Matrix Inverses

Geometric Algorithms
Lecture 11

Practice Problem(s)

1. Compute
$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$$

2. Find a pair of 2D linear transformations T_1 and T_2 such that T_1 followed by T_2 is not the same as T_2 followed by T_1 .

Answer

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 2 \end{bmatrix}$$

Objectives

- 1. Define a few more important matrix operations
- 2. Motivate and define matrix inverses
- 3. Connect everything(!)

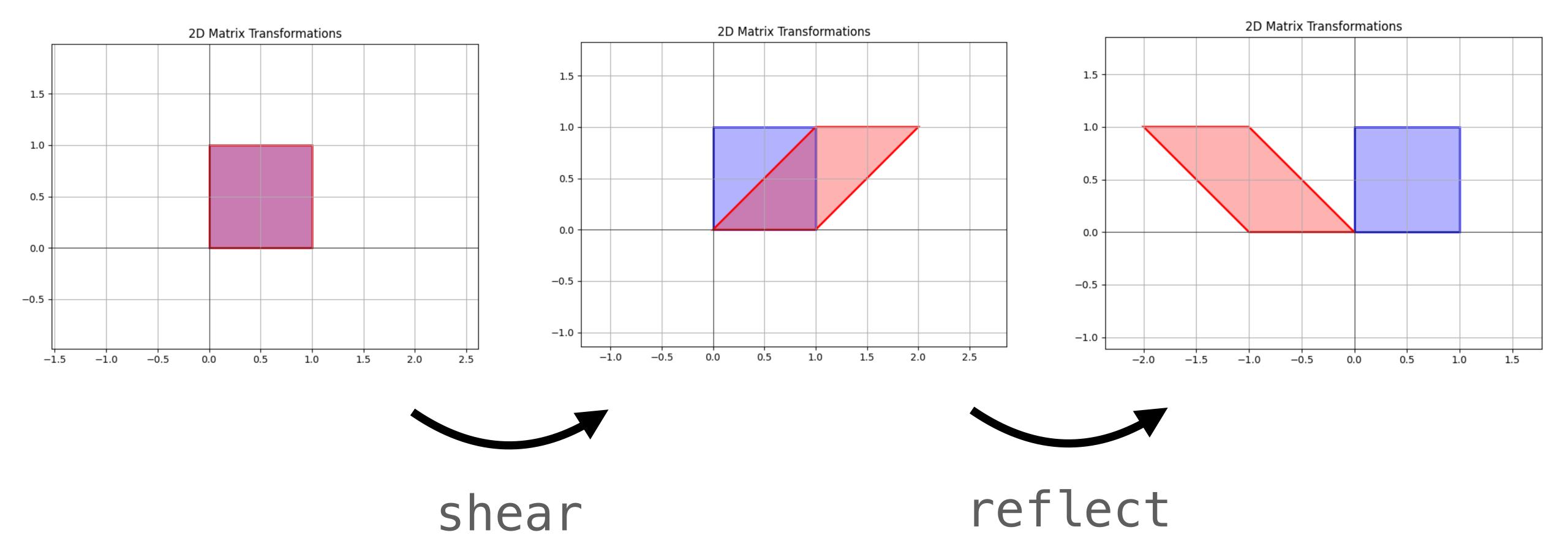
Keywords

Matrix Transpose Inner Product Matrix Power Square Matrix Matrix Inverse Invertible Transformation 1-1 Correspondence numpy.linalg.inv eterminant

