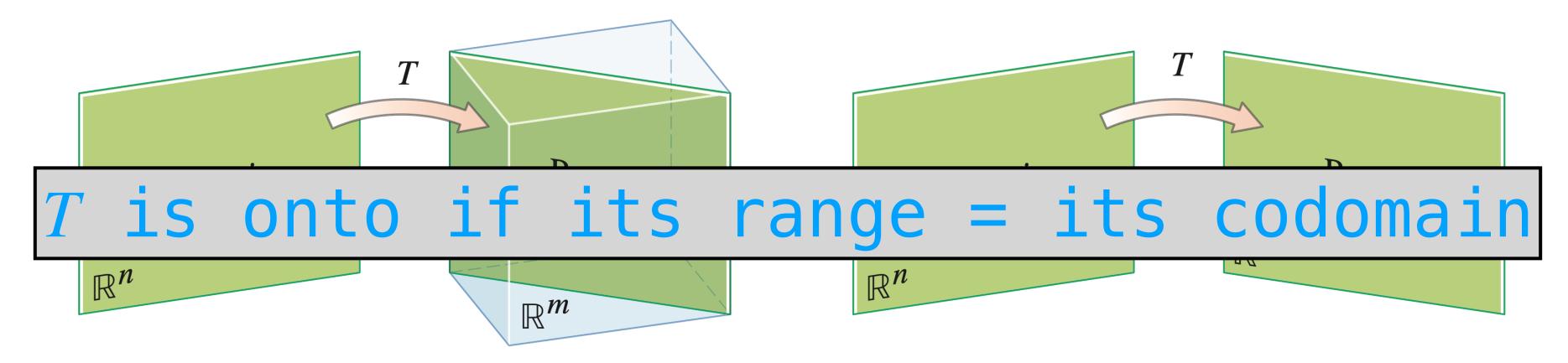


T is *not* onto \mathbb{R}^m

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

T is onto \mathbb{R}^m

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector **b** in \mathbb{R}^m is the **image of at least** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).



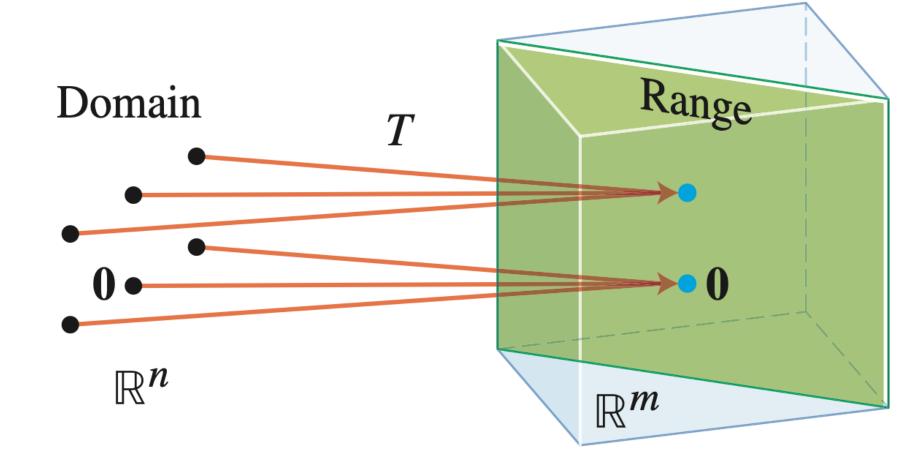
T is *not* onto \mathbb{R}^m

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

T is onto \mathbb{R}^m

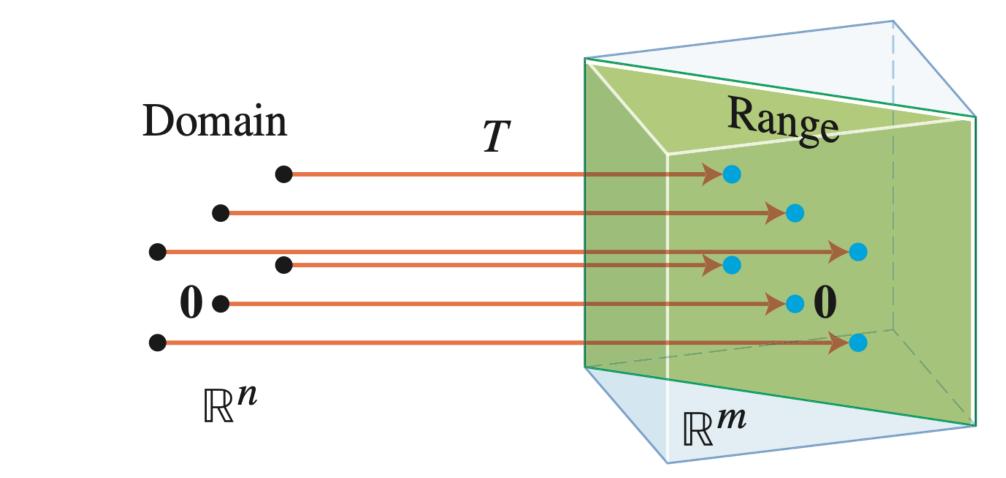
Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is one**to-one** if any vector **b** in \mathbb{R}^m is the image of at most one vector v in \mathbb{R}^n (where T(v) = b).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector **b** in \mathbb{R}^m is the image of at most one vector v in \mathbb{R}^n (where T(v) = b).



