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Objectives

1. Recap matrix inverses (it's been a while) 

2. Finish up the algebra of matrix inverses 

3. Connect everything we've talked about so far 
via the Invertible Matrix Theorem (IMT) 

4. Connect linear algebra to graph theory

-
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Recap: Matrix Inverse



Motivation

When can we solve a matrix equation 
by "dividing on both sides by ?"A

Ax = b
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Motivation

When can we solve a matrix equation 
by "dividing on both sides by ?"A

x = A−1b
* (A - 5) = (Ax)5 = 15

= To



Recall: Matrix Inverses



Recall: Matrix Inverses

Definition. For a  matrix , an inverse of  
is a  matrix  such that

n × n A A
n × n B

 (and )AB = In BA = In



Recall: Matrix Inverses

Definition. For a  matrix , an inverse of  
is a  matrix  such that

n × n A A
n × n B

 (and )AB = In BA = In

 is invertible if it has an inverse. Otherwise 
it is singular.
A
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Inverses are Unique

Theorem. If  and  are inverses of , then 
. 

Verify:

B C A
B = C

B = BI = B(AC) = (BA) C

= IC

= C



Inverses are Unique

Theorem. If  and  are inverses of , then 
. 

Verify:

B C A
B = C

If  is invertible, then we write  
for the inverse of .

A A−1

A



Solutions for Invertible Matrix Equations

Theorem. For a  matrix , if  is invertible 
then 

 

has a unique solution for any choice of . 

Verify:

n × n A A

Ax = b
b

A5) = 5 Ar = 5
at lest AA = A - 5
are solution

V = A
- 5



Unique Solutions

If  has a unique solution for any choice 
of , then it has 

» exactly one solution for any choice of 

Ax = b
b

b



Unique Solutions

If  has a unique solution for any choice 
of , then it has 

» at least one solution for any choice of  

» at most one solution for any choice of 

Ax = b
b

b
b



Unique Solutions

If  has a unique solution for any choice 
of , then it has 

»  is onto 

»  is one-to-one 

where  is implemented by 

Ax = b
b

T

T

T A



Connection to Transformations

Definition. A linear transformation  is 
invertible if there is a linear transformation 
 such that 

 and  

for any  in .

T : ℝn → ℝn

S

S(T(v)) = v T(S(v)) = v
v ℝn



Connection to Transformations



Connection to Transformations

Theorem. A  matrix  is invertible if and 
only if the matrix transformation  is 
invertible.

n × n A
x ↦ Ax



Connection to Transformations

Theorem. A  matrix  is invertible if and 
only if the matrix transformation  is 
invertible.

n × n A
x ↦ Ax

A matrix is invertible if it's possible to 
"undo" its transformation without "losing 
information".

#



Connection to Transformations

Theorem. A  matrix  is invertible if and 
only if the matrix transformation  is 
invertible.

n × n A
x ↦ Ax

A matrix is invertible if it's possible to 
"undo" its transformation without "losing 
information".

Non-Example. Projection onto the -axis.x1

#



Connection to Transformations



Connection to Transformations

Definition. A transformation  is a one-
to-one correspondence (bijection) if any vector 
 in  is the image of exactly one vector  in 
 (where ).

T : ℝn → ℝn

b ℝn v
ℝn T(v) = b



Connection to Transformations

Definition. A transformation  is a one-
to-one correspondence (bijection) if any vector 
 in  is the image of exactly one vector  in 
 (where ).

T : ℝn → ℝn

b ℝn v
ℝn T(v) = b
A transformation is a 1-1 correspondence if it 
is 1-1 and onto.



Connection to Transformations

Definition. A transformation  is a one-
to-one correspondence (bijection) if any vector 
 in  is the image of exactly one vector  in 
 (where ).

T : ℝn → ℝn

b ℝn v
ℝn T(v) = b
A transformation is a 1-1 correspondence if it 
is 1-1 and onto.

Invertible transformations are 1-1 correspondences.