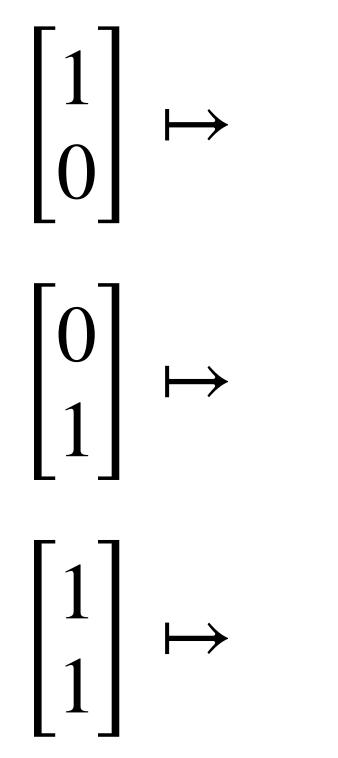
Invertible Matrix Theorem

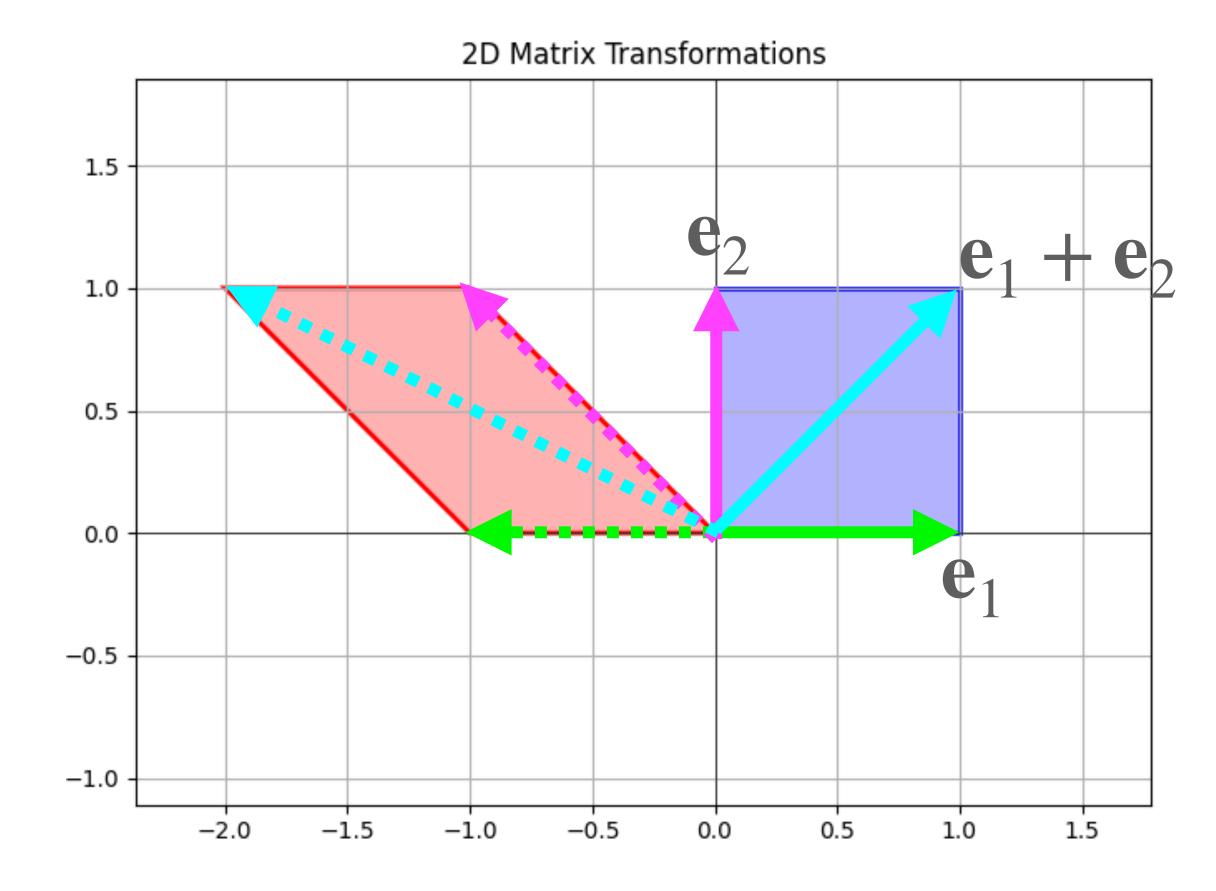
Recap: Matrix Multiplication

Recall: Composition



Recall: Composition





General Composition (2D)

$$A\left(\begin{bmatrix}\mathbf{b}_1 & \mathbf{b}_2\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) =$$

Matrix Multiplication

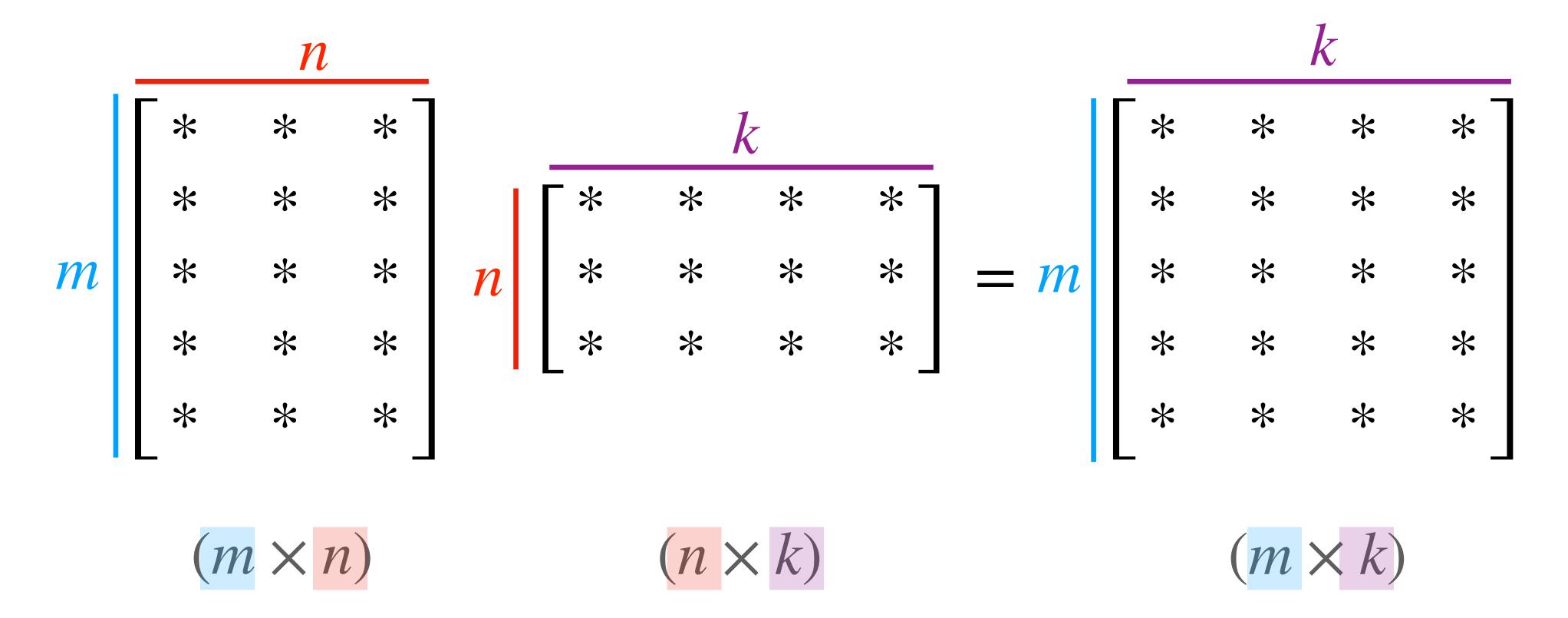
Definition. For a $m \times n$ matrix A and a $n \times p$ matrix B with columns $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_p$ the product AB is the $m \times p$ matrix given by

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

Replace each column of B with A multiplied by that column.

Tracking Dimensions

this only works if the number of <u>columns</u> of the left matrix matches the number of <u>rows</u> of the right matrix



Important Note

Even if AB is defined, it may be that BA is <u>not</u> defined

Non-Example

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Non-Example

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

These are not defined.

Example

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

The Key Fact (Restated)

For any matrices A and B (such that AB is defined) and any vector \mathbf{v}

$$A(B\mathbf{v}) = (AB)\mathbf{v}$$

The matrix implementing the composition is the product of the two underlying matrices.

