CAS CS 132

Invertible Matrix Theorem + Algebraic Graph Theory Geometric Algorithms Lecture 12

Objectives

- 1. Recap matrix inverses (it's been a while)
- 2. Finish up the algebra of matrix inverses
- 3. Connect everything we've talked about so far via the Invertible Matrix Theorem (IMT)
- 4. Connect linear algebra to graph theory

Keywords

matrix inverses invertible matrix theorem directed/undirected graphs weighted/unweighted graphs adjacency matrices symmetric matrices triangle counting

Recap: Matrix Inverse

Motivation

When can we solve a matrix equation by *"dividing on both sides by A?"* A **x** = **b**

Motivation When can we solve a matrix equation by *"dividing on both sides by A?"* $A^{-1}A$ **x** = A^{-1} **b**

Motivation

When can we solve a matrix equation by *"dividing on both sides by A?"* $\mathbf{x} = A^{-1} \mathbf{b}$

Recall: Matrix Inverses

Recall: Matrix Inverses

Definition. For a $n \times n$ matrix A , an **inverse** of A is a $n \times n$ matrix B such that

$AB = I_n$ (and $BA = I_n$)

Recall: Matrix Inverses

Definition. For a $n \times n$ matrix A , an **inverse** of A is a $n \times n$ matrix B such that

is **invertible** if it has an inverse. Otherwise *A*

it is **singular**.

$AB = I_n$ (and $BA = I_n$)

Inverses are Unique

Theorem. If B and C are inverses of A , then $B = C$.

Verify:

Inverses are Unique

Theorem. If B and C are inverses of A , then $B = C$.

Verify:

If A is invertible, then we write A^{-1} for the inverse of A .

Solutions for Invertible Matrix Equations

has a <u>unique</u> solution for any choice of **b**. Verify:

Theorem. For a $n \times n$ matrix A , if A is invertible

- A **x** = **b**
	-

then

Unique Solutions

If $Ax = b$ has a $unique$ solution for any choice of **b**, then it has

» exactly one solution for any choice of **b**

Unique Solutions

- of **b**, then it has
- » at least one solution for any choice of **b**
- » at most one solution for any choice of **b**

If $Ax = b$ has a $unique$ solution for any choice

Unique Solutions

- of **b**, then it has
- » is onto *T*
- » is one-to-one *T*
- where T is implemented by A

If $Ax = b$ has a $unique$ solution for any choice

Definition. A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there is a linear transformation such that *S*

for any v in \mathbb{R}^n . Multiplication

 \mathbf{X}

$S(T(\mathbf{v})) = \mathbf{v}$ and $T(S(\mathbf{v})) = \mathbf{v}$

by A^{-1}

only if the matrix transformation $x \mapsto Ax$ is invertible.

Theorem. A $n \times n$ matrix A is invertible if and

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $x \mapsto Ax$ is invertible.

A matrix is invertible if it's possible to "undo" its transformation without "losing information".

Theorem. A $n \times n$ matrix A is invertible if and only if the matrix transformation $x \mapsto Ax$ is invertible.

A matrix is invertible if it's possible to "undo" its transformation without "losing information".

Non-Example. Projection onto the x_1 -axis.

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a one**to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of exactly one vector v in \mathbb{R}^n (where $T(v) = b$).

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a one**to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of exactly one vector v in \mathbb{R}^n (where $T(v) = b$).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Definition. A transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is a one**to-one correspondence** (bijection) if any vector **b** in \mathbb{R}^n is the image of exactly one vector v in \mathbb{R}^n (where $T(v) = b$).

A transformation is a 1-1 correspondence if it is 1-1 and onto.

Invertible transformations are 1-1 correspondences.

Kinds of Transformations (Pictorially)

1-1 correspondence onto, not 1-1 $1-1$ not onto not 1-1, not onto

not covered

Computing Matrix Inverses

Fundamental Questions

How can we determine if a matrix has an inverse?

If a matrix has an inverse how do we

compute it?

How can we determine if a matrix has

an inverse?

Fundamental Questions Answer 1: Try to compute it.

If a matrix has an inverse how do we

compute it?

How can we determine if a matrix has

If a matrix has an inverse how do we

an inverse?

Fundamental Questions Answer 1: Try to compute it.

compute it?