Kinds of Transformations (Pictorially)

1-1 correspondence onto, not 1-1 1-1 not onto not 1-1, not onto

collision collisionnot covered
not covered



Computing Matrix Inverses



Fundamental Questions

How can we determine if a matrix has 
an inverse? 

If a matrix has an inverse how do we 
compute it? 



Fundamental Questions

How can we determine if a matrix has 
an inverse? 

If a matrix has an inverse how do we 
compute it? 

Answer 1: Try to compute it.



Fundamental Questions

How can we determine if a matrix has 
an inverse? 

If a matrix has an inverse how do we 
compute it? 

Answer 1: Try to compute it.

Answer 2: the Invertible Matrix Theorem (IMT)



In General

Can we solve for each :bi?

A [b1 b2 b3] = I
AB = I BA =I

3x3 3x3 3x3
10

- I I & I201

↑ (5 .
50 ] = (15 . A 157 :(i

A5 : /) Ai = / : ) As :[i]



In General

If we want a matrix  such that 
, then the above equation must 

hold (in the case  has 3 columns).  
Can we solve for each 

B
AB = I

B
bi?

[Ab1 Ab2 Ab3] = I



Recall: In General

If we want a matrix  such that 
, then the above equation must 

hold (in the case  has 3 columns). 
Can we solve for each 

B
AB = I

B
bi?

[Ab1 Ab2 Ab3] = [e1 e2 e3]



Recall: In General

If we want a matrix  such that 
, then the above equation must 

hold (in the case  has 3 columns).  
Can we solve for each 

B
AB = I

B
bi?

Ab1 = e1 Ab2 = e2 Ab3 = e3



Recall: In General

If we want a matrix  such that 
, then the above equation must 

hold (in the case  has 3 columns).  
Can we solve for each 

B
AB = I

B
bi?

Ab1 = e1 Ab2 = e2 Ab3 = e3

We need to solve 3 matrix equations.



Recall: How To: Matrix Inverses

Question. Find the inverse of an invertible  
matrix . 

Solution. Solve the equation  for every 
standard basis vector. Put those solutions 

 into a single matrix 

n × n
A

Ax = ei

s1, s2, …, sn

[s1 s2 … sn]



Recall: How To: Matrix Inverses

Question. Find the inverse of an invertible  
matrix . 

Solution. Row reduce the matrix  to a 
matrix . Then  is the inverse of . 

This is really the same thing. It's a 
simultaneous reduction.

n × n
A

[A I]
[I B] B A



demo



Special Case:  Matrice Inverses2 × 2



Special Case:  Matrice Inverses2 × 2

[a b
c d]

−1
= 1

ad − bc [ d −b
−c a ]



Special Case:  Matrice Inverses2 × 2

The determinant of a  matrix is the value 
.

2 × 2
ad − bc

[a b
c d]

−1
= 1

ad − bc [ d −b
−c a ]



Special Case:  Matrice Inverses2 × 2

The determinant of a  matrix is the value 
.

2 × 2
ad − bc

The inverse is defined only if the determinant 
is nonzero.

[a b
c d]

−1
= 1

ad − bc [ d −b
−c a ]



Special Case:  Matrice Inverses2 × 2

The determinant of a  matrix is the value 
.

2 × 2
ad − bc

The inverse is defined only if the determinant 
is nonzero.
(see the notes on linear transformations for more information about determinants)

[a b
c d]

−1
= 1

ad − bc [ d −b
−c a ]



Example

[−6 14
3 −7]



Example

Is the above matrix invertible?

[−6 14
3 −7]



Example

Is the above matrix invertible?

No. The determinant is (−6)(−7) − 14(3) = 42 − 42 = 0

[−6 14
3 −7]



Algebra of Matrix Inverses



How To: Verifying an Inverse

Question. Given an invertible matrix  and some 
matrix , demonstrate that . 

Answer. Show that  (or , but you don't 
have to do both). 

B
C B−1 = C

BC = I CB = I

This works because inverses are unique. 