Example

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} =$$

Row-Column Rule

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Given a $m \times n$ matrix A and a $n \times p$ matrix B, the entry in row i and column j of AB is defined above.

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}$$

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Row-Column Rule (Pictorially)

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Row-Column Rule (Pictorially)

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Example

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} =$$

Matrix Operations

What about when the right matrix is a single column?

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

This is just vector multiplication.

What about when the right matrix is a single column?

$$A[b_1] = [Ab_1] = Ab_1$$

This is just vector multiplication.

We can think of $\left[A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_p\right]$ as collection of simultaneous matrix-vector multiplications

Matrix "Interface"

multiplication

what does AB mean when A and B are matrices?

addition

what does A + B mean when A and B are matrices?

scaling

what does cA mean when A is matrix and c is a real number?

Matrix "Interface"

multiplication

what does AB mean when A and B are matrices?

addition

what does A + B mean when A and B are matrices?

scaling

what does cA mean when A is matrix and c is a real number?

These should be consistent with matrix-vector interface and vector interface

Matrix Addition

$$[\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n] + [\mathbf{b}_1 \dots \quad \mathbf{b}_n] = [(\mathbf{a}_1 + \mathbf{b}_1) \quad \dots \quad (\mathbf{a}_n + \mathbf{b}_n)]$$

Addition is done column—wise (or equivalently, element—wise)

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$$

Matrix Addition

$$[\mathbf{a}_1 \quad \dots \quad \mathbf{a}_n] + [\mathbf{b}_1 \dots \quad \mathbf{b}_n] = [(\mathbf{a}_1 + \mathbf{b}_1) \quad \dots \quad (\mathbf{a}_n + \mathbf{b}_n)]$$

Addition is done column-wise (or equivalently, element-wise)

e.g.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ -2 & -3 \end{bmatrix} = \begin{bmatrix} (1+2) & (2+3) \\ (3-2) & (4-3) \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$$

This is exactly the same as vector addition, but for matrices.

Matrix Addition and Scaling

$$c \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} c\mathbf{a}_1 & c\mathbf{a}_2 & \dots & c\mathbf{a}_n \end{bmatrix}$$

Scaling and adding happen element—wise (or, equivalently, column—wise).

e.g.
$$2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$$

Matrix Addition and Scaling

$$c \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} c\mathbf{a}_1 & c\mathbf{a}_2 & \dots & c\mathbf{a}_n \end{bmatrix}$$

Scaling and adding happen element—wise (or, equivalently, column—wise).

e.g.
$$2\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(3) \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -2 & 6 \end{bmatrix}$$

This is exactly the same as vector scaling, but for matrices.

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the same size and r and s are scalars (\mathbb{R})

$$A + B = B + A$$

$$(A + B) + C = A + (B + C)$$

$$A + 0 = A$$

$$r(A + B) = rA + rB$$

$$(r+s)A = rA + sA$$

$$r(sA) = (rs)A$$

Algebraic Properties (Addition and Scaling)

In these properties A, B, and C are matrices of the appropriate size so that everything is defined, and r is a scalar

$$A(BC) = (AB)C$$

$$A(B+C) = AB + AC$$

$$(B+C)A = BC + CA$$

$$r(AB) = (rA)B = A(rB)$$

$$I_m A = A = AI_n$$

Matrix Multiplication is not Commutative

Important. AB may not be the same as BA

(it may not even be defined)

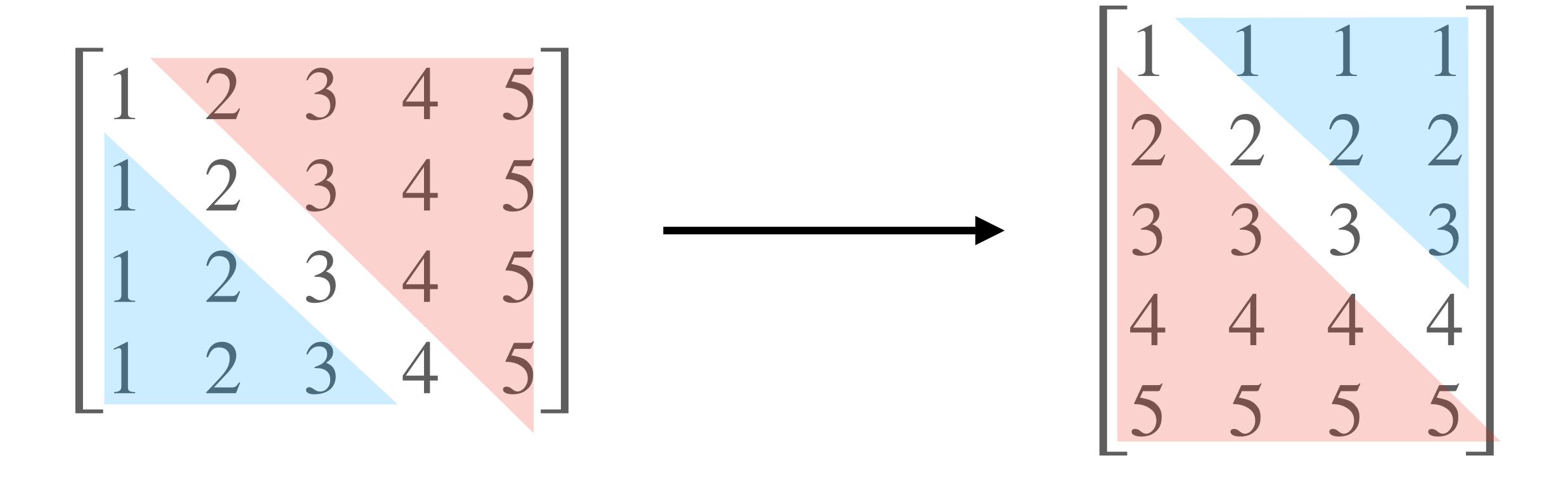
Example

More Matrix Operations

Transpose (Pictorially)

ſ	- 1		2	4	5	1	1	1	12345
ı						2	2	2	2
ı		2	3	4	5	3	3	3	3
ı	1	2	3	4	5	1	1	1	
ı	1	2	3	4	5	4	4	4	4
L	_			•		5	5	5	5

Transpose (Pictorially)



Transpose

Definition. For a $m \times n$ matrix A, the **transpose** of A, written A^T , is the $n \times m$ matrix such that

$$(A^T)_{ij} = A_{ji}$$

Example.

