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Practice Problem

(LAA 4.9.3) On any given day a student is 
healthy or ill. Of the students healthy today, 
5% will be ill tomorrow, and 55% of ill 
students will remain ill tomorrow. 

Write down the stochastic matrix for this 
situation.



Objectives

1. Motivate matrix factorization in general, and 
the LU factorization in specific 

2. Recall elementary row operations and connect 
them to matrices 

3. Look at the LU factorization, how to find it, 
and how to use it



Keywords

elementary matrices 

LU factorization



Catch up: State Diagrams



State Diagrams

Definition. A state diagram is a directed 
weighted graph whose adjacency matrix is 
stochastic. 

Example.
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Naming Convention Clash

The nodes of a state diagram are often called 
states. 

The vectors which are dynamically updated 
according to a linear dynamical system are 
called state vectors. 

This is an unfortunate naming clash.



Example: Computer System

Imagine a computer 
system in which tasks 
request service from 
disk, network or CPU. 

In the long term, which 
device is busiest? 

This is about finding a 
stable state.



How To: State Diagram

Question. Given a state diagram, find the 
stable state for the corresponding linear 
dynamical system. 

Solution. Find the adjacency matrix for the 
state diagram and go from there.



Example



Example

(LAA 4.9.3) On any given day a student is 
healthy or ill. Of the students healthy today, 
5% will be ill tomorrow, and 55% of ill 
students will remain ill tomorrow. 

Find the state diagram for the above problem.



Random Walks as Linear Dynamical Systems

Once we have a stochastic matrix, we can reason 
about random walks as linear dynamical systems. 

What are its steady states? 

How do we interpret these steady states?



Random Walks on State Diagrams

A random walk on a state diagram starting at  
is the following process: 

» choose a node  is connected to according to 
the distribution given by the edge weights 

» go to that node 

» repeat

v

v



Random Walks on State Diagrams

A random walk on a state diagram starting at  
is the following process: 

» choose a node  is connected to according to 
the distribution given by the edge weights 

» go to that node 

» repeat

v

vStable states of linear dynamical systems 
are stable states of random walks on 

state diagrams.



Example



Steady States of Random Walks

Theorem. Let  be the stochastic matrix for the 
graph . The probability that a random walk 
starting at  of length  ends on node  is 

A
G

i k j

(Ak)ji

 transforms a distribution for length  walks to 
length  walks.

A k
k + 1



Steady States of Random Walks

If a random walk goes on for a sufficiently 
long time, then the probability that we end up 
in a particular place becomes fixed. 

If you wander for a sufficiently long time, it 
doesn't matter where you started.



moving on...



Motivation: Matrix Factorization



From Numbers to Matrices



From Numbers to Matrices

Much of linear algebra is about extending our 
intuitions about numbers to matrices.
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From Numbers to Matrices

Much of linear algebra is about extending our 
intuitions about numbers to matrices.

For whole numbers, a factor of  is a number  
such that  divides .

n m
m n

 is a factor of ,  is a factor of ,...2 10 7 49



Polynomials

We've also likely seen this with polynomials, 
e.g. 

 

This is a polynomial factorization.

x3 + 6x2 + 11x + 6 = (x + 1)(x + 2)(x + 3)



Matrix Factorization



Matrix Factorization

A factorization of a matrix  is an equation 
which expresses  as a product of one or more 
matrices, e.g.,
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Matrix Factorization

A factorization of a matrix  is an equation 
which expresses  as a product of one or more 
matrices, e.g.,

A
A

A = BC

So far, we've been given two factors and asked 
to find their product.

Factorization is the harder direction.



A Warning: Intuitions only go so far



One nice feature of numbers is that they have a 
unique factorization into prime factors.
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One nice feature of numbers is that they have a 
unique factorization into prime factors.

There is no such thing for matrices.

A Warning: Intuitions only go so far



One nice feature of numbers is that they have a 
unique factorization into prime factors.

There is no such thing for matrices.

This is a blessing and a curse:

  We have more than one kind of factorization 
  but they tell us different things.

A Warning: Intuitions only go so far
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Reasons to Factorize

Writing  as the product of multiple matrices canA

» make computing with  fasterA

» make working with  easierA

» expose important information about A

LU Decomposition



The Problem

Question. For an matrix , solve the equations 

 ,   ...   ,  

In other words: we want to solve a bunch of 
matrix equations over the same matrix.

A

Ax = b1 Ax = b2 Ax = bk−1 Ax = bk



The Problem

Question. For a matrix , solve (for ) in the 
equation 

 
where  and  are matrices of appropriate 
dimension. 

This is (essentially) the same question.

A X

AX = B
X B



The Problem

Question. Solve . 

If  is invertible, then we have a solution: 

Find  and then .

AX = B

A

A−1 X = A−1B



The Problem

Question. Solve . 

If  is invertible, then we have a solution: 

Find  and then .

AX = B

A

A−1 X = A−1B

What if  is not invertible?A−1

Even if it is, can we do it faster?



LU Factorization at a High Level

Given a  matrix , we are going to 
factorize  as 

m × n A
A

echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0



LU Factorization at a High Level

Given a  matrix , we are going to 
factorize  as 

m × n A
A

Note. This applies to non-square matrices

echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0



What are "L" and "U"?
L stands for "lower" as in lower triangular. 

U stands for "upper" as in upper triangular. 
(This only happens when  is square.) A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * *
0 ◼ * *
0 0 ◼ *
0 0 0 ◼



Elementary Matrices
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The Fundamental Question

We know how to build , that's just the forward 
phase of Gaussian elimination.

U

How do we build ?L

The idea.  "implements" the row operations of 
the forward phase.

L

A = LU echelon form of A



Recall: Elementary Row Operations

scaling        multiply a row by a number 

interchange    switch two rows 

replacement    add a scaled equation to another



The First Key Observation
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The First Key Observation

Elementary row operations are linear transformations 
(viewed as transformation on columns)

Example: Scale row 2 by 5      

R2 ← 5R2
a11 a12 a13
a21 a22 a23
a31 a32 a33

a11 a12 a13
5a21 5a22 5a23
a31 a32 a33



Example: Scaling

Restricted to one column, we see this is the 
above linear transformation.

v1
v2
v3

↦
v1
5v2
v3



Example: Scaling
v1
v2
v3

↦
v1
5v2
v3

Let's build the matrix which implements it:



Another Example: Scaling + Replacement

          
a11 a12 a13
a21 a22 a23
a31 a32 a33

a11 a12 a13
a21 a22 a23

(a31 − 2a11) (a32 − 2a12) (a33 − 2a13)

R3 ← (R3 − 2R1)



Another Example: Scaling + Replacement
Let's build the transformation: R3 ← (R3 − 2R1)



Another Example: Scaling + Replacement
Let's build the matrix which implements it:



Elementary row operations are 
linear, so they are 

implemented by matrices



General Elementary Scaling Matrix
1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1



General Elementary Scaling Matrix

If we want to perform  then we need the 
identity matrix but with the entry .

R3 ← kR3
A33 = k
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General Elementary Scaling Matrix

If we want to perform  then we need the 
identity matrix but with the entry .

R3 ← kR3
A33 = k

If we want to perform  then we need the 
identity matrix but with then entry .

Ri ← kRi
Aii = k

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1



General Replacement Matrix
1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1



General Replacement Matrix

If we want to perform , then we need 
the identity matrix but with the entry .

R4 ← R4 + kR1
A41 = k

1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1



General Replacement Matrix

If we want to perform , then we need 
the identity matrix but with the entry .

R4 ← R4 + kR1
A41 = k

If we want to perform , then we need 
the identity matrix but with the entry .

Ri ← Ri + kRj
Aij = k

1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1



General Swap Matrix

If we want to swap  and , then we need the 
identity matrix, but with  and  swapped.

R2 R3
R2 R3

1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0



Elementary Matrices

Definition. An elementary matrix is a matrix 
obtained by applying a single row operation to 
the identity matrix . 

Example.

I



Elementary Matrices

Definition. An elementary matrix is a matrix 
obtained by applying a single row operation to 
the identity matrix .I

These are exactly the matrices 
we were just looking at.



How To: Finding Elementary Matrices

Question. Find the matrix implementing the 
elementary row operation . 

Solution. Apply  to the identity matrix of the 
appropriate size.

./

./



Products of Elementary Matrices
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Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row 
operations.

» Remember that Matrix multiplication is 
transformation composition (i.e., do one then the 
other).

So we can implement any sequence of row operations 
as a product of elementary matrices.



How to: Matrices implementing Row Operations

Question. Find the matrix implementing a 
sequence of row operations , ,... 

Solution. Apply the row operations in sequence 
to the identity matrix of the appropriate size.

./1 ./2



Question

Find the matrix implementing the following 
sequence of elementary row operations on a  
matrix. 

 

 

   

Then multiply it with the all-ones  matrix.

3 × n

R2 ← 3R2

R1 ← R1 + R2

R2 ↔ R3

3 × 3



Answer [
1 3 0
0 0 1
0 3 0]



Second Key Observation
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Elementary row operations are invertible linear 
transformations.



Second Key Observation

Elementary row operations are invertible linear 
transformations.

This also means the product of elementary 
matrices is invertible.

(E1E2E3E4)−1 = E−1
4 E−1

3 E−1
2 E−1

1
!! the order reverses !!



Question (Conceptual)

Describe the inverse transformation for each 
elementary row operation.
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Question (Conceptual)

Describe the inverse transformation for each 
elementary row operation.

The inverse of scaling by  is scaling by .k 1/k

The inverse of  is .Ri ← Ri + kRj Ri ← Ri − kRj

The inverse of swapping is swapping again.



LU Factorization



Recall: Elementary Row Operations

scaling        multiply a row by a number 

interchange    switch two rows 

replacement    add a scaled equation to another



Recall: Elementary Row Operations

interchange    switch two rows 

replacement    add a scaled equation to another

We only need these two for the forward phase



Recall: Elementary Row Operations

replacement    add a scaled equation to another

We'll assume we only need this



Reminder: LU Factorization at a High Level

Given a  matrix , we are going to 
factorize  as 

m × n A
A

Echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0



LU Factorization Algorithm



LU Factorization Algorithm

1 FUNCTION LU_Factorization(A):



LU Factorization Algorithm

1 FUNCTION LU_Factorization(A):

2 L ← identity matrix



LU Factorization Algorithm

1 FUNCTION LU_Factorization(A):

2 L ← identity matrix

3 U ← A



LU Factorization Algorithm

1 FUNCTION LU_Factorization(A):

2 L ← identity matrix

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps



LU Factorization Algorithm

1 FUNCTION LU_Factorization(A):

2 L ← identity matrix

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps

5 FOR each row operation OP in the prev step:



LU Factorization Algorithm
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4 convert U to an echelon form by GE forward step # without swaps

5 FOR each row operation OP in the prev step:

6 E ← the matrix implementing OP



LU Factorization Algorithm

1 FUNCTION LU_Factorization(A):

2 L ← identity matrix

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps

5 FOR each row operation OP in the prev step:

6 E ← the matrix implementing OP

7 L ← L @ E−1 # note the multiplication on the right



LU Factorization Algorithm

1  FUNCTION LU_Factorization( ):A

2      L  identity matrix←

3      U  ← A

4      convert U to an echelon form by GE forward step # without swaps

5      FOR each row operation OP in the prev step:

6          E  the matrix implementing OP←

7          L  L @ E     # note the multiplication on the right← −1

8      RETURN (L, U)



LU Factorization Algorithm

1  FUNCTION LU_Factorization( ):A

2      L  identity matrix←

3      U  ← A

4      convert U to an echelon form by GE forward step # without swaps

5      FOR each row operation OP in the prev step:

6          E  the matrix implementing OP←

7          L  L @ E     # note the multiplication on the right← −1

8      RETURN (L, U) we'll see how to do this part smarter



Gaussian Elimination and Elementary Matrices

Consider a sequence of elementary row 
operations from  to an echelon form. 

Each step can be represent as a product with an 
elementary matrix.

A

A ∼ A1 ∼ A2 ∼ … ∼ Ak



Gaussian Elimination and Elementary Matrices

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A



Gaussian Elimination and Elementary Matrices

This exactly tells us that if  is the final echelon form 
we get then

B

B = (EkEk−1…E2E1)A = EA
where  implements a sequence of row operations.E

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A
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Gaussian Elimination and Elementary Matrices

This exactly tells us that if  is the final echelon form 
we get then

B

B = (EkEk−1…E2E1)A = EA
where  implements a sequence of row operations.E

So

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A

Invertible

A = E−1B = (E−1
1 E−1

2 …E−1
k−1E−1

k )B



The forward part of Gaussian 
elimination is matrix 

factorization

A New Perspective on Gaussian Elimination



The "L" Part

This a product of elementary matrices 

So  !! the order reverses !! 

We won't prove this, but it's worth thinking 
about: why is this lower triangular? 

And can we build this in a more efficient way?

L = E−1 = E−1
1 E−1

2 …E−1
k−1E−1

k

E = EkEk−1…E2E1



demo



How To: LU Factorization by hand

Question. Find a LU Factorization for the 
matrix  (assuming no swaps). 

Solution. 

» Start with  as the identity matrix. 
» Find  by the forward part of GE. 
» For each operation , set  to .

A

L
U

Ri ← Ri + kRj Lij −k



Solving Systems using the 
LU Factorization
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Analyzing Linear Algebra Algorithms

We will not use  notation!O( ⋅ )

For numerics, we care about number of FLoating-
oint OPerations (FLOPs):

  >> addition 
  >> subtraction 
  >> multiplication 
  >> division 
  >> square root

 vs.  is very different 
when 

2n n
n ∼ 1020
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Dominant Terms

that said, we don't care about exact bounds

A function  is asymptotically equivalent to 
 if

f(n)
g(n)

lim
i→∞

f(i)
g(i) = 1

for polynomials, they are equivalent to their 
dominant term



Dominant Terms

the dominant term of a polynomial is the monomial with the 
highest degree 

 

 dominates the function even though the coefficient for  
is so large

lim
i→∞

3x3 + 100000x2

3x3 = 1

3x3 x2



How To: Solving systems with the LU

Question. Solve the equation  given that 
 is a LU factorization. 

Solution. First solve  to get a solution , 
then solve  to get a solution . 

Verify: 

Ax = b
A = LU

Lx = b c
Ux = c d



How To: Solving systems with the LU

Question. Solve the equation  given that 
 is a LU factorization. 

Solution. First solve  to get a solution , 
then solve  to get a solution . 

Ax = b
A = LU

Lx = b c
Ux = c d

Why is this better than just solving ?Ax = b



FLOPs for Solving General Systems

The following FLOP estimates are based on  matrices 

Gaussian Elimination:  FLOPS 

GE Forward:  FLOPS 

GE Backward:  FLOPS 

Matrix Inversion:  FLOPS 

Matrix-Vector Multiplication:  FLOPS 

Solving by matrix inversion:  FLOPS 

Solving by Gaussian elimination:  FLOPS

n × n

∼ 2n3

3

∼ 2n3

3
∼ 2n2

∼ 2n3

∼ 2n2

∼ 2n3

∼ 2n3

3



FLOPS for solving LU systems

LU Factorization:  FLOPS 

Solving :  FLOPS (by "forward" elimination) 

Solving :  FLOPS (already in echelon form) 

Solving by LU Factorization:  FLOPS 

∼ 2n3

3
Lx = b ∼ 2n2

Ux = c ∼ 2n2

∼ 2n3

3



If you solve several matrix equations for the 
same matrix, LU factorization is faster than 
matrix inversion on the first equation, and 
the same (asymptotically) in later equations 
(and it works for rectangular matrices).
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Other Considerations: Density

If  doesn't have to many entries (  is 
sparse), then its likely that  and  won't 
either.

A A
L U

But  may have many entries (  is dense)A−1 A−1

Sparse matrices are faster to compute with and 
better with respect to storage.



Summary

We can factorize matrices to make them easier 
to work with, or get more information about 
them 

LU Factorizations allow us to solve multiple 
matrix equations, with one forward step and 
multiple backwards steps.