Answer 2: the Invertible Matrix Theorem (IMT)

In General Can we solve for each **b***i*?: $A | \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3 | = I$

In General If we want a matrix B such that $AB = I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_i ? $|Ab_1$ Ab_2 $Ab_3| = I$

Recall: In General If we want a matrix B such that $AB = I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_i ? $[A\mathbf{b}_1 \quad A\mathbf{b}_2 \quad A\mathbf{b}_3] = [\mathbf{e}_1 \quad \mathbf{e}_2 \quad \mathbf{e}_3]$

Recall: In General If we want a matrix B such that $AB = I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_i ? $A**b**₁ = **e**₁$ $Ab₂ = **e**₂$ $Ab₃ = **e**₃$

Recall: In General If we want a matrix B such that $AB = I$, then the above equation must hold (in the case B has 3 columns). Can we solve for each \mathbf{b}_i ? $A**b**₁ = **e**₁$ $Ab₂ = **e**₂$ $Ab₃ = **e**₃$ **We need to solve 3 matrix equations.**

Recall: How To: Matrix Inverses

- matrix . *A*
- **Solution.** Solve the equation $Ax = e_i$ for every standard basis vector. Put those solutions $\mathbf{s}_1, \mathbf{s}_2, ..., \mathbf{s}_n$ into a single matrix
	-

Question. Find the inverse of an invertible *n* × *n*

 $[S_1 \quad S_2 \quad \ldots \quad S_n]$

Recall: How To: Matrix Inverses

Question. Find the inverse of an invertible *n* × *n*

matrix . *A*

Solution. Row reduce the matrix [A *I*] to a $\mathsf{matrix}[I \ B]$. Then B is the inverse of A .

This is really the same thing. It's a simultaneous reduction.

demo

Special Case: 2 × 2 **Matrice Inverses**

-
-
- -
	- -
		- - -
-
- -
	-
-
-
- -
-
-
-
-
- - -
		-
- -
	-
-
- -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- -
-

The determinant of a 2×2 matrix is the value . *ad* − *bc*

The determinant of a 2×2 matrix is the value . *ad* − *bc*

The inverse is defined only if the determinant

is nonzero.

- The determinant of a 2×2 matrix is the value . *ad* − *bc*
- is nonzero.

The inverse is defined only if the determinant

(see the notes on linear transformations for more information about determinants)

Example

 \mathbf{I}

− 6 14 $3 - 7$]

−6 14 $3 - 7$

 \mathbf{I}

Is the above matrix invertible?

Is the above matrix invertible? No. The determinant is $(-6)(-7) - 14(3) = 42 - 42 = 0$

 \mathbf{I}

−6 14 $3 - 7$

Algebra of Matrix Inverses

How To: Verifying an Inverse

- **Question.** Given an invertible matrix B and some $\text{matrix } C$, demonstrate that $B^{-1} = C$.
- Answer. Show that $BC = I$ (or $CB = I$, but you don't have to do both).
	- This works because inverses are unique.

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A , the matrix A^{-1} is invertible and

Verify:

-
- $(A^{-1})^{-1} = A$

Algebraic Properties (Matrix Inverses)

Theorem. For a $n \times n$ invertible matrix A , the matrix A^T is invertible and

-
- $(A^T)^{-1} = (A^{-1})$ *T*

Verify:

Algebraic Properties (Matrix Inverses)

the matrix AB is invertible and

Verify:

- **Theorem.** For a $n \times n$ invertible matrices A and B,
	- $(AB)^{-1} = B^{-1}A^{-1}$

Question

Suppose that A is a $n \times n$ *invertible matrix such* that $A = A^T$ and B is a $m \times n$ matrix.

 $Simplift$ the expression $A(BA^{-1})^T$ using the *algebraic properties we've seen. T*

Answer: *B T*

-
-
-
-
-
-
- - - -
		- -
			-
			- -
		-
-
-
- -
	-
	-
	-
	-
	-
- -
- -
- -
- -
-
-
-
-
-
-
-
-
-
-
-
-
-

A (*BA* − 1 *A* = *A T*

) *T*

Motivation

Question. How do we know if a square matrix is invertible?

Answer. *Every* perspective we've taken so far can help us answer this question.

Then the following hold. 1. A^T is invertible

Theorem. Suppose A is a $n \times n$ invertible matrix.

- Then the following hold.
- 3. $Ax = b$ has at most one solution for every b

Theorem. Suppose A is a $n \times n$ invertible matrix.

2. $Ax = b$ has at $least$ one solution for every b </u> 4. has at exactly one solution for every *A***x** = **b b**

- **Theorem.** Suppose A is a $n \times n$ invertible matrix. Then the following hold.
- 5. *A* has a pivot in every column 6. *A* has a pivot in every <u>row</u> 7. A is row equivalent to I_n

- **Theorem.** Suppose A is a $n \times n$ invertible matrix. Then the following hold.
- 8. has only the trivial solution *A***x** = **0** 9. The columns of A are linearly independent 10. The columns of A span \mathbb{R}^n

- **Theorem.** Suppose A is a $n \times n$ invertible matrix. Then the following hold.
- 11. The linear transformation $x \mapsto Ax$ is onto
- 12. $x \mapsto Ax$ is one-to-one
- 13. $x \mapsto Ax$ is a one-to-one correspondence
- 14. $x \mapsto Ax$ is invertible