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Algebraic Properties (Transpose)

$$(A^T)^T = A$$

 $(A + B)^T = A^T + B^T$
 $(cA)^T = cA^T$ (where c is a scalar)
 $(AB)^T = B^T A^T$

Algebraic Properties (Transpose)

$$(A^T)^T = A$$

$$(A + B)^T = A^T + B^T$$

$$(cA)^T = cA^T \text{ (where } c \text{ is a scalar)}$$

 $(AB)^T = B^T A^T$ Important: the order reverses!

Challenge Problem (Not In-Class)

Show that $(AB)^T = B^T A^T$.

Example:
$$\left(\begin{bmatrix}1 & 0\\1 & 1\end{bmatrix}\begin{bmatrix}1 & 1\\1 & 0\end{bmatrix}\right)^{T}$$

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ?

```
For a vector \mathbf{v} \in \mathbb{R}^n, what is \mathbf{v}^T?
It's a 1 \times n matrix.
```

For a vector $\mathbf{v} \in \mathbb{R}^n$, what is \mathbf{v}^T ? It's a $1 \times n$ matrix.

For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n , is $\mathbf{u}^T\mathbf{v}$ defined?

```
For a vector \mathbf{v} \in \mathbb{R}^n, what is \mathbf{v}^T?

It's a 1 \times n matrix. 1 \times n n \times 1 1 \times 1

For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n, is \mathbf{u}^T\mathbf{v} defined? [u_1 \ u_2 \ u_3 \ u_4] \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = ?
```

```
For a vector \mathbf{v} \in \mathbb{R}^n, what is \mathbf{v}^T?

It's a 1 \times n matrix.

For two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n, is \mathbf{u}^T\mathbf{v} defined?

\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = ?
```

$$\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$$

$$\begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$$

Definition. The **inner product** of two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$

Matrix Powers

If A is an $n \times n$ matrix, then the product AA is defined.

If A is an $n \times n$ matrix, then the product AA is defined.

Definition. For a $n \times n$ matrix A, we write A^k for the k-fold product of A with itself.

If A is an $n \times n$ matrix, then the product AA is defined.

Definition. For a $n \times n$ matrix A, we write A^k for the k-fold product of A with itself.

What should A^0 be?

If A is an $n \times n$ matrix, then the product AA is defined.

Definition. For a $n \times n$ matrix A, we write A^k for the k-fold product of A with itself.

What should A^0 be?

 $10^0 = 1$, so it stands to reason that $A^0 = I$.

If A is an $n \times n$ matrix, then the product AA is defined.

Definition. For a $n \times n$ matrix A, we write A^k for the k-fold product of A with itself.

What should A^0 be?

 $10^0 = 1$, so it stands to reason that $A^0 = I$.

(we want $A^0A^k = A^{0+k} = A^k$)

Matrix Powers (Computationally)

We can use numpy.linalg.matrix_power

This can be *much* faster than doing a sequence of matrix multiplications, e.g., in the case of

 A^{16}

Why?:

1. AB is not necessarily equal to BA, even if both are defined.

1. AB is not necessarily equal to BA, even if both are defined.

2. If AB = AC then it is not necessary that B = C.

1. AB is not necessarily equal to BA, even if both are defined.

2. If AB = AC then it is not necessary that B = C.

3. If AB=0 (the zero matrix) it is not necessarily the case that A=0 or B=0.

Question

Find two nonzero 2×2 matrices A and B such that AB = 0.

Challenge. Choose A and B such that they have all nonzero entries.

Answer

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

transpose

 A^{T}

transpose A^T scaling cA

transpose A^T scaling cA addition (subtraction) $A+B \qquad A+(-1)B=A-B$

transpose	A^T	
scaling	cA	
addition (subtraction)	A + B	A + (-1)B = A - B
multiplication (powers)	AB	A^k

```
transpose A^T scaling cA addition (subtraction) A+B A+(-1)B=A-B multiplication (powers) AB A^k
```

What's missing?

Matrix Inverses

The identity matrix implements the "do nothing" transformation. For any \mathbf{v}_{\bullet}

$$Iv = v$$

The identity matrix implements the "do nothing" transformation. For any \mathbf{v} ,

$$Iv = v$$

It is the "1" of matrices. For any ${\cal A}$

$$IA = AI = A$$

The identity matrix implements the "do nothing" transformation. For any \mathbf{v} ,

$$Iv = v$$

It is the "1" of matrices. For any ${\cal A}$

$$IA = AI = A$$

These may be different sizes

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

$$2 \times 2 \qquad 2 \times 4 \qquad 2 \times 4 \qquad 4 \times 4 \qquad 2 \times 4$$

Definition. The $n \times n$ **identity matrix** is the matrix whose diagonal contains all 1s, and all other entries are 0s.

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

Definition. The $n \times n$ **identity matrix** is the matrix whose diagonal contains all 1s, and all other entries are 0s.

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

Example.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$2x = 10$$

$$2x = 10$$

How do we solve this equation?

$$2x = 10$$

How do we solve this equation? Divide on both sides by 2 to get x = 5.

$$2x = 10$$

How do we solve this equation? Divide on both sides by 2 to get x = 5. Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

$$2x = 10$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

$$2^{-1}(2x) = 2^{-1}(10)$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by
$$\frac{1}{2}$$
 a.k.a. 2^{-1} .

$$1x = 5$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

$$x = 5$$

How do we solve this equation?

Divide on both sides by 2 to get x = 5.

Multiply each side by $\frac{1}{2}$ a.k.a. 2^{-1} .