T is *not* one-to-one

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald



T is one-to-one

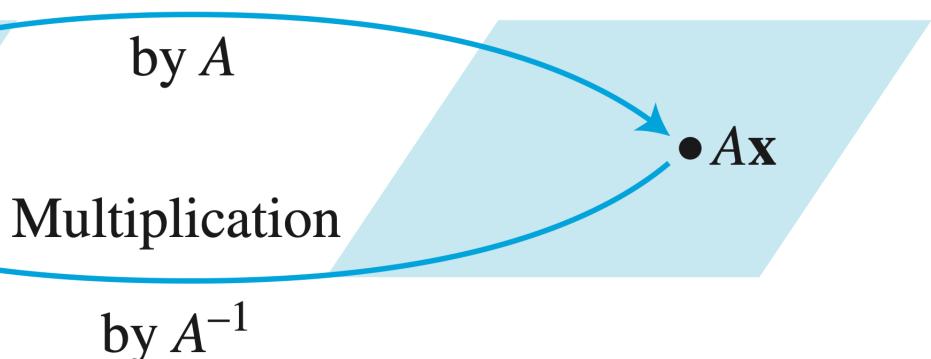
Recall: Invertible Transformations

Definition. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a linear transformation S such that

for any v in \mathbb{R}^n . Multiplication

X

$S(T(\mathbf{v})) = \mathbf{v}$ and $T(S(\mathbf{v})) = \mathbf{v}$



Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of **exactly** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of **exactly** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

A transformation is a 1–1 correspondence if it is 1–1 and onto.

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of **exactly** one vector **v** in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

A transformation is a 1–1 correspondence if it is 1–1 and onto.

Invertible transformations are 1–1 correspondences.

Invertible Matrix Theorem

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

- 11. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto 12. $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one 13. $\mathbf{x} \mapsto A\mathbf{x}$ is a one-to-one correspondence
- 14. $\mathbf{x} \mapsto A\mathbf{x}$ is invertible

Verify:

Taking Stock: IMT

- The following are logically equivalent:
- 1. A is invertible
- 2. A^T is invertible
- 3.Ax = b has at least one solution for any
 b
- **4.** $A\mathbf{x} = \mathbf{b}$ has at most one solution for any \mathbf{b}
- **5.** $A\mathbf{x} = \mathbf{b}$ has a unique solution for any **b**
- 6. A has n pivots (per row and per column)
- 7. A is row equivalent to I
- 8. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- 9. The columns of *A* are linearly independent
- 10. The columns of A span \mathbb{R}^n
- 11. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto
- 12.x \mapsto Ax is one-to-one
- 13.x \mapsto Ax is a one-to-one correspondence
- 14.x \mapsto Ax is invertible

These all express the same thing

(this is a stronger statement than we just verified)

Taking Stock: IMT

- The following are logically equivalent:
- **1.** *A* is invertible
- $2 \cdot A^T$ is invertible
- **3.** $A\mathbf{x} = \mathbf{b}$ has at least one solution for any b
- 4. $A\mathbf{x} = \mathbf{b}$ has at most one solution for any **b**
- 5. $A\mathbf{x} = \mathbf{b}$ has a unique solution for any **b**
- 6. A has n pivots (per row and per column)
- 7. A is row equivalent to I
- 8. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution
- 9. The columns of A are linearly independent
- 10. The columns of A span \mathbb{R}^n
- 11. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto

!!

- 12. $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one
- $13.x \mapsto Ax$ is a one-to-one correspondence
- 14. $\mathbf{x} \mapsto A\mathbf{x}$ is invertible

These all express the same thing

(this is a stronger statement than we just verified)

only for square matrices !!

Theorem. If A is square, then

A is 1-1 if and only if A is onto

Theorem. If A is square, then We only need to check one of these.

- A is 1-1 if and only if A is onto

Theorem. If A is square, then We only need to check one of these. Warning. Remember this only applies square

matrices.

- A is 1-1 if and only if A is onto

Theorem. If A is square, then A is invertible $\equiv Ax = 0$ implies x = 0

Theorem. If A is square, then behaves on 0.

A is invertible $\equiv Ax = 0$ implies x = 0Invertibility is completely determined by how A

Question (Conceptual)

sequence of row operations), the B is also invertible.

True or **False:** If A is invertible, and B is row equivalent to A (we can transform B into A by a

Answer: True

Row reductions don't change the number of pivots.

Question

If $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$ is invertible, then is your answer.

 $[(\mathbf{a}_1 + \mathbf{a}_2 - 2\mathbf{a}_3) (\mathbf{a}_2 + 5\mathbf{a}_3) \mathbf{a}_3]$ also invertible? Justify

Consider $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]^T$. We can get to $[(\mathbf{a}_1 + \mathbf{a}_2 - 2\mathbf{a}_3) \ (\mathbf{a}_2 + 5\mathbf{a}_3) \ \mathbf{a}_3]^T$ by <u>row operations</u>

Summary

The algebra of matrices can help us simplify matrix expressions.

perspectives we've taken so far.

The invertible matrix theorem connects all the