-



Algebraic Properties (Matrix Inverses)

Theorem. For a  invertible matrix , the 
matrix  is invertible and 

 

Verify: 

n × n A
A−1

(A−1)−1 = A

M A

A(A- ) = I -&-An

A
- 1



Algebraic Properties (Matrix Inverses)

Theorem. For a  invertible matrix , the 
matrix  is invertible and 

 

Verify: 

n × n A
AT

(AT)−1 = (A−1)T

Mil
(A) T AT = (AA")"= IT = I



Algebraic Properties (Matrix Inverses)

Theorem. For a  invertible matrices  and , 
the matrix  is invertible and 

 

Verify: 

n × n A B
AB

(AB)−1 = B−1A−1

B" XBF X

composition
->

B"AAB = B"IB = /= I
A

BLAB B- AB
-E

B
- I A

- 1



Question

Suppose that  is a  invertible matrix such 
that  and  is a  matrix. 

Simplify the expression  using the 
algebraic properties we've seen.

A n × n
A = AT B m × n

A(BA−1)T



Answer: BT A(BA−1)T

A = AT
A(BA

=)T =

A(A- BT =

A(AT)" BT =

AA BT = BT



Invertible Matrix Theorem



Motivation

Question. How do we know if a 
square matrix is invertible? 

Answer. Every perspective we've 
taken so far can help us answer 
this question.



Invertible Matrix Theorem

Theorem. Suppose  is a  invertible matrix. 
Then the following hold. 

1.  is invertible 

A n × n

AT



Invertible Matrix Theorem

Theorem. Suppose  is a  invertible matrix. 
Then the following hold. 

2.  has at least one solution for every  
3.  has at most one solution for every  
4.  has at exactly one solution for every 

A n × n

Ax = b b
Ax = b b
Ax = b b



Invertible Matrix Theorem

Theorem. Suppose  is a  invertible matrix. 
Then the following hold. 

5.  has a pivot in every column 
6.  has a pivot in every row 
7.  is row equivalent to  

A n × n

A
A
A In



Invertible Matrix Theorem

Theorem. Suppose  is a  invertible matrix. 
Then the following hold. 

8.  has only the trivial solution 
9. The columns of  are linearly independent 
10. The columns of  span  

A n × n

Ax = 0
A

A ℝn



Invertible Matrix Theorem

Theorem. Suppose  is a  invertible matrix. 
Then the following hold. 

11. The linear transformation  is onto 
12.  is one-to-one 
13.  is a one-to-one correspondence 
14.  is invertible 

A n × n

x ↦ Ax
x ↦ Ax
x ↦ Ax
x ↦ Ax



Taking Stock: IMT
The following are logically equivalent: 

1.  is invertible 

2.  is invertible 

3.  has at least one solution for any 
 

4.  has at most one solution for any  

5.  has a unique solution for any  

6.  has  pivots (per row and per column) 

7.  is row equivalent to  

8.  has only the trivial solution 

9. The columns of  are linearly 
independent 

10.The columns of  span  

11.The linear transformation  is onto 

12.  is one-to-one 

13.  is a one-to-one correspondence 

14.  is invertible

A

AT

Ax = b
b
Ax = b b
Ax = b b
A n

A I

Ax = 0
A

A ℝn

x ↦ Ax
x ↦ Ax
x ↦ Ax
x ↦ Ax

These all express the 
same thing 

(this is a stronger statement than 
we just verified)



Taking Stock: IMT
The following are logically equivalent: 

1.  is invertible 

2.  is invertible 

3.  has at least one solution for any 
 

4.  has at most one solution for any  

5.  has a unique solution for any  

6.  has  pivots (per row and per column) 

7.  is row equivalent to  

8.  has only the trivial solution 

9. The columns of  are linearly 
independent 

10.The columns of  span  

11.The linear transformation  is onto 

12.  is one-to-one 

13.  is a one-to-one correspondence 

14.  is invertible

A

AT

Ax = b
b
Ax = b b
Ax = b b
A n

A I

Ax = 0
A

A ℝn

x ↦ Ax
x ↦ Ax
x ↦ Ax
x ↦ Ax

These all express the 
same thing 

(this is a stronger statement than 
we just verified)

!! only for square matrices !!