Wouldn't it be nice...

$$Ax = b$$

$$Ax = b$$

How do we solve this equation?

$$Ax = b$$

How do we solve this equation?

Multiply each side by A^{-1} to get $\mathbf{x} = A^{-1}\mathbf{b}$.

Ax = b

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

$$I_{\mathbf{X}} = A^{-1}\mathbf{b}$$

$$x = A^{-1}b$$

Do all matrices have inverses?

Do all matrices have inverses?

No. If they did, then every linear system would have a solution.

When does a matrix have an inverse?

Square Matrices

Definition. A $m \times n$ matrix A is square if m = n

i.e., it has same number of rows as columns.

They are the only kind of matrices...

» that can have a pivot in every row <u>and</u> every column.

- » that can have a pivot in every row <u>and</u> every column.
- » whose transformations can be both 1-1 and onto.

- » that can have a pivot in every row <u>and</u> every column.
- » whose transformations can be both 1-1 and onto.
- » whose columns can have full span and be linearly independent.

- » that can have a pivot in every row <u>and</u> every column.
- » whose transformations can be both 1-1 and onto.
- » whose columns can have full span and be linearly independent.
- » that can have inverses.

Definition. For a $n \times n$ matrix A, an **inverse** of A is a $n \times n$ matrix B such that

$$AB = I_n$$
 and $BA = I_n$

Definition. For a $n \times n$ matrix A, an **inverse** of A is a $n \times n$ matrix B such that

$$AB = I_n$$
 and $BA = I_n$

A is **invertible** if it has an inverse. Otherwise it is **singular**.

Definition. For a $n \times n$ matrix A, an **inverse** of A is a $n \times n$ matrix B such that

$$AB = I_n$$
 and $BA = I_n$

A is **invertible** if it has an inverse. Otherwise it is **singular**.

Example.
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Example: Geometric

Reflection across the x_1 -axis in \mathbb{R}^2 is it's own inverse.

Verify:

Example: No inverse

$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Verify:

Inverses are Unique

Theorem. If B and C are inverses of A, then B=C.

Verify:

Inverses are Unique

Theorem. If B and C are inverses of A, then B=C.

Verify:

If A is invertible, then we write A^{-1} for the inverse of A.

Solutions for Invertible Matrix Equations

Theorem. For a $n \times n$ matrix A, if A is invertible then

$$A\mathbf{x} = \mathbf{b}$$

has a <u>unique</u> solution for any choice of **b**. Verify:

Unique Solutions

If Ax = b has a <u>unique</u> solution for any choice of b, then it has

» exactly one solution for any choice of b

Unique Solutions

If Ax = b has a <u>unique</u> solution for any choice of b, then it has

- » at least one solution for any choice of b
- » at most one solution for any choice of b

Unique Solutions

If Ax = b has a <u>unique</u> solution for any choice of b, then it has

- » T is onto
- » T is one-to-one

where T is implemented by A

Definition. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a linear transformation S such that

$$S(T(\mathbf{v})) = \mathbf{v}$$
 and $T(S(\mathbf{v})) = \mathbf{v}$

for any \mathbf{v} in \mathbb{R}^n .

Multiplication

by AMultiplication

by A^{-1}

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible.

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible.

A matrix is invertible if it's possible to "undo" its transformation without "losing information".

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is invertible.

A matrix is invertible if it's possible to "undo" its transformation without "losing information".

Non-Example. Projection onto the x_1 -axis.

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

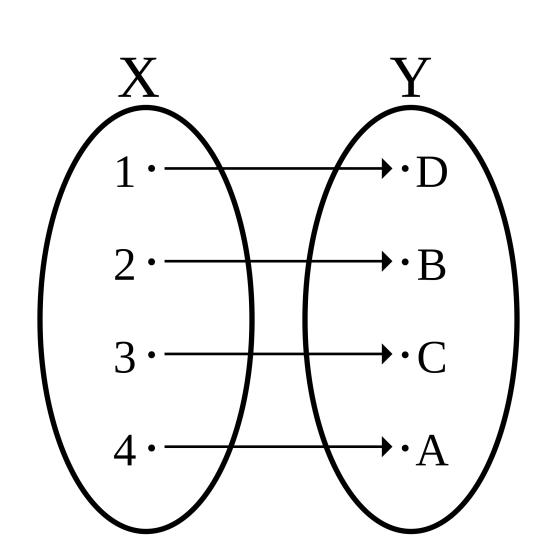
Connection to Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

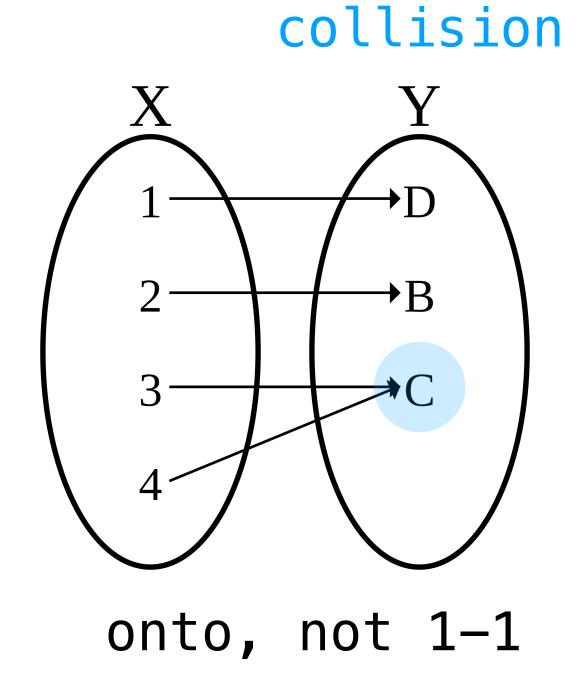
A transformation is a 1-1 correspondence if it is 1-1 and onto.