Taking Stock: IMT

- *The following are logically equivalent:*
- 1. A is invertible
- 2. A^T is invertible
- $A x = b$ has at least one solution for any **b**
- $A \cdot Ax = b$ has at most one solution for any b
- 5. $Ax = b$ has a unique solution for any b
- 6. A has *n* pivots (per row and per column)
- 7. A is row equivalent to *I*
- 8. has only the trivial solution *A***x** = **0**
- 9. The columns of A are linearly independent
- 10. The columns of A span \mathbb{R}^n
- 11. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto
- 12. $x \mapsto Ax$ is one-to-one
- 13. $x \mapsto Ax$ is a one-to-one correspondence
- 14. $\mathbf{x} \mapsto A\mathbf{x}$ is invertible

These all express the **same thing**

(this is a stronger statement than we just verified)

Taking Stock: IMT

- *The following are logically equivalent:*
- 1. A is invertible
- 2. A^T is invertible
- $A x = b$ has at least one solution for any **b**
- $A \cdot Ax = b$ has at most one solution for any b
- 5. $Ax = b$ has a unique solution for any b
- 6. A has *n* pivots (per row and per column)
- 7. A is row equivalent to *I*
- 8. has only the trivial solution *A***x** = **0**
- 9. The columns of A are linearly independent
- 10. The columns of A span \mathbb{R}^n
- 11. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto
- 12. $x \mapsto Ax$ is one-to-one
- 13. $x \mapsto Ax$ is a one-to-one correspondence
- 14. $\mathbf{x} \mapsto A\mathbf{x}$ is invertible

These all express the **same thing**

(this is a stronger statement than we just verified)

!! only for square matrices !!

Theorem. If *A* is square, then

A **is 1-1** if and only if *A* **is onto**

-
- *A* **is 1-1** if and only if *A* **is onto**
	-

Theorem. If *A* is square, then *We only need to check one of these.*

-
- *A* **is 1-1** if and only if *A* **is onto**
	- -

Theorem. If *A* is square, then *We only need to check one of these.* **Warning.** Remember this only applies square

matrices.

Theorem. If *A* is square, then A **is invertible** \equiv A **x** = **0 implies x** = **0**

Theorem. If *A* is square, then *Invertibility is completely determined by how A* behaves on 0 .

A **is invertible** \equiv A **x** = **0 implies** $x = 0$

Question (Conceptual)

sequence of row operations), the *B* is also *invertible.*

True or **False**: If A is invertible, and B is row equivalent to A (we can transform B into A by a

Answer: True

Row reductions don't change the number of pivots.

Question

If is invertible, then is [**a**¹ **a**² **a**3] $\begin{bmatrix} (a_1 + a_2 - 2a_3) & (a_2 + 5a_3) & a_3 \end{bmatrix}$ also invertible? Justify *your answer.*

Consider $[a_1 \ a_2 \ a_3]'$. We can get to by <u>row operations</u> $\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}^T$ $[(a_1 + a_2 - 2a_3)$ $(a_2 + 5a_3)$ $a_3]$ *T*

Algebraic Graph Theory

Definition (Informal). A **graph** is a collection of nodes with edges between them.

Directed vs. Undirected Graphs

A graph is **directed** if its edges have a direction.

Weighted vs Unweighted graphs

A graph is **weighted** if its edges have associated values.

Weighted vs Unweighted graphs

A graph is **weighted** if its edges have associated values.

Simple Graphs

A graph is **simple** if it is undirected, has no self loops, and no multi-edges.

Four Kinds of Graphs directed undirected

weighted

nodes are traffic light edges are streets weights are number of la

unweighted

nodes are instagram us edges are follows

Four Kinds of Graphs directed undirected

weighted

nodes are traffic light edges are streets weights are number of la

unweighted

nodes are instagram us edges are follows

Four Kinds of Graphs directed undirected

nodes are traffic lights edges are streets weights are number of lanes Markov Chains

nodes are instagram users

weighted

unweighted

Fundamental Question

Fundamental Question

How do we represent a graph formally in a computer?

Fundamental Question

How do we represent a graph formally in a computer? There are a couple ways, but one way is to use matrices.

Adjacency Matrices

We can create the **adjacency** matrix A for G as follows.

Let *G* be an simple graph with its nodes labeled by numbers 1 through . *n*

 $A_{ij} = \begin{cases} 1 \end{cases}$ 1 there is an edge between i and j 0 otherwise

Symmetric Matrices

Definition. A $n \times n$ matrix is symmetric if

Example.

$A^T = A$

- 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0
- 0 0 0 1 0 0

Once we have an adjacency matrix, we can do linear algebra on graphs.

Algebraic Graph Theory

Given an adjacency matrix A, can we *interpret anything meaningful from ? A*2

(A^2) $(1)_{53} = 1(0) + 1(1) + 0(0) + 1(1) + 0(0) + 0(0) = 2$

 $(A^2)_{ii} = A_{i1}A_{1i} + A_{i2}A_{2i} + ... + A_{in}A_{nj}$

$A_{ik}A_{kj} = \begin{cases} 1 & \text{there are edges i to k and k to j} \\ 0 & \text{otherwise} \end{cases}$

 $(A^2)_{ii} = A_{i1}A_{1i} + A_{i2}A_{2i} + ... + A_{in}A_{nj}$

 (A^2) $\mathcal{L}_{ij} = A_{i1}A_{1j} + A_{i2}A_{2j} + \ldots + A_{in}A_{nj}$

$A_{ik}A_{kj} = \begin{cases} 1 & j \end{cases}$ 1 there are edges i to k and k to j 0 otherwise $A_{34}A_{45} = 1(1) = 1$

 \bigodot

 (A^2) $\mathcal{L}_{ij} = A_{i1}A_{1j} + A_{i2}A_{2j} + \ldots + A_{in}A_{nj}$

$A_{ik}A_{kj} = \begin{cases} 1 & j \end{cases}$ 0 otherwise

$(A^2)_{ij} = \begin{vmatrix} \text{number of 2-step paths} \\ \text{from i to j} \end{vmatrix}$

1 there are edges i to k and k to j

A **triangle** in an undirected graph is a set of three distinct nodes with edges between every pair of nodes. Triangles in a social network represent mutual friends and tight cohesion

(among other things)

Application: Triangle Counting (Naive)

FUNCTION $tri_count_naive(A)$: $count = 0$ for i from 1 to n: for j from $i + 1$ to n: for k from $j + 1$ to n : if $A_{ij} = 1$ and $A_{jk} = 1$ and $A_{ki} = 1$: # an edge between each pair count $+= 1:$ **RETURN** count

Theorem. For an adjacency matrix A , the number of triangle containing the edge (i, j) is

Verify:

 $(A^2)_{ii} * A_{ii}$

FUNCTION tri_count(A): compute A^2

count \leftarrow sum of $(A^2)_{ij}$ * A_{ij} for all distinct i and \overline{a} **RETURN** count / 6 $\#$ why divided by 6 ? λ_{ij} $^*A_{ij}$ for all distinct i and j

- FUNCTION tri_count(A):
	- # in NumPy '*' is entry-wise multiplication
	- # also called the HADAMARD PRODUCT
- count \leftarrow sum of the entries of $A^2 * A$
	- **RETURN** count / 6

FUNCTION tri_count(A): # in NumPy '*' is entry-wise multiplication # also called the HADAMARD PRODUCT # and 'np.sum' sums the entry of a matrix **RETURN** np.sum($(A \otimes A) \times A$) / 6

demo

Another Application: Reachability

Question: If A^2 gives us information about length 2 paths, then what about A^k ?

-
- A^k gives us information about k –length paths.

Example

Example $\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$ = adjacency matrix for G $1\quad1$ $\overline{0}$ $\vert 0 \vert$

$$
\begin{bmatrix} 0 & 4 & 4 & 0 \\ 1 & 4 & 0 & 0 & 4 \\ 1 & 4 & 0 & 0 & 4 \\ 0 & 4 & 4 & 0 \end{bmatrix}
$$

Example

Example $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ = adjacency matrix for G $\overline{0}$ $0₁$ $|0|$

Another Application: Reachability

- Theorem: Let *G* be a simple graph.
- k from v_i to v_j . *^G*)*ij*
- path of length at at most k from v_i to v_j . *k*)*ij*

• $(A_G^k)_{ij}$ is the number of paths of length exactly

 \bullet $\left((A_G+I)^k\right)_{ii}$ is nonzero if and only if there is a

Example

Example $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$ = (adjacency matrix for *G*) + *I* $1 \quad 1 \quad 1$ $\overline{0}$

G $\mathbf{1}$ 3 $\overline{2}$ $\overline{4}$

G $=$ (adjacency matrix for G) + I

How To: Reachability

many nodes, v_i can reach in at least k steps.

Answer: Find $(A_G + I)^k$ and count the number of nonzero elements in column . *i k*

Question: Given a simple graph G determine how

(This could be useful for homework 6.)

Question

Determine the $(A_G + I)^2$ and $(A_G + I)^3$ and *interpret the results.*

Summary

The algebra of matrices can help us simplify matrix expressions.

The invertible matrix theorem connects all the perspectives we've taken so far.

Adjacency matrices are linear algebraic representations of graphs.