We get a lot of information for free



We get a lot of information for free

Theorem. If  is square, thenA

 is 1-1     if and only if      is ontoA A



We get a lot of information for free

Theorem. If  is square, thenA

 is 1-1     if and only if      is ontoA A

We only need to check one of these.



We get a lot of information for free

Theorem. If  is square, thenA

 is 1-1     if and only if      is ontoA A

We only need to check one of these.

Warning. Remember this only applies square 
matrices.



We get a lot of information for free



We get a lot of information for free

Theorem. If  is square, thenA

 is invertible          implies A ≡ Ax = 0 x = 0



We get a lot of information for free

Theorem. If  is square, thenA

 is invertible          implies A ≡ Ax = 0 x = 0
Invertibility is completely determined by how  
behaves on .

A
0



Question (Conceptual)

True or False: If  is invertible, and  is row 
equivalent to  (we can transform  into  by a 
sequence of row operations), the  is also 
invertible.

A B
A B A

B



Answer: True

Row reductions don't change the number of 
pivots. 



Question

If  is invertible, then is
 also invertible? Justify 

your answer.

[a1 a2 a3]
[(a1 + a2 − 2a3) (a2 + 5a3) a3]



Answer

Consider . We can get to 
 by row operations

[a1 a2 a3]T

[(a1 + a2 − 2a3) (a2 + 5a3) a3]T



Algebraic Graph Theory



Graphs

Definition (Informal). A graph is a collection 
of nodes with edges between them. 



Directed vs. Undirected Graphs

A graph is directed if its edges have a 
direction. 

undirected directed

A

B

A

B

A and B 
are 

connected 
by an edge

there is an edge 
from B to A



Weighted vs Unweighted graphs

A graph is weighted if its edges have 
associated values.

weightedunweighted



Weighted vs Unweighted graphs

A graph is weighted if its edges have 
associated values.

weightedunweighted

edge weights



Simple Graphs

A graph is simple if it is undirected, has no 
self loops, and no multi-edges.



Four Kinds of Graphs

nodes are traffic lights

edges are streets


weights are number of lanes

nodes are musicians

edges are collaborations


weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land


edges are pedestrian bridges

directed undirected

weighted

unweighted



Four Kinds of Graphs

nodes are traffic lights

edges are streets


weights are number of lanes

nodes are musicians

edges are collaborations


weights are number of collaborations

nodes are instagram users
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 nodes are bodies of land


edges are pedestrian bridges

directed undirected

weighted
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Four Kinds of Graphs

nodes are traffic lights

edges are streets


weights are number of lanes

nodes are musicians

edges are collaborations


weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land


edges are pedestrian bridges

directed undirected

weighted

unweighted
Today

Markov Chains



Fundamental Question



Fundamental Question

How do we represent a graph 
formally in a computer?



Fundamental Question

How do we represent a graph 
formally in a computer?
There are a couple ways, but one 
way is to use matrices.



Adjacency Matrices

Let  be an simple graph with 
its nodes labeled by numbers  
through . 

We can create the adjacency 
matrix  for  as follows.

G
1

n

A G

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

A12

A21

A43

A34

A64

A46

Aij = {1 there is an edge between i and j
0 otherwise



Symmetric Matrices

Definition. A  matrix is symmetric if 

 

Example. 

n × n

AT = A

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0



Once we have an adjacency 
matrix, we can do linear 

algebra on graphs.

Algebraic Graph Theory



Example: Squared Adjacency Matrices

Given an adjacency matrix , can we 
interpret anything meaningful from 

? 

A

A2



Example: Squared Adjacency Matrices

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

(A2)53 = 1(0) + 1(1) + 0(0) + 1(1) + 0(0) + 0(0) = 2

3

23

=

43 D ⑭
T

5,2 sal
#



Example: Squared Adjacency Matrices

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj



Example: Squared Adjacency Matrices

AikAkj = {1 there are edges i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj



Example: Squared Adjacency Matrices

AikAkj = {1 there are edges i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

A34A45 = 1(1) = 1
A36A65 = 0(0) = 0



Example: Squared Adjacency Matrices

AikAkj = {1 there are edges i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

A34A45 = 1(1) = 1
A36A65 = 0(0) = 0

(A2)ij = number of 2-step paths 
from i to j



Application: Triangle Counting
A triangle in an 
undirected graph is a set 
of three distinct nodes 
with edges between every 
pair of nodes. 

Triangles in a social 
network represent mutual 
friends and tight cohesion 
(among other things)



Application: Triangle Counting (Naive)

FUNCTION tri_count_naive( ): 

  count = 0 

  for i from 1 to n: 

    for j from i + 1 to n: 

      for k from j + 1 to n: 

        if  and  and : # an edge between each pair 

          count += 1: 

  RETURN count

A

Aij = 1 Ajk = 1 Aki = 1

-

D
D

- -



Application: Triangle Counting

Theorem. For an adjacency matrix , the number 
of triangle containing the edge  is 

 
Verify:

A
(i, j)

(A2)ij * AijHu -

·



Application: Triangle Counting

FUNCTION tri_count( ): 

  compute  

  count  sum of  for all distinct  and  

  RETURN count / 6    # why divided by 6?

A

A2

← (A2)ij * Aij i j



Application: Triangle Counting

FUNCTION tri_count( ): 

  # in NumPy '*' is entry-wise multiplication 

  #     also called the HADAMARD PRODUCT 

  count  sum of the entries of  *  

  RETURN count / 6

A

← A2 A



Application: Triangle Counting

FUNCTION tri_count( ): 

  # in NumPy '*' is entry-wise multiplication 

  #     also called the HADAMARD PRODUCT 

  # and 'np.sum' sums the entry of a matrix 

  RETURN np.sum((  @ ) * ) / 6

A

A A A-



demo



Another Application: Reachability

Question: If  gives us information about 
length 2 paths, then what about ? 

 gives us information about -length paths.

A2

Ak

Ak k



Example

2

1

3

4

G



Example

2

1

3

4

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G



Example

2

1

3

4

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

2

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G



Example

2

1

3

4

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

2

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

3

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

=
0 4 4 0
4 0 0 4
4 0 0 4
0 4 4 0

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G



Example

2

1

3

4

G



Example

2

1

3

4

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G



Example

2

1

3

4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

2

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G



Example

2

1

3

4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

2

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

=
0 2 0 1
2 0 3 0
0 3 0 2
1 0 2 0



Another Application: Reachability

Theorem: Let  be a simple graph. 

•  is the number of paths of length exactly 
 from  to .  

•  is the number of paths of length at 
most k from

G

(Ak
G)ij

k vi vj

((AG + I)k)ij
-
>

nonzero if and only if there

is a path of length at most k from vito

Vj



Example

2

1

3

4

G



Example

2

1

3

4

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for ) + G I



Example

2

1

3

4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

2

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for ) + G I



Example

2

1

3

4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

2

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

3

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

=
6 6 6 7
6 6 7 6
6 7 6 6
7 6 6 6

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for ) + G I



How To: Reachability

Question: Given a simple graph  determine how 
many nodes,  can reach in at least  steps. 

Answer: Find  and count the number of 
nonzero elements in column .

G
vi k

(AG + I)k

i

(This could be useful for homework 6.)



Question

2

1

3

4

G

Determine the  and  and 
interpret the results.

(AG + I)2 (AG + I)3



Summary

The algebra of matrices can help us simplify 
matrix expressions. 

The invertible matrix theorem connects all the 
perspectives we've taken so far. 

Adjacency matrices are linear algebraic 
representations of graphs.