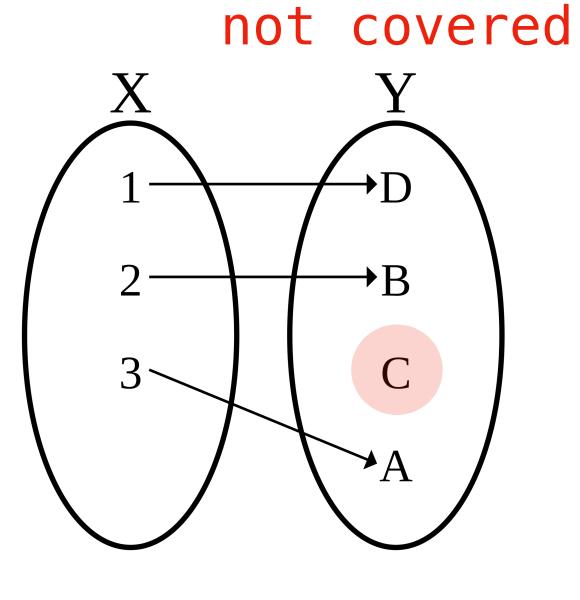
Invertible transformations are 1-1 correspondences.

Kinds of Transformations (Pictorially)



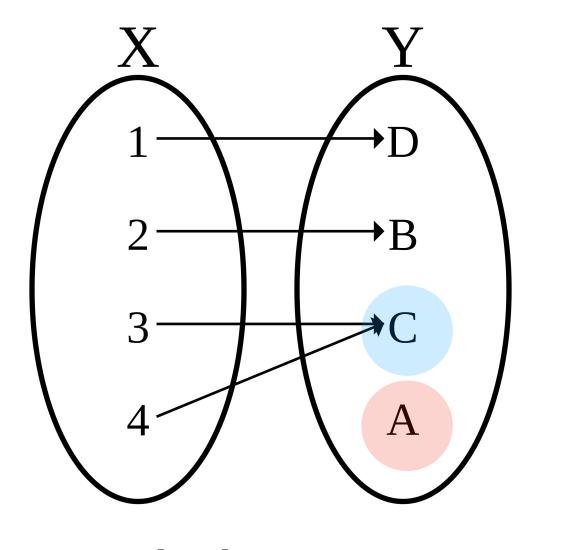
1-1 correspondence





1-1 not onto

not covered collision



not 1-1, not onto

Computing Matrix Inverses

Fundamental Questions

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Fundamental Questions

Answer 1: Try to compute it.

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Fundamental Questions

Answer 1: Try to compute it.

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we compute it?

Answer 2: the Invertible Matrix Theorem (IMT)

In General

$$A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} = I$$

Can we solve for each b_i ?:

In General

$$\begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & A\mathbf{b}_3 \end{bmatrix} = I$$

If we want a matrix B such that AB = I, then the above equation must hold (in the case B has 3 columns).

Can we solve for each \mathbf{b}_i ?

Recall: In General

$$\begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & A\mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix}$$

If we want a matrix B such that AB = I, then the above equation must hold (in the case B has 3 columns).

Can we solve for each \mathbf{b}_i ?

Recall: In General

$$Ab_1 = e_1$$

$$A\mathbf{b}_1 = \mathbf{e}_1$$
 $A\mathbf{b}_2 = \mathbf{e}_2$ $A\mathbf{b}_3 = \mathbf{e}_3$

If we want a matrix B such that AB=I, then the above equation must hold (in the case B has 3 columns).

Can we solve for each b_i ?

Recall: In General

$$A\mathbf{b}_1 = \mathbf{e}_1$$
 $A\mathbf{b}_2 = \mathbf{e}_2$ $A\mathbf{b}_3 = \mathbf{e}_3$

$$Ab_2 = e_2$$

$$Ab_3 = e_3$$

If we want a matrix B such that AB=I, then the above equation must hold (in the case B has 3 columns).

Can we solve for each b_i ? We need to solve 3 matrix equations.

Recall: How To: Matrix Inverses

Question. Find the inverse of an invertible $n \times n$ matrix A.

Solution. Solve the equation $A\mathbf{x} = \mathbf{e}_i$ for every standard basis vector. Put those solutions $\mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_n$ into a single matrix

$$[\mathbf{S}_1 \quad \mathbf{S}_2 \quad \dots \quad \mathbf{S}_n]$$

Recall: How To: Matrix Inverses

Question. Find the inverse of an invertible $n \times n$ matrix A.

Solution. Row reduce the matrix $[A \ I]$ to a matrix $[I \ B]$. Then B is the inverse of A.

This is really the same thing. It's a simultaneous reduction.

demo

Special Case: 2 x 2 Matrice Inverses

Special Case: 2 × 2 Matrice Inverses

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Special Case: 2 x 2 Matrice Inverses

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The **determinant** of a 2×2 matrix is the value ad - bc.

Special Case: 2 × 2 Matrice Inverses

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The **determinant** of a 2×2 matrix is the value ad-bc.

The inverse is defined only if the determinant is nonzero.

Special Case: 2 x 2 Matrice Inverses

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The **determinant** of a 2×2 matrix is the value ad - bc.

The inverse is defined only if the determinant is nonzero.

(see the notes on linear transformations for more information about determinants)

Example

$$\begin{bmatrix} -6 & 14 \\ 3 & -7 \end{bmatrix}$$

Example

$$\begin{bmatrix} -6 & 14 \\ 3 & -7 \end{bmatrix}$$

Is the above matrix invertible?

Example

$$\begin{bmatrix} -6 & 14 \\ 3 & -7 \end{bmatrix}$$

Is the above matrix invertible?

No. The determinant is (-6)(-7) - 14(3) = 42 - 42 = 0

Algebra of Matrix Inverses

How To: Verifying an Inverse

Question. Given an invertible matrix B and some matrix C, demonstrate that $B^{-1}=C$.

Answer. Show that BC = I (or CB = I, but you don't have to do both).

This works because inverses are unique.

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A, the matrix A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A, the matrix A^T is invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrices A and B, the matrix AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

Question

Suppose that A is a $n \times n$ invertible matrix such that $A = A^T$ and B is a $m \times n$ matrix.

