Computer Graphics Geometric Algorithms Lecture 15

CAS CS 132

Practice Problem

$\begin{bmatrix} 2 & 1 & 3 \\ -2 & 0 & -4 \\ 6 & 3 & 9 \end{bmatrix}$

Find the LU decomposition of the above matrix.

Answer $\begin{pmatrix} \epsilon, 1 \\ p_{2} \leftarrow p_{2} + p_{1} \\ e_{3} - 2^{12} & 0^{13} \\ c_{3} - 2^{13} & 0^{13} \\ c_{3} - 2 & 0 \\ c_{3} -$ $E_{1}E_{2}E_{3}=L=\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \quad \begin{array}{c} 4 = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$

Objectives

- 2. Briefly discuss Homework 8

1. Look at linear algebraic methods in graphics

Keywords

elementary matrices LU factorization wireframe objects homogeneous coordinates translation perspective projections

Recap: Solving Systems using the LU Factorization

Question. Solve the above matrix equation (in other words, find a general form solution).

$A\mathbf{x} = \mathbf{b}$

Question. Solve the above matrix equation (in other words, find a general form solution).

$A\mathbf{x} = \mathbf{b}$

What does the LU factorization give us?

Question. Solve the above matrix equation (in other words, find a general form solution).

$(LU)\mathbf{x} = \mathbf{b}$

Substitute *LU* for A

Question. Solve the above matrix equation (in other words, find a general form solution).

$L(U\mathbf{x}) = \mathbf{b}$

Rearrange matrix-vector multiplications

other words, find a general form solution).

Multiply by L^{-1} on both sides

$U\mathbf{x} = L^{-1}\mathbf{b}$

Question. Solve the above matrix equation (in

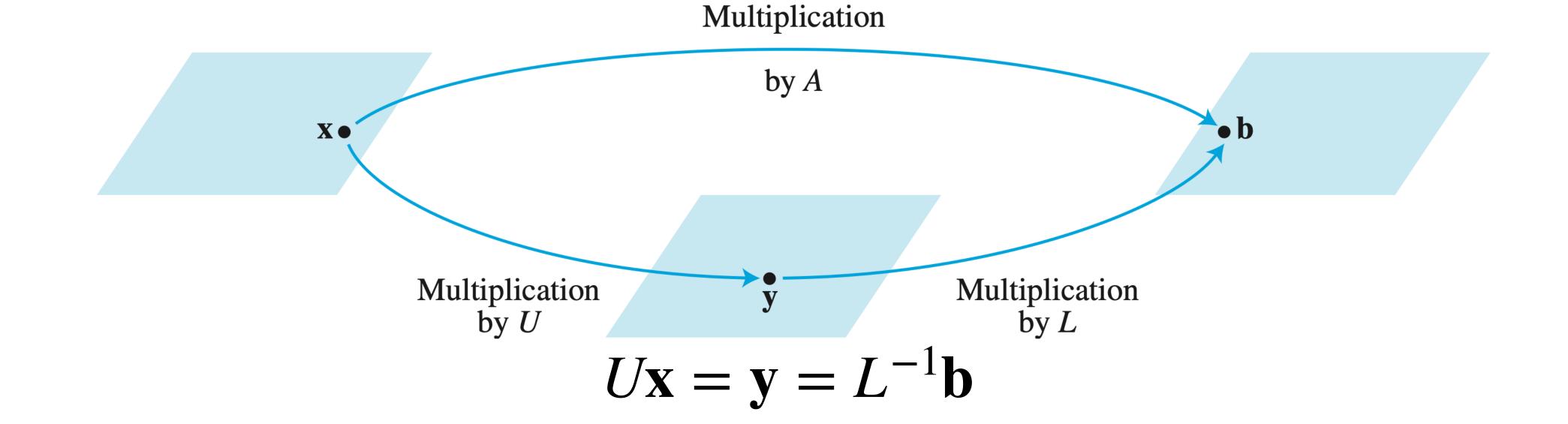
other words, find a general form solution).

A solution to Ax = b is the same as a solution to $U\mathbf{x} = L^{-1}\mathbf{b}$

$U\mathbf{x} = L^{-1}\mathbf{h}$

Question. Solve the above matrix equation (in

Solving systems with the LU (Pictorially)

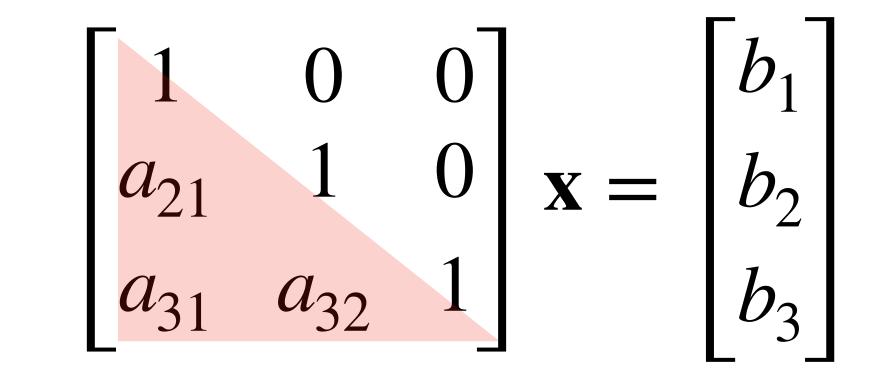


which is mapped to \mathbf{b} by L_{\bullet}

If A maps x to b, then U maps x to some vector y

FLOPS for $L\mathbf{x} = \mathbf{b}$

L is a **lower triangular** matrix. The system can be solved in $\sim n^2$ FLOPS by <u>forward</u> substitution.



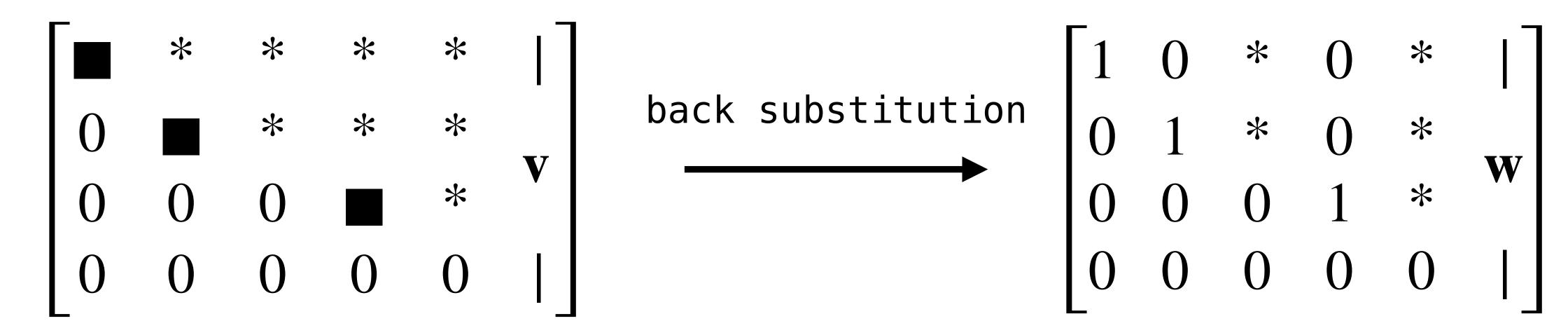
$$x_{1} = b_{1}$$

$$x_{2} = b_{2} - a_{21}x_{1}$$

$$x_{3} = b_{3} - a_{31}x_{1} - a_{32}x_{2}$$

FLOPS for Ux = v

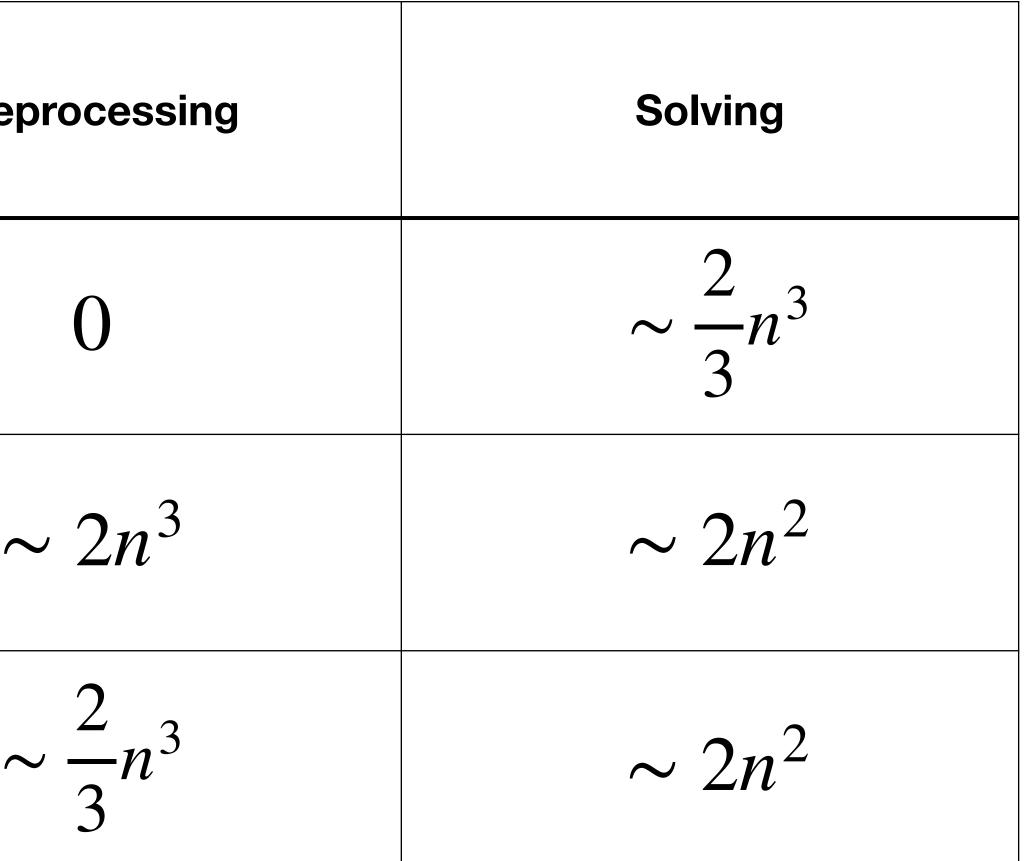
back substitution, which can be done in $\sim n^2$ FLOPS.



U is in echelon form. We only need to perform

FLOP Comparison

	Pre
Gaussian Elimination	
Matrix Inversion	
LU Factorization	(



Graphics

Disclaimer

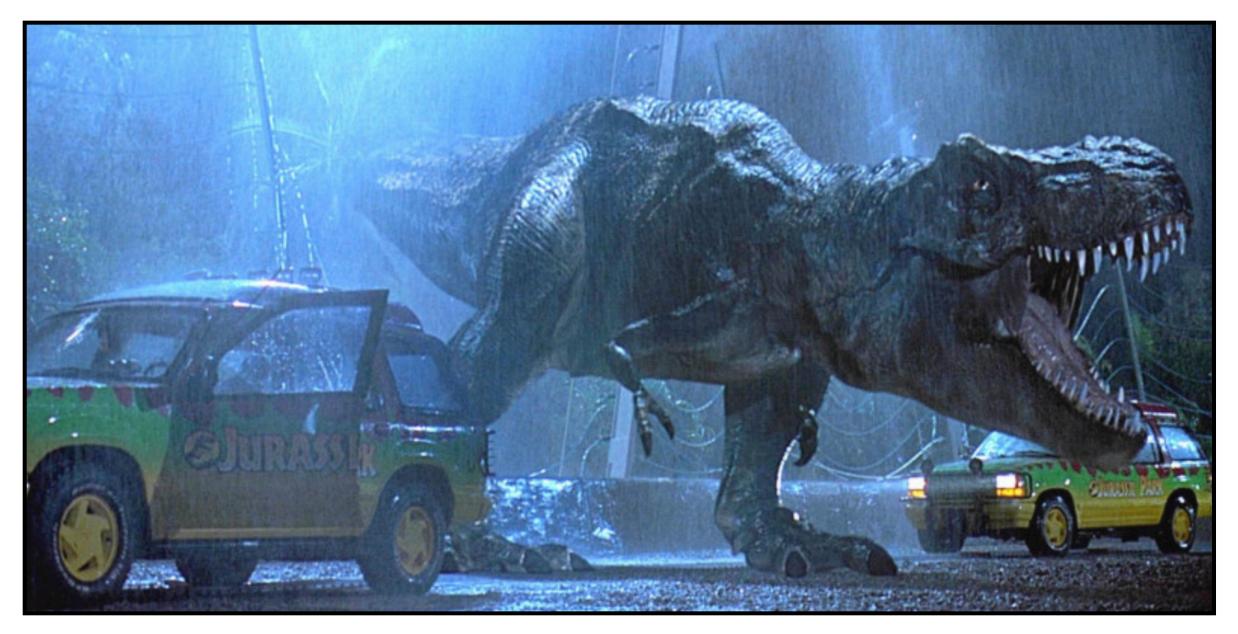
I am not an expert in this field.

Motivation (or Pretty Pictures)

- Graphics doesn't need much motivation. We spend so much time interacting graphics in
- one form or another.
- it, some examples...
- But in case you haven't thought too much about

source: CS184 Lecture Slides, UC Berkeley, Ng Ren

Jurassic Park (1993)



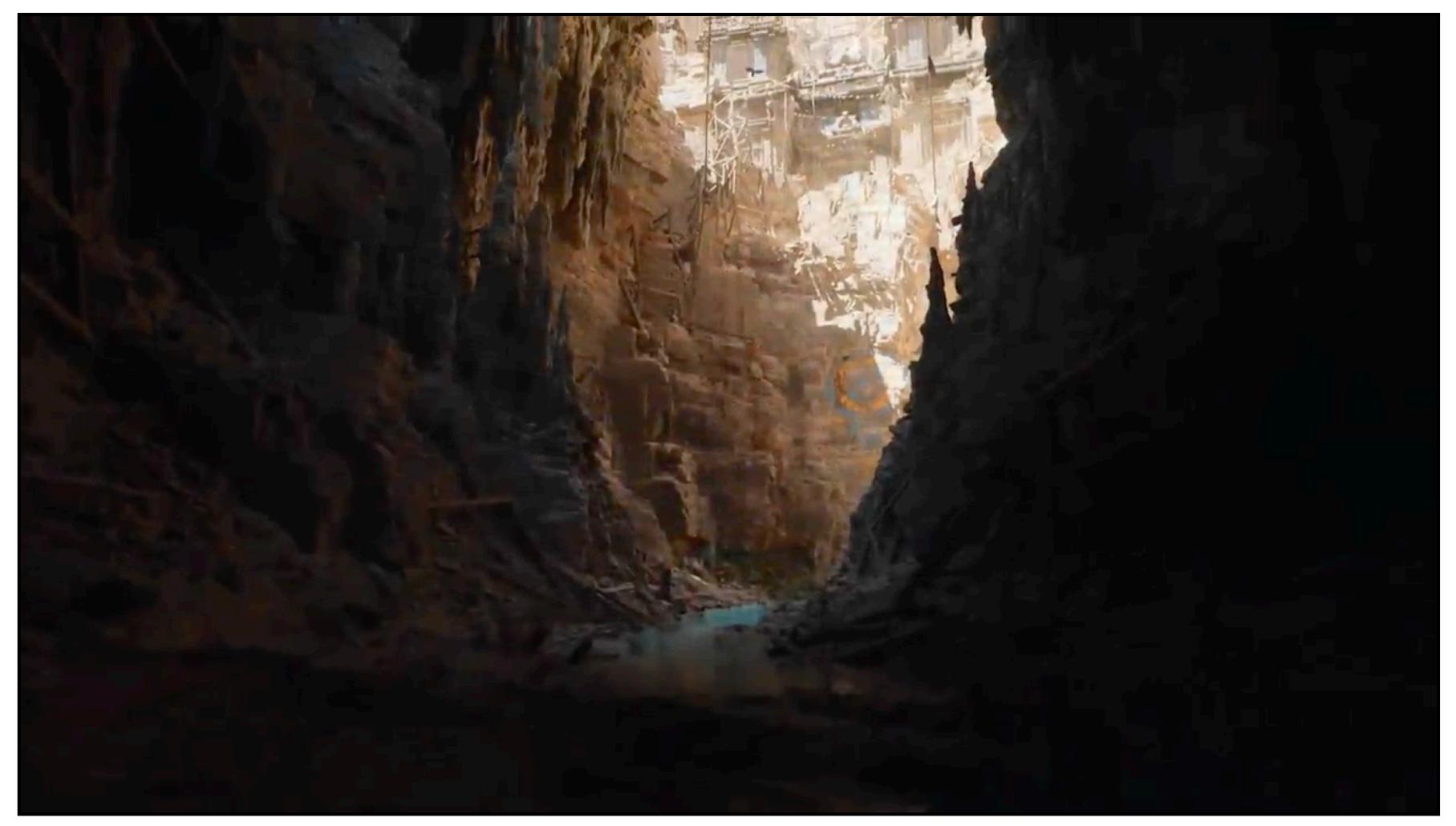
Moments That Changed The Movies: Jurassic Park https://www.youtube.com/watch?v=KWsbcBvYqN8

Alice in Wonderland (2010)

Motion Capture

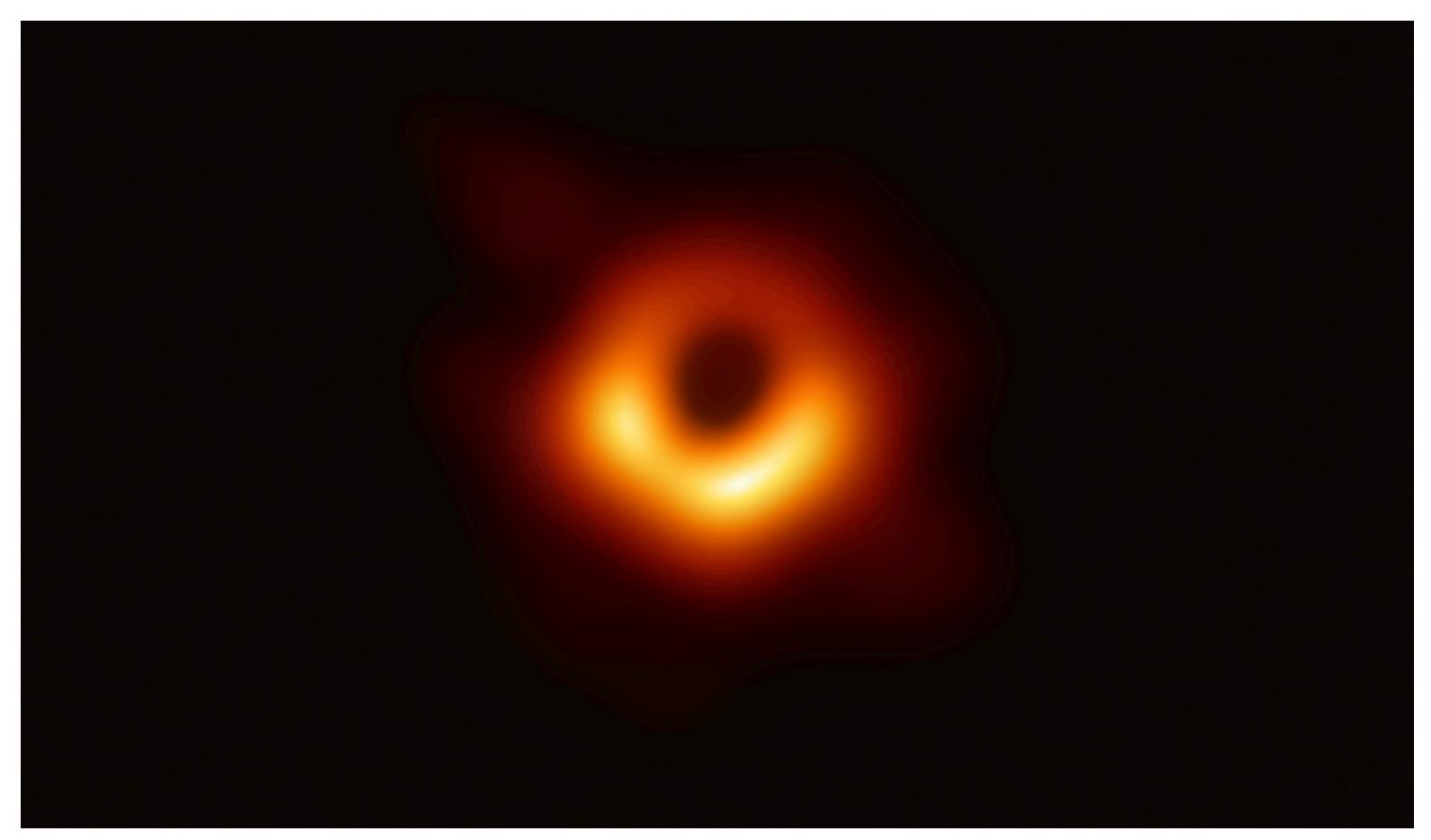
Two Towers (2002)

Video Games



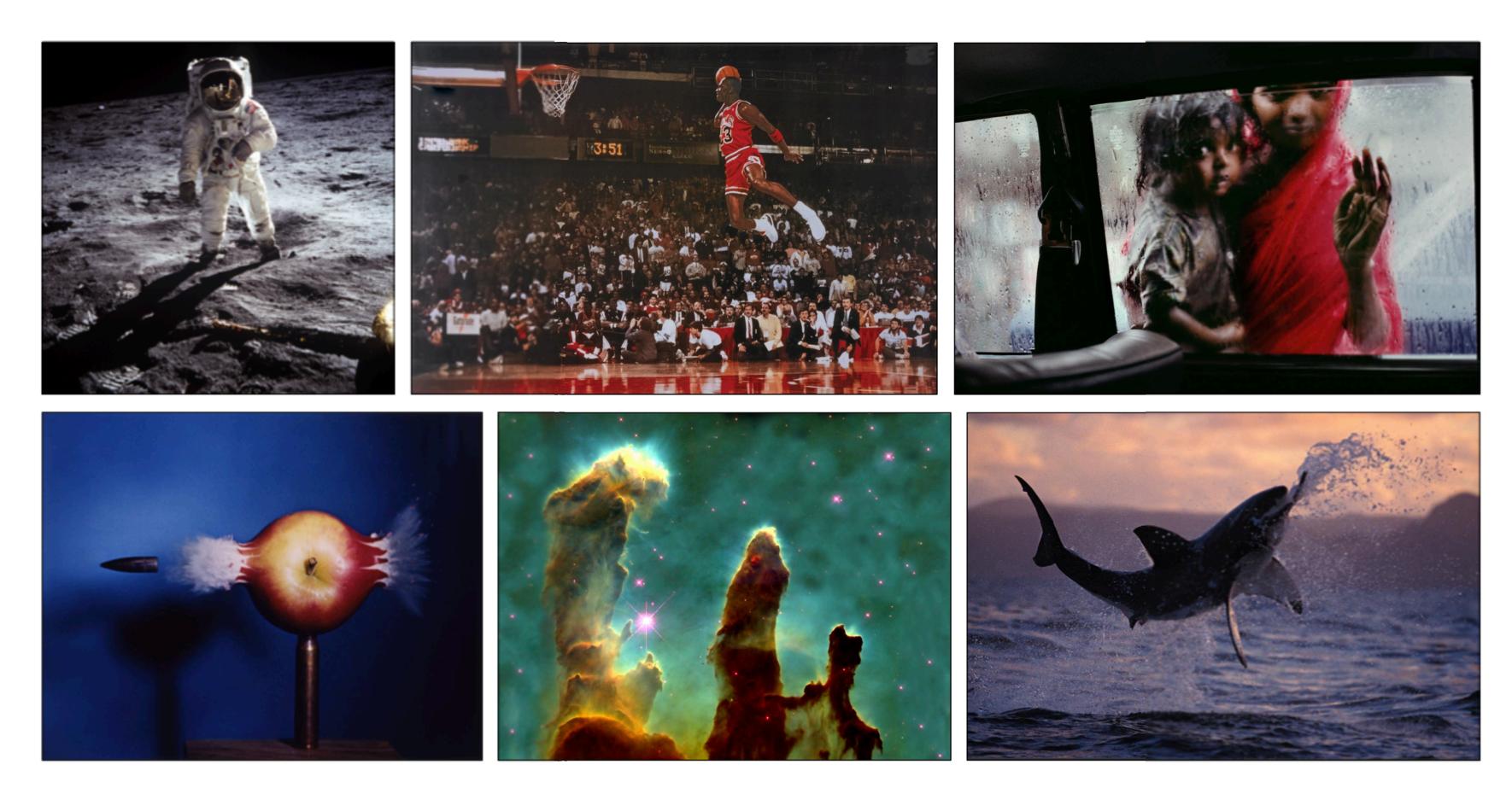
Unreal Engine 5 (2020)

Scientific Visualization



First image of a black hole (2022)

Photography



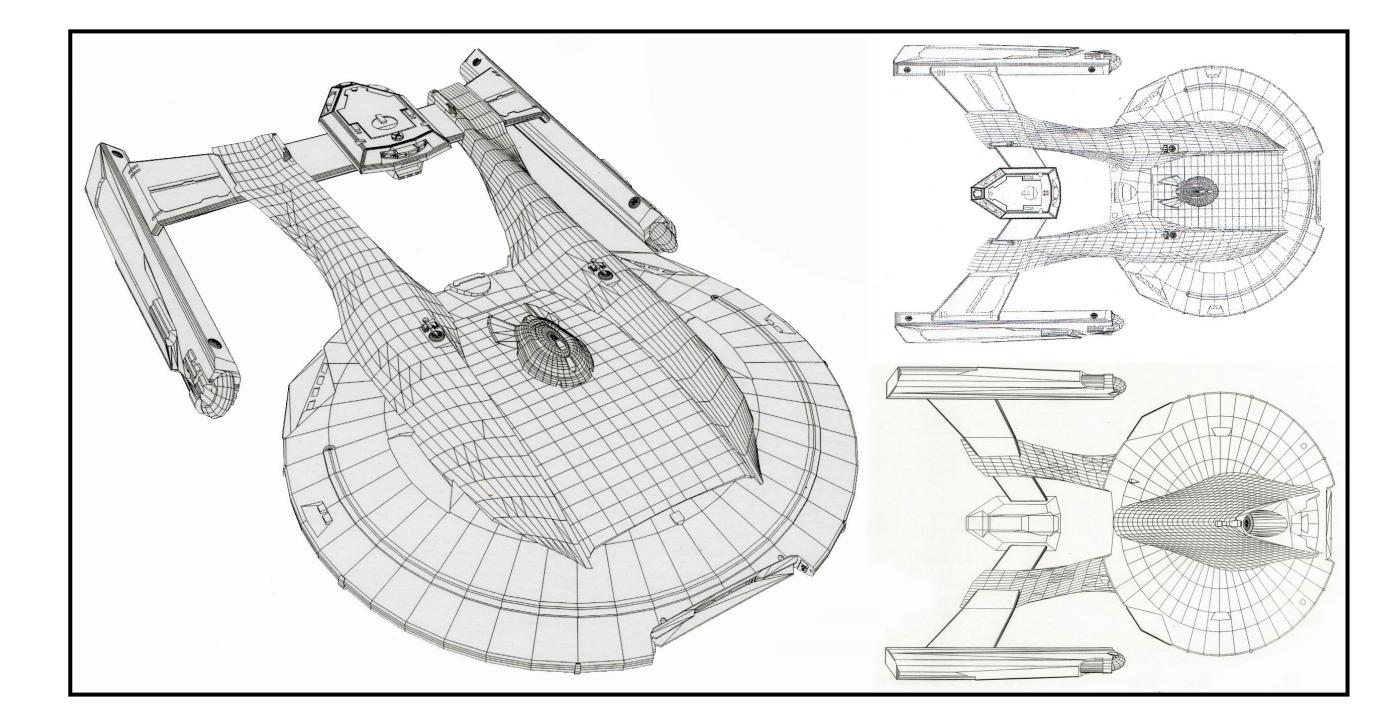
NASA | Walter Iooss | Steve McCurry Harold Edgerton | NASA | National Geographic

Graphics and Linear Algebra

3D Graphics

There are many facets of computer graphics, but we will be focusing on one problem today:

Manipulating and Transforming 3D objects and rendering them on a screen.



1. Create a 3D model of objects + scene.

1. Create a 3D model of objects + scene.

into approximations called wire frames or tessellations built out of a massive number of polygons (often triangles).

2. Convert the surfaces of the objects in the model

1. Create a 3D model of objects + scene.

into approximations called wire frames or tessellations built out of a massive number of polygons (often triangles).

3. Manipulate the polygons via *linear* transformations and then linearly render it in 2D (in a way that preserves perspective).

2. Convert the surfaces of the objects in the model

1. Create a 3D model of objects + scene.

into approximations called wire frames or tessellations built out of a massive number of polygons (often triangles).

and then linearly render it in 2D (in a way that preserves perspective).

2. Convert the surfaces of the objects in the model

3. Manipulate the polygons via *linear* transformations

Today

Wire Frames

A wire frame is representation of a surface as a collection of polygons and line segments.

Transformations on line segments and polygons are **linear**.

Transformations

We've seen many 2D transformations

- » Reflections
- » Expansion
- » Shearing
- » Projection

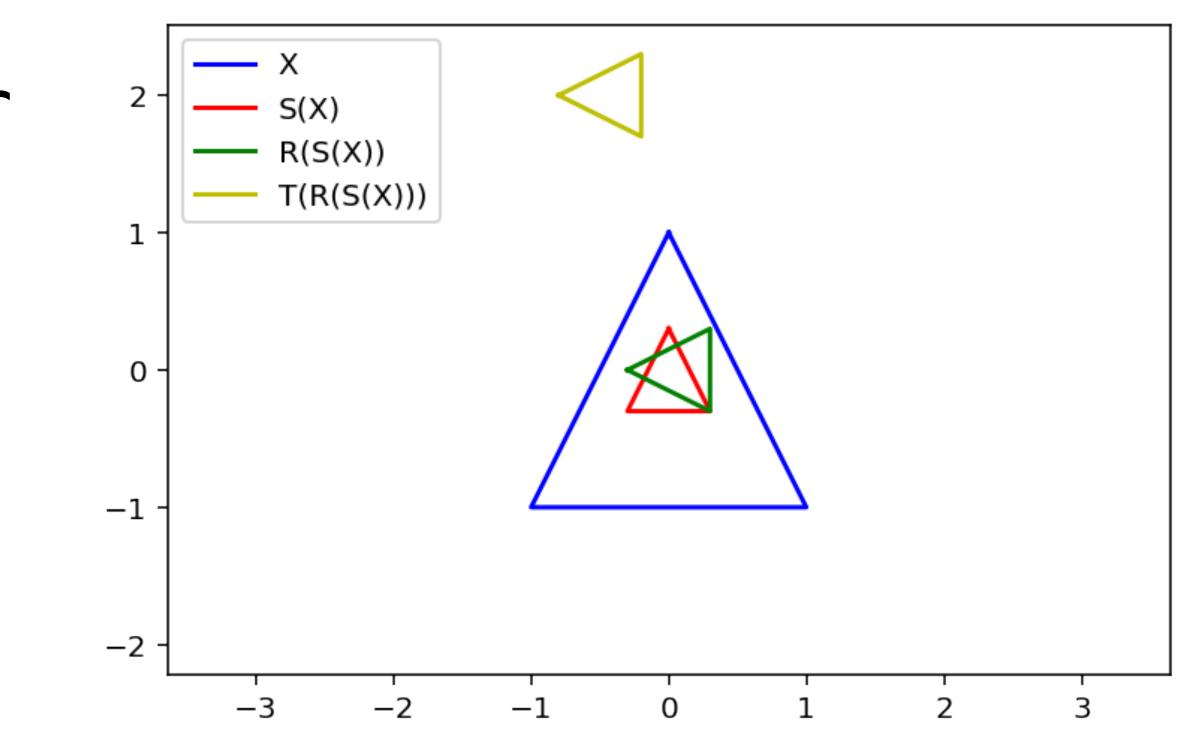
We've seen some 3D transformations

- » Rotations
- » Projections

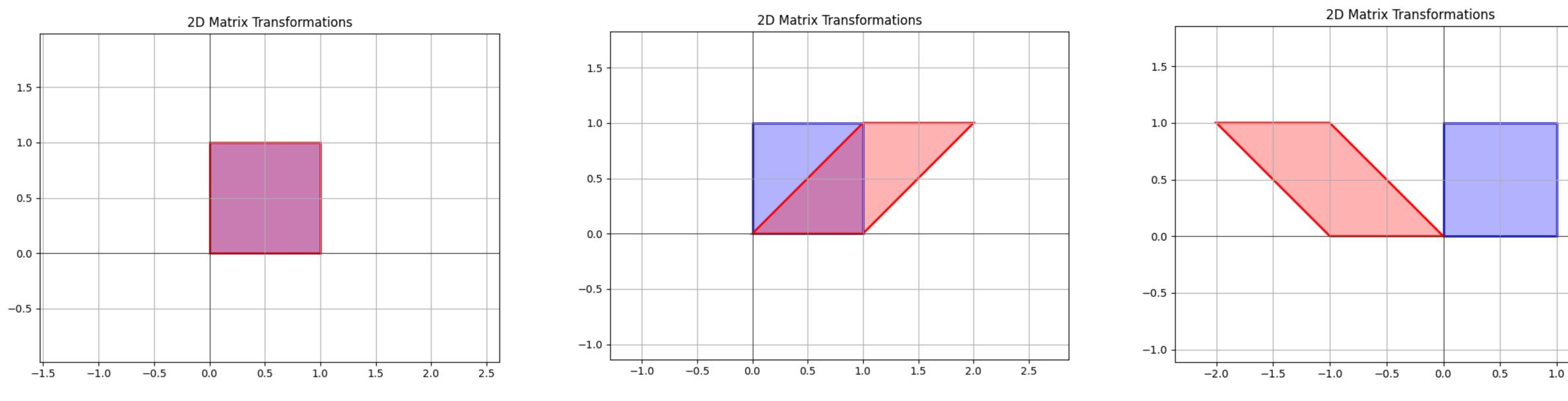
Composing Transformations

Recall. Multiplying matrices **composes** their associated transformations.

So complex graphical transformations can be combined into a single matrix.



Shearing and Reflecting (Geometrically)



shear

reflect

More Transformations

What we're adding today:

- » More on rotations
- » translations
- » perspective projections

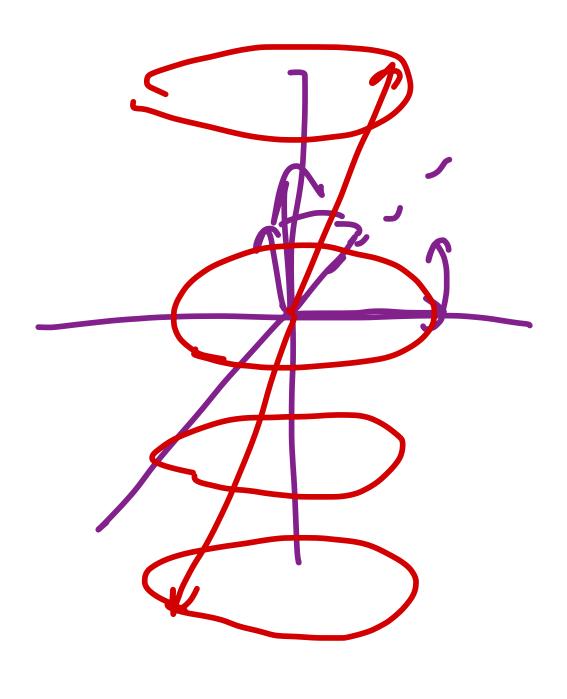
More Transformations

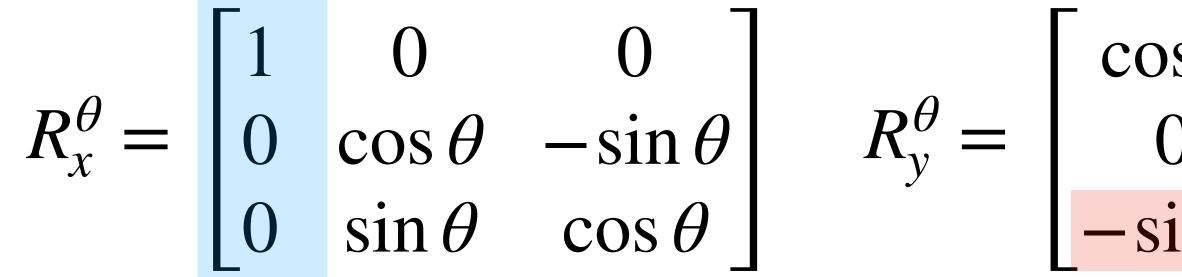
What we're adding today:

- » More on rotations
- » translations
- » perspective projections

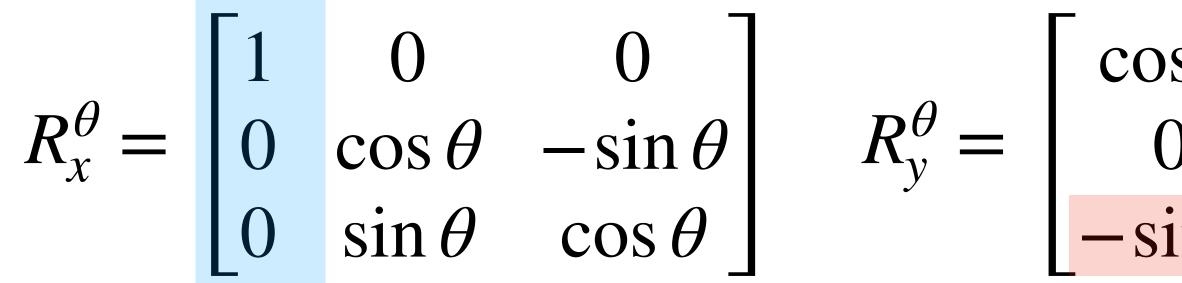
These aren't linear, but they are incredibly important so we have to address them.

$R_{x}^{\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} \qquad R_{y}^{\theta} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \qquad R_{z}^{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

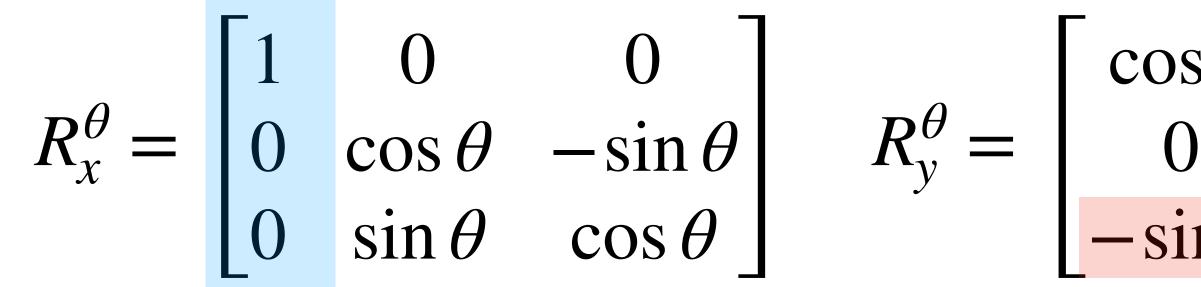




These are the matrices for counterclockwise rotation around x, y, and z axes.



These are the matrices for counterclockwise rotation around x, y, and z axes. (note the change in sign for y)



These are the matrices for counterclockwise rotation around x, y, and z axes. (note the change in sign for y) Fact. Any rotation can be done by some matrix of the form

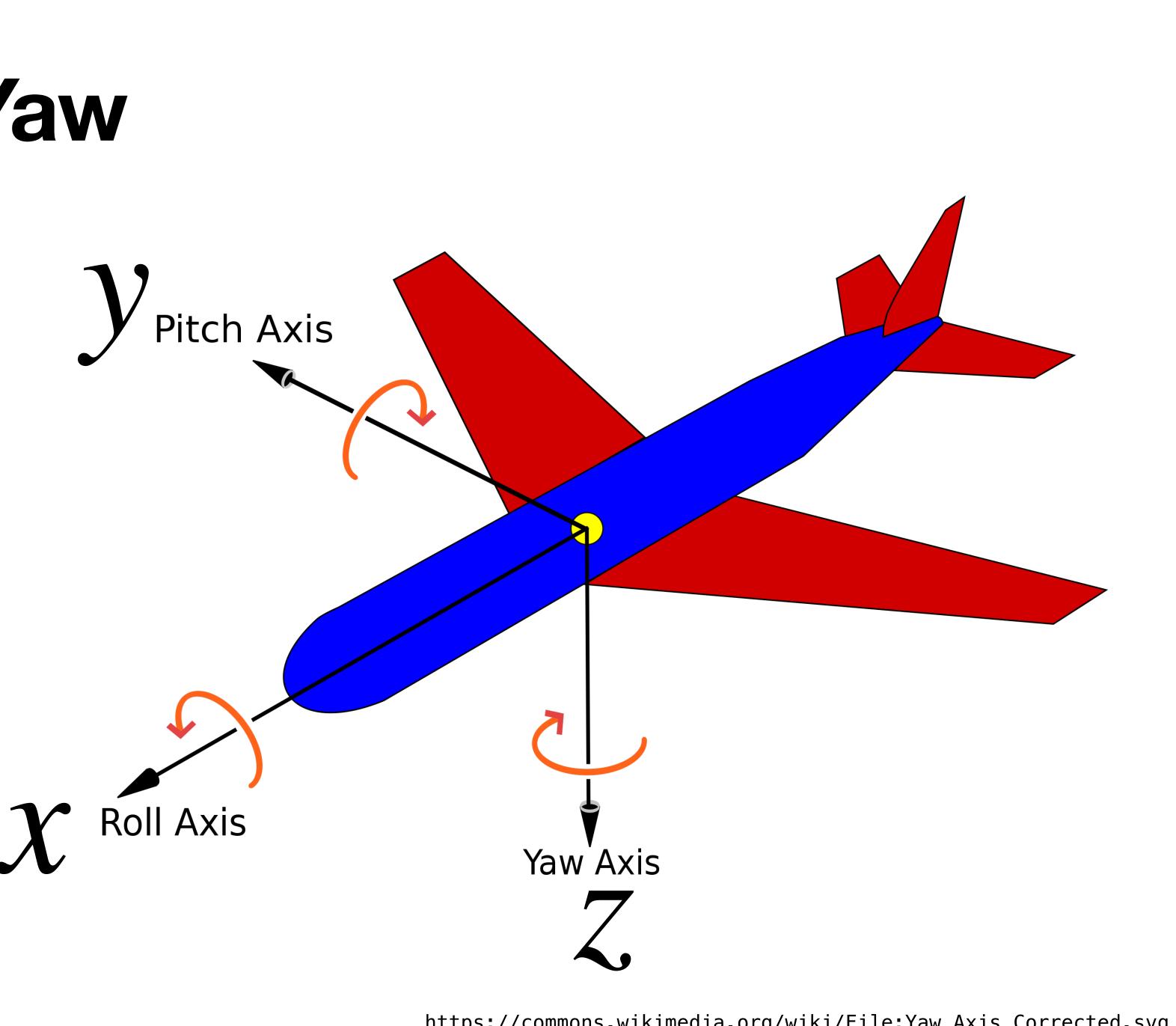
 $R_z^{\theta} R_y^{\gamma} R_x^{\eta}$

Roll, Pitch and Yaw

roll changes the side-to-side tilt

pitch changes the up-down tilt

yaw changes direction



https://commons.wikimedia.org/wiki/File:Yaw_Axis_Corrected.svg

General Rotations R_z^{θ}

 $R^{\theta}_{Z}R^{\gamma}_{Y}R^{\eta}_{X}$ roll pitch

General Rotations yaw

hard problem in control theory).

 $R^{\theta}_{Z}R^{\gamma}_{V}R^{\eta}_{X}$ pitch roll

Exactly what rotation you get is not obvious (this a

General Rotations yaw

hard problem in control theory).

Remember. !!Matrix multiplication does not commute!!

 $R^{\theta}_{z}R^{\gamma}_{v}R^{\eta}_{x}$ pitch roll

Exactly what rotation you get is not obvious (this a

General Rotations yaw

hard problem in control theory).

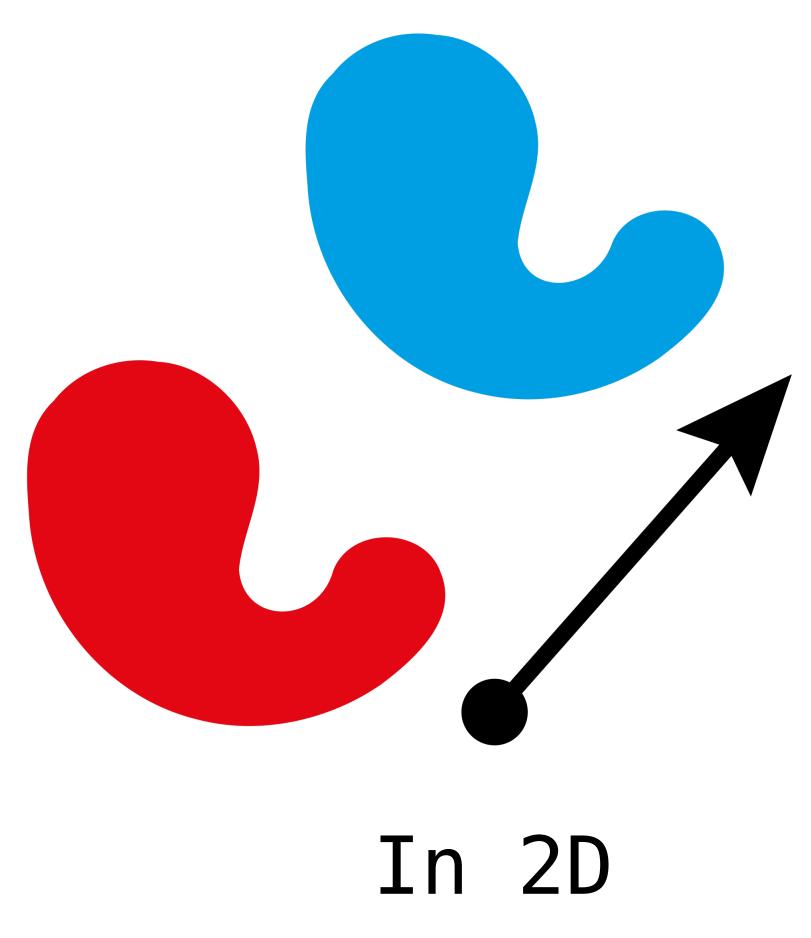
Remember. !!Matrix multiplication does not commute!!

the pitch axis, for example).

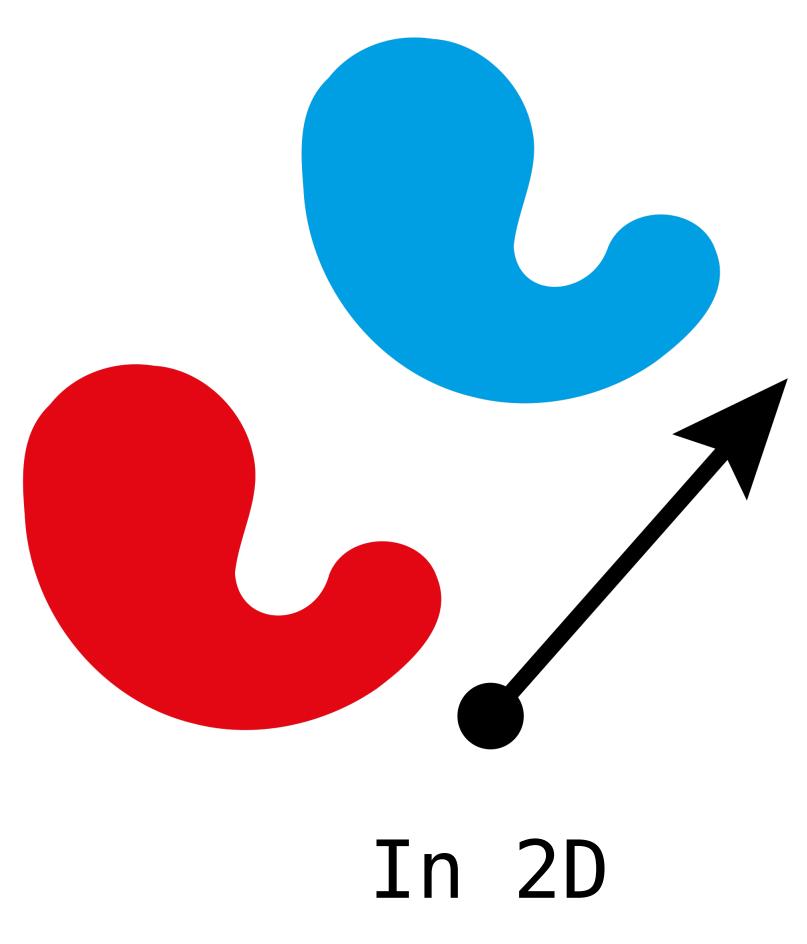
 $R^{\theta}_{Z}R^{\gamma}_{Y}R^{\eta}_{X}$ pitch roll

- Exactly what rotation you get is not obvious (this a
- So changing η above doesn't just rotate the object around the *x*-axis (that axis might be tilted along

demo

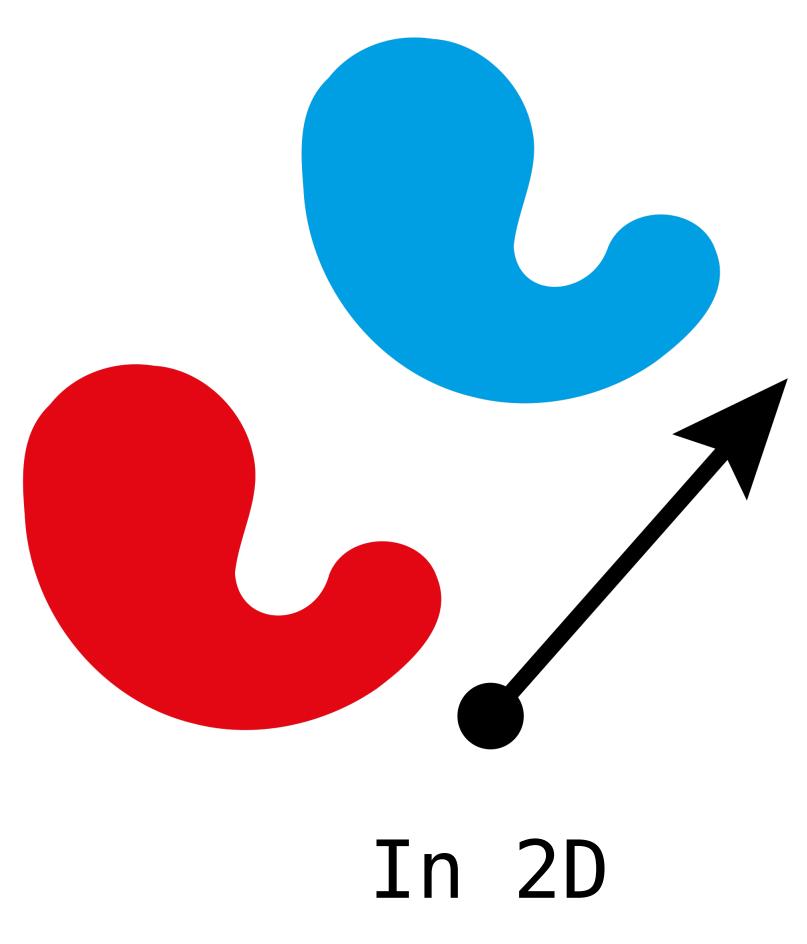


Given a vector t a translation is the transformation



Given a vector t a translation is the transformation

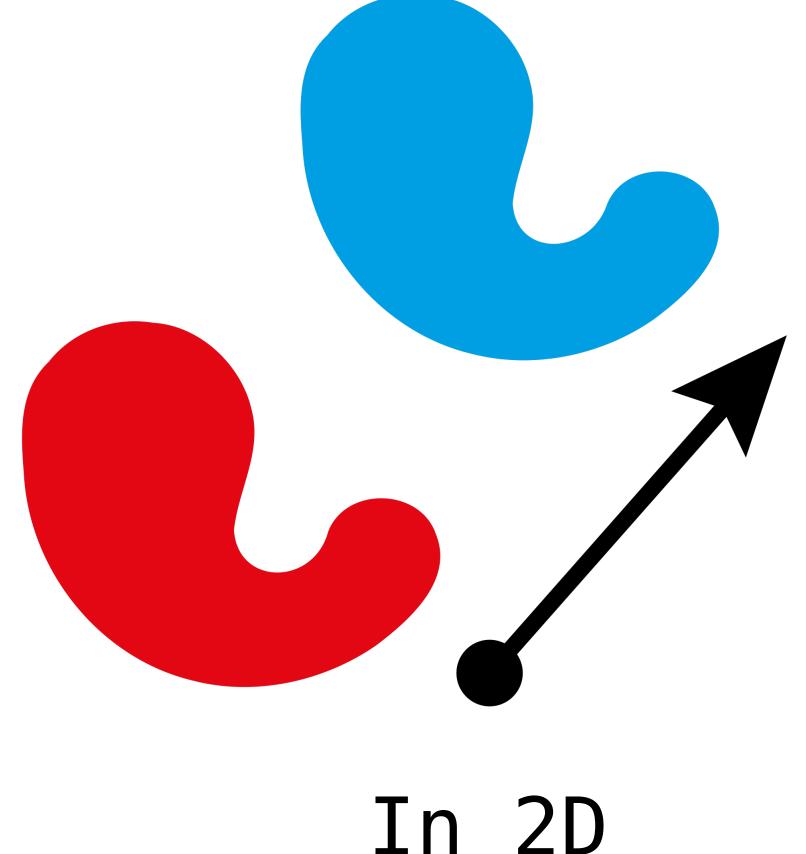
$T(\mathbf{x}) = \mathbf{x} + \mathbf{t}$



Given a vector t a translation is the transformation

$T(\mathbf{x}) = \mathbf{x} + \mathbf{t}$

As we've seen, translation is **not linear:**

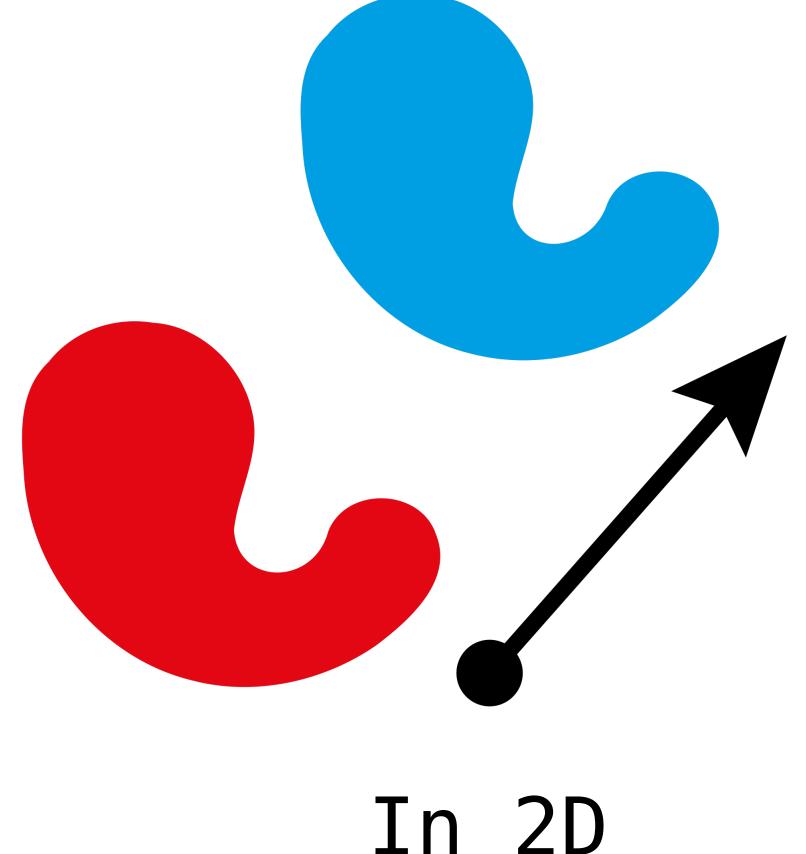


Given a vector t a translation is the transformation

$T(\mathbf{x}) = \mathbf{x} + \mathbf{t}$

As we've seen, translation is **not linear:**

 $T(\mathbf{0}) = \mathbf{t}$



Given a vector t a translation is the transformation

$T(\mathbf{x}) = \mathbf{x} + \mathbf{t}$

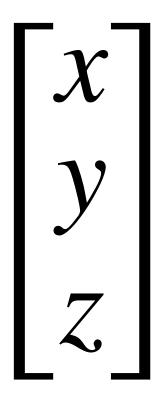
As we've seen, translation is **not linear:** T(0) = t

For this to be interesting t will be nonzero

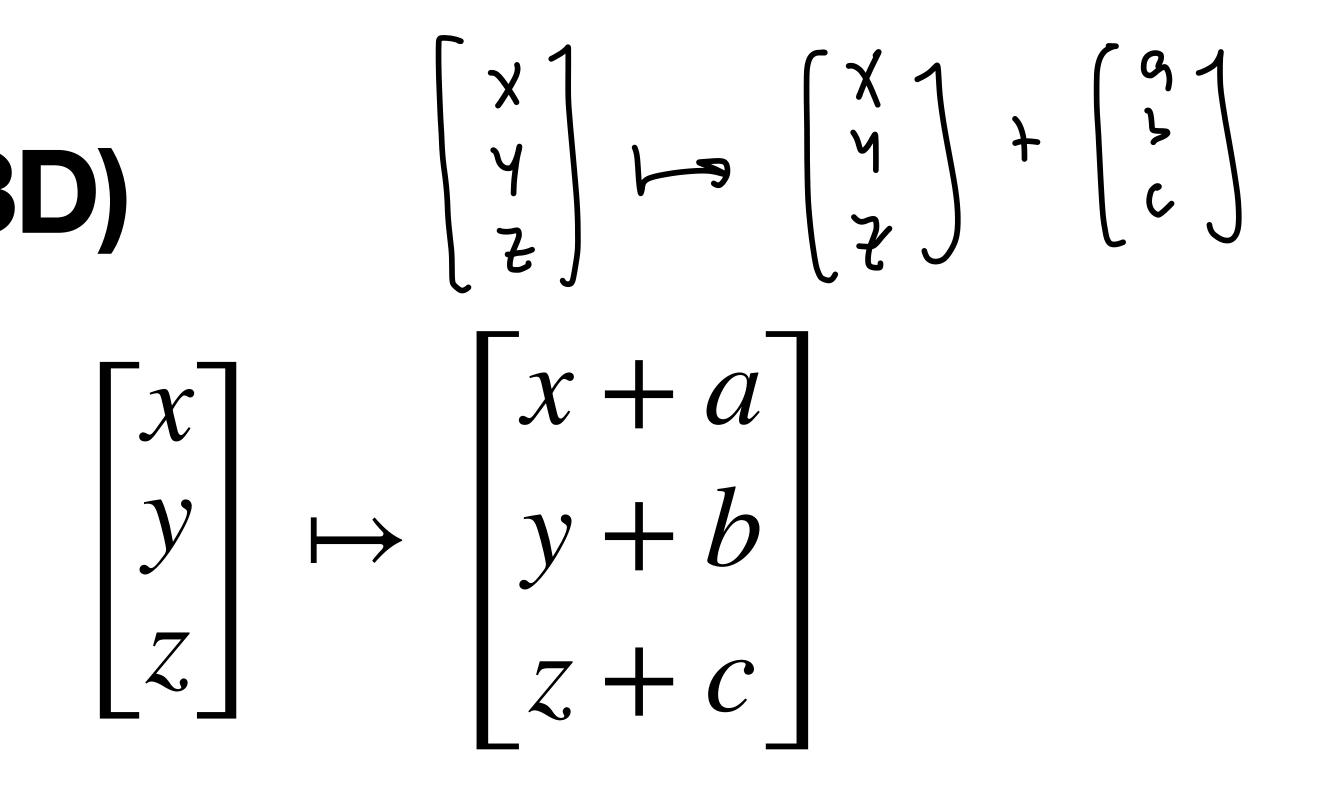
https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

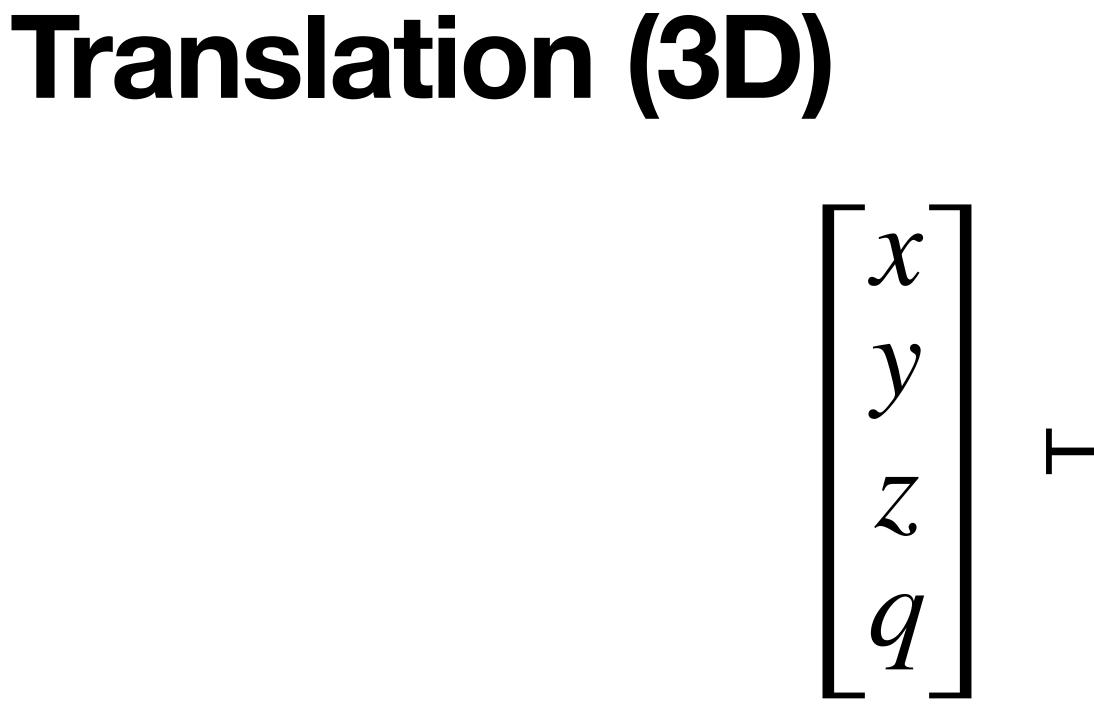
In 2D

Translation (3D)

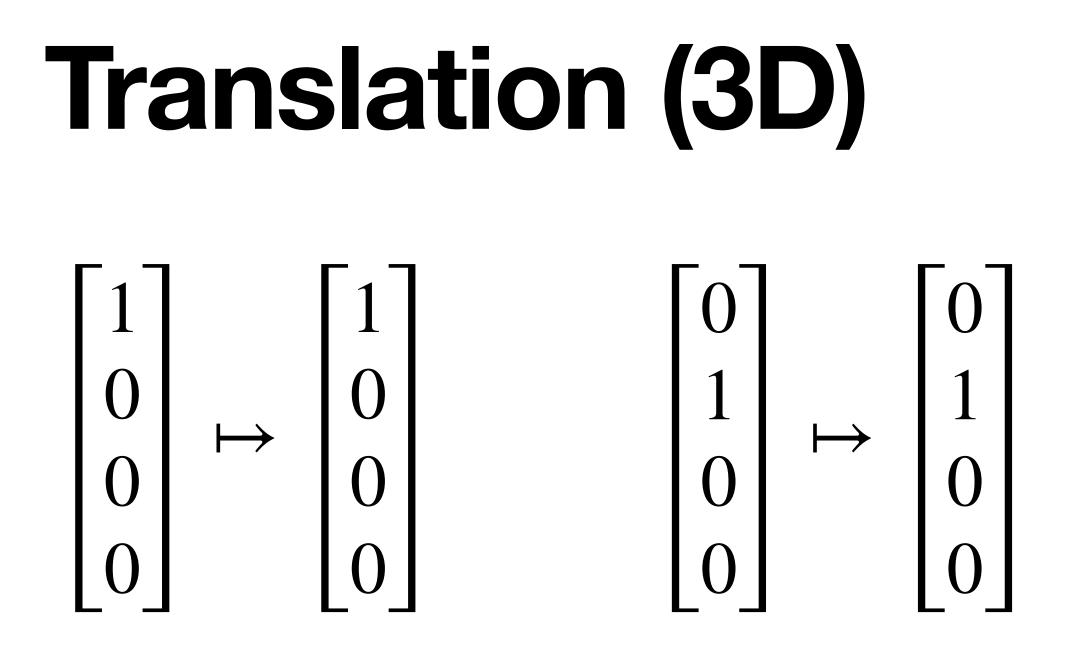


Observation. This would be linear if we had another variable.

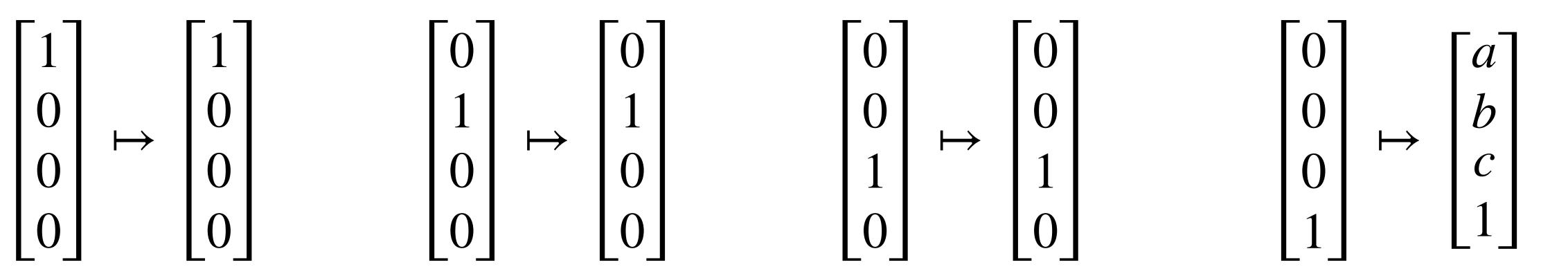




$\begin{bmatrix} x \\ y \\ z \\ q \end{bmatrix} \mapsto \begin{bmatrix} x + aq \\ y + bq \\ z + cq \\ q \end{bmatrix}$ **Observation.** This would be linear if we had another variable.



Observation. This would be linear if we had another variable.



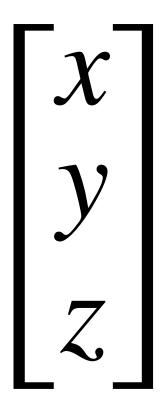
Translation (3D)

Observation. This would be linear if we had another variable.

So if we are willing to keep around an extra entry, we can do translation linearly.

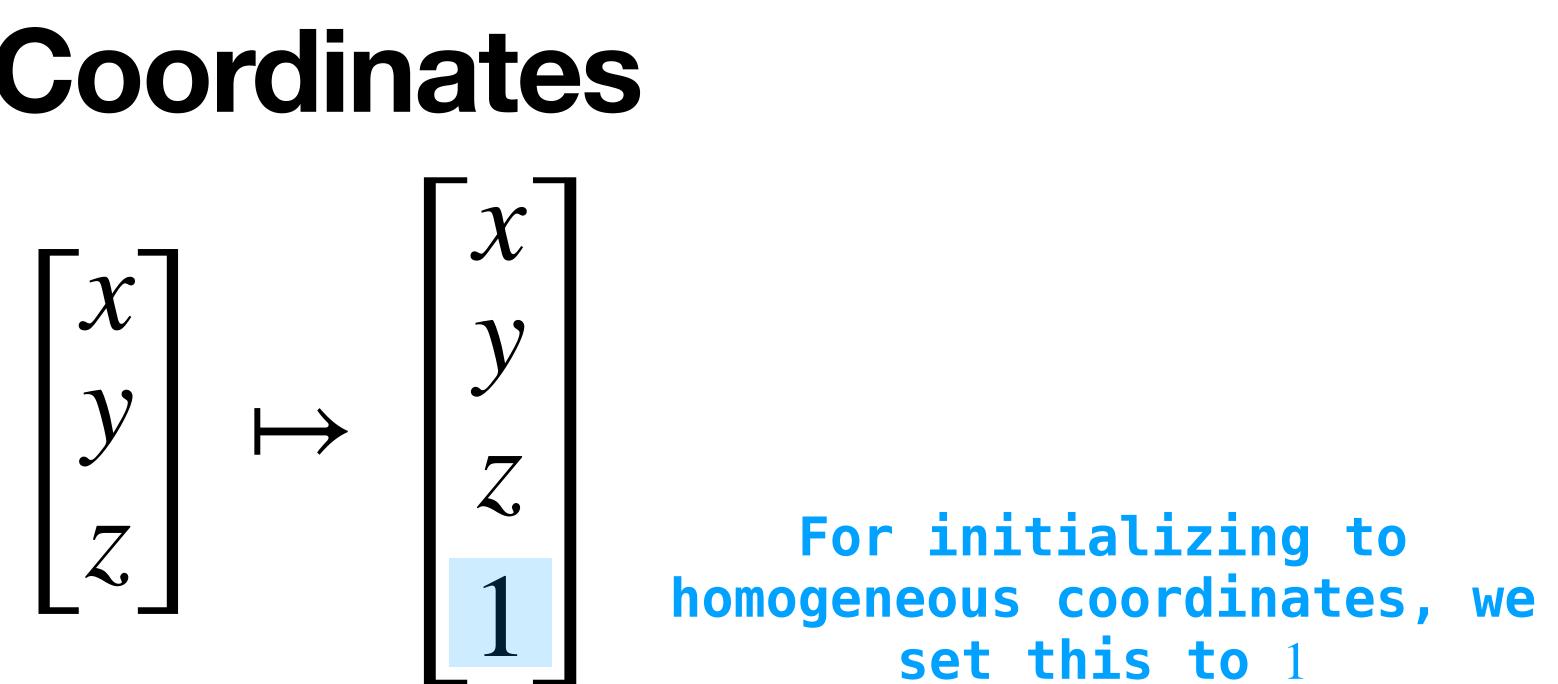
$\begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Homogeneous Coordinates



The homogeneous coordinate for vector in \mathbb{R}^3 is the same except "sheared" into the 4th dimension.

We use the extra entry to perform simple nonlinear transformations in a linear setting.

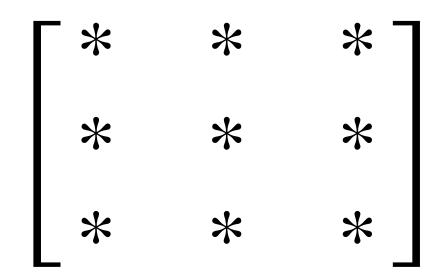


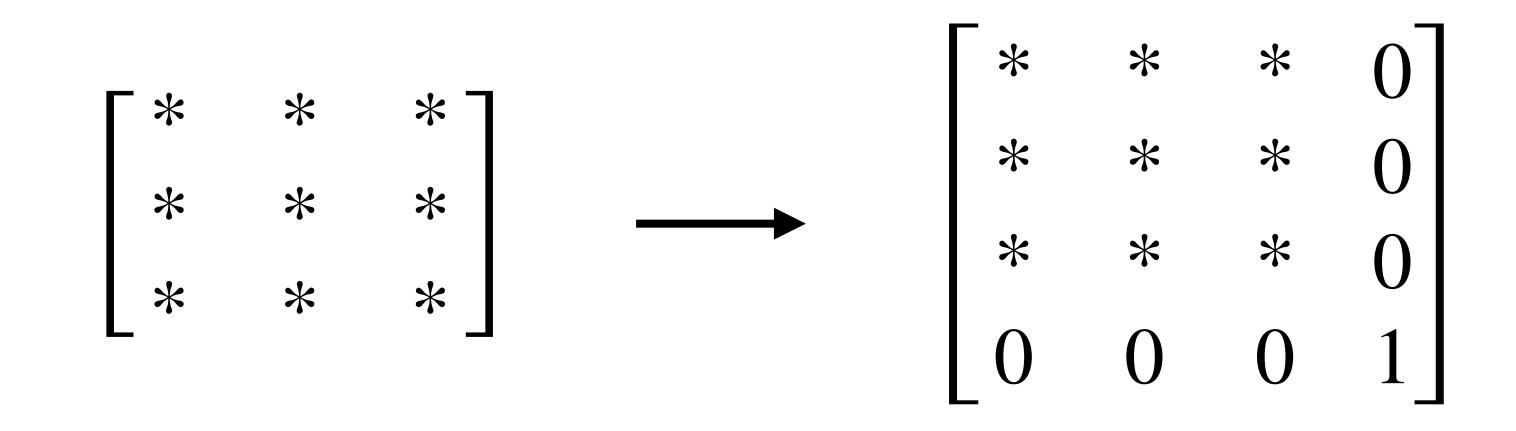
Cartesian to homogeneous

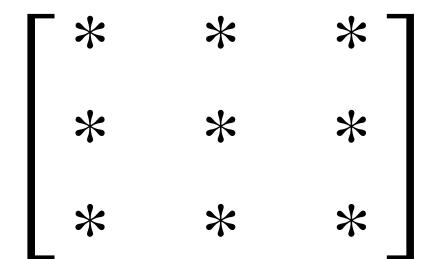
Definition. The 3D translation matrix for homogeneous coordinates which translates by $(a, b, c)^T$ is the following.

Example. $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x+2 \\ y+2 \\ z+2 \\ 1 \end{bmatrix}$

Translation (3D) $\begin{bmatrix} x \\ y \\ y \\ q \end{bmatrix} \mapsto \begin{pmatrix} x + 6 \\ x + 6 \\ x + 6 \\ q \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$

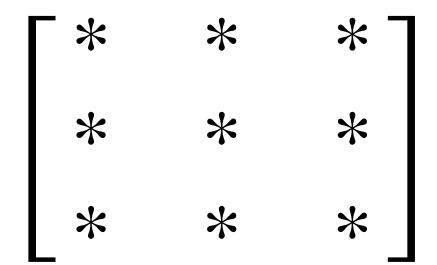






Now all our transformations need to be 4×4 matrices.

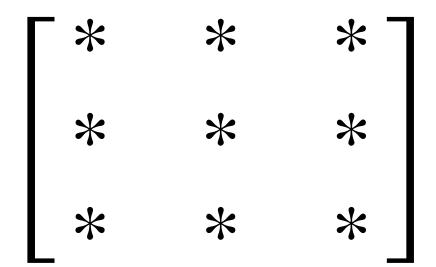
 $\begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \longrightarrow \begin{bmatrix} * & * & * & 0 \\ * & * & * & 0 \\ * & * & * & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$



Now all our transformations need to be 4×4 matrices.

But it's easy make 3×3 matrices work for homogeneous coordinates.

 $\begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \longrightarrow \begin{bmatrix} * & * & * & 0 \\ * & * & * & 0 \\ * & * & * & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$



Now all our transformations need to be 4×4 matrices.

But it's easy make 3×3 matrices work for homogeneous coordinates.

 $\begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \longrightarrow \begin{bmatrix} * & * & * & 0 \\ * & * & * & 0 \\ * & * & * & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

- If a transformation is linear, it doesn't need the extra coordinate.

Example: Homogeneous Rotation

homogeneous coordinates is given by

- Rotating counterclockwise about the x-axis in
 - $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Perspective Projections

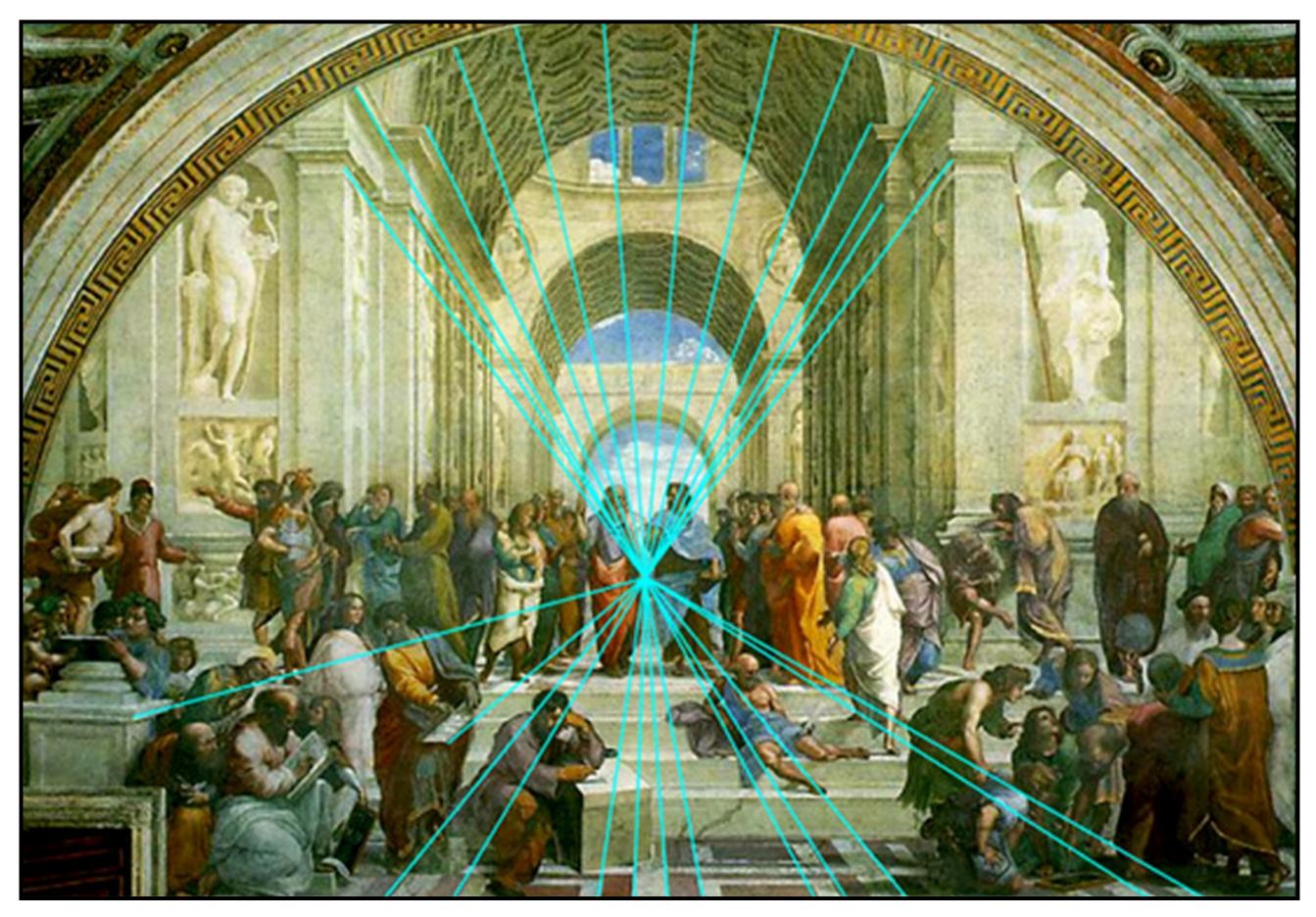
Vanishing Points

Parallel lines in space don't necessarily look parallel at a distance, they angle towards a point in the distance.

This is a side effect of perspective projection.



Vanishing Point

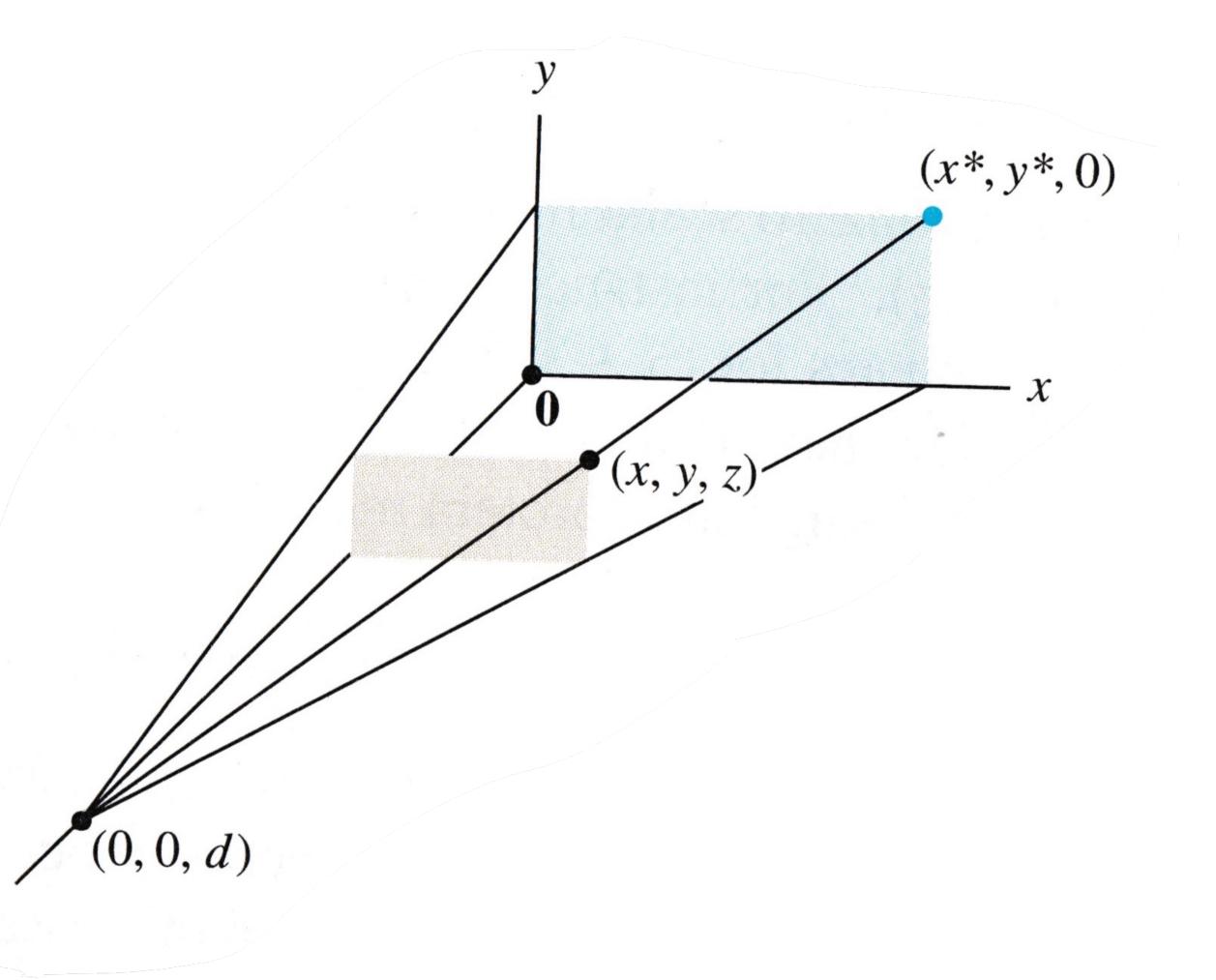


The School of Athens (~1510)

Computing Perspective