Simplify the expression $A(BA^{-1})^T$ using the algebraic properties we've seen.

Answer: B^T

$$A(BA^{-1})^{T}$$

$$A = A^{T}$$

Motivation

Question. How do we know if a square matrix is invertible?

Answer. Every perspective we've taken so far can help us answer this question.

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

1. A^T is invertible

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

- 2. Ax = b has at <u>least</u> one solution for every b
- 3. $A\mathbf{x} = \mathbf{b}$ has at <u>most</u> one solution for every \mathbf{b}
- 4. Ax = b has at <u>exactly</u> one solution for every b

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

- 5. A has a pivot in every <u>column</u>
- 6. A has a pivot in every <u>row</u>
- 7. A is row equivalent to I_n

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

8. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution 9. The columns of A are linearly independent 10. The columns of A span \mathbb{R}^n

Recall: Onto Transformations

Recall: Onto Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Recall: Onto Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

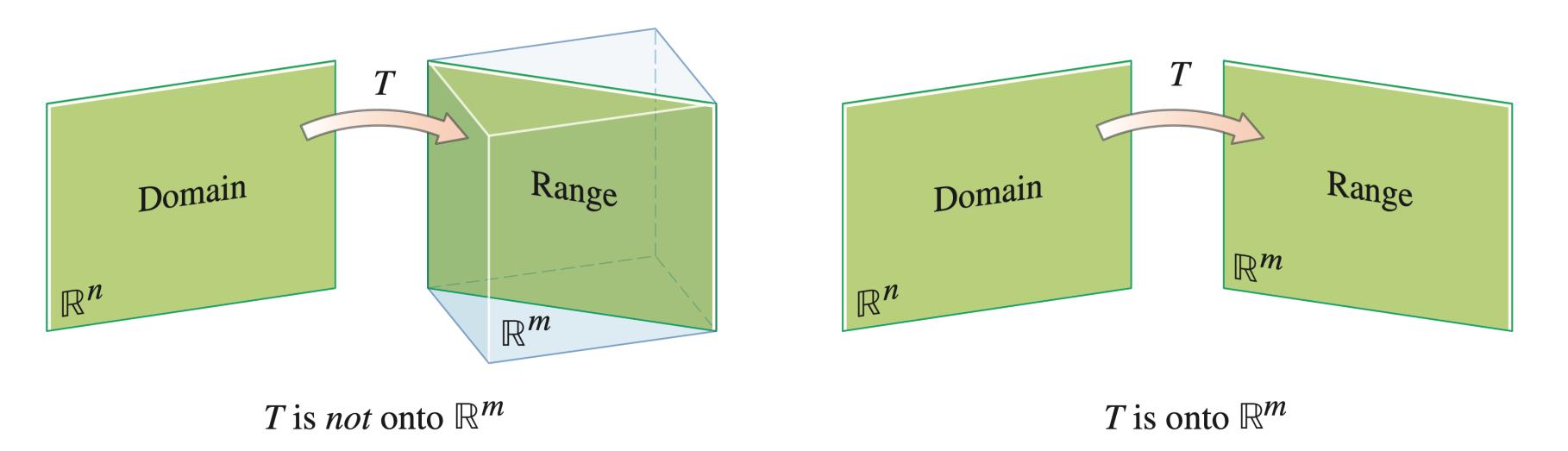


image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

Recall: Onto Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

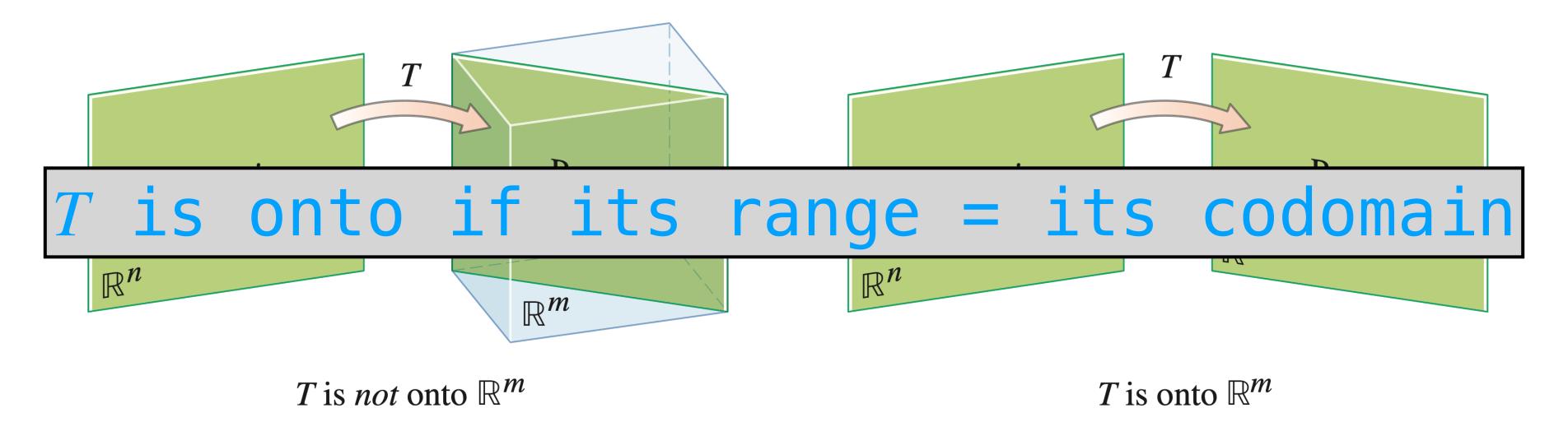


image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

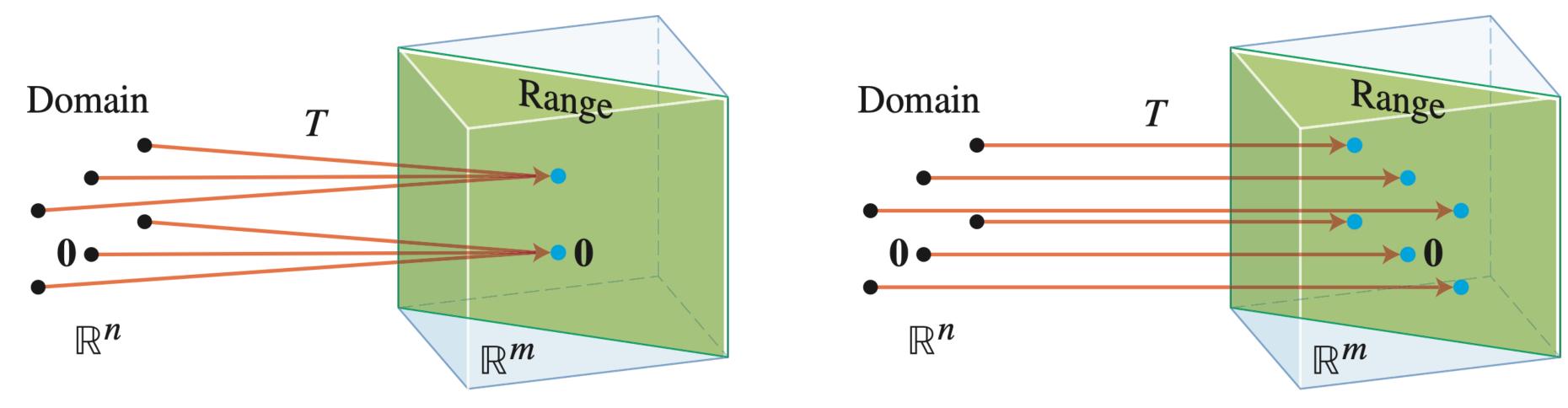
Recall: One-to-one Transformations

Recall: One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector \mathbf{b} in \mathbb{R}^m is the image of at most one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Recall: One-to-one Transformations

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector \mathbf{b} in \mathbb{R}^m is the image of at most one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).



T is not one-to-one

Recall: Invertible Transformations

Definition. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a linear transformation S such that

$$S(T(\mathbf{v})) = \mathbf{v}$$
 and $T(S(\mathbf{v})) = \mathbf{v}$

for any \mathbf{v} in \mathbb{R}^n .

Multiplication

by AMultiplication

by A^{-1}

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the **image of exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a **one-to-one correspondence** (bijection) if any vector \mathbf{b} in \mathbb{R}^n is the image of **exactly** one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Invertible transformations are 1-1 correspondences.

Invertible Matrix Theorem

Theorem. Suppose A is a $n \times n$ invertible matrix. Then the following hold.

- 11. The linear transformation $x \mapsto Ax$ is onto
- 12. $x \mapsto Ax$ is one-to-one
- 13. $x \mapsto Ax$ is a one-to-one correspondence
- 14. $x \mapsto Ax$ is invertible

Verify:

Taking Stock: IMT

The following are logically equivalent:

- 1. A is invertible
- $2 \cdot A^T$ is invertible
- 3.Ax = b has at least one solution for any b
- $4 \cdot Ax = b$ has at most one solution for any b
- $5 \cdot Ax = b$ has a unique solution for any b
- 6.A has n pivots (per row and per column)
- 7.A is row equivalent to I
- 8.Ax = 0 has only the trivial solution
- 9. The columns of *A* are linearly independent
- **10.** The columns of A span \mathbb{R}^n
- 11. The linear transformation $x \mapsto Ax$ is onto
- $12 \cdot x \mapsto Ax$ is one-to-one
- $13.x \mapsto Ax$ is a one-to-one correspondence
- 14. $x \mapsto Ax$ is invertible

These all express the same thing

(this is a stronger statement than we just verified)

Taking Stock: IMT

The following are logically equivalent:

- 1. A is invertible
- $2 \cdot A^T$ is invertible
- $3 \cdot Ax = b$ has at least one solution for any b
- $4 \cdot Ax = b$ has at most one solution for any b
- $5 \cdot Ax = b$ has a unique solution for any b
- 6.A has n pivots (per row and per column)
- 7.A is row equivalent to I
- 8.Ax = 0 has only the trivial solution
- 9. The columns of *A* are linearly independent
- **10.** The columns of A span \mathbb{R}^n
- 11. The linear transformation $x \mapsto Ax$ is onto
- $12 \cdot x \mapsto Ax$ is one-to-one
- $13.x \mapsto Ax$ is a one-to-one correspondence
- 14. $x \mapsto Ax$ is invertible

These all express the same thing

(this is a stronger statement than we just verified)

! only for square matrices !!

```
Theorem. If A is square, then A is 1-1 if and only if A is onto
```

Theorem. If A is square, then

A is 1-1 if and only if A is onto

We only need to check one of these.

```
Theorem. If A is square, then
```

A is 1-1 if and only if A is onto

We only need to check one of these.

Warning. Remember this only applies square matrices.

Theorem. If A is square, then

```
A is invertible \equiv A\mathbf{x} = \mathbf{0} implies \mathbf{x} = \mathbf{0}
```

Theorem. If A is square, then

A is invertible \equiv Ax = 0 implies x = 0

Invertibility is completely determined by how A behaves on $\mathbf{0}$.

Question (Conceptual)

True or **False:** If A is invertible, and B is row equivalent to A (we can transform B into A by a sequence of row operations), the B is also invertible.

Answer: True

Row reductions don't change the number of pivots.

Question

If $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$ is invertible, then is $[(\mathbf{a}_1+\mathbf{a}_2-2\mathbf{a}_3)\ (\mathbf{a}_2+5\mathbf{a}_3)\ \mathbf{a}_3]$ also invertible? Justify your answer.

Answer

```
Consider [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]^T. We can get to [(\mathbf{a}_1 + \mathbf{a}_2 - 2\mathbf{a}_3) \ (\mathbf{a}_2 + 5\mathbf{a}_3) \ \mathbf{a}_3]^T by row operations
```

Summary

The algebra of matrices can help us simplify matrix expressions.

The invertible matrix theorem connects all the perspectives we've taken so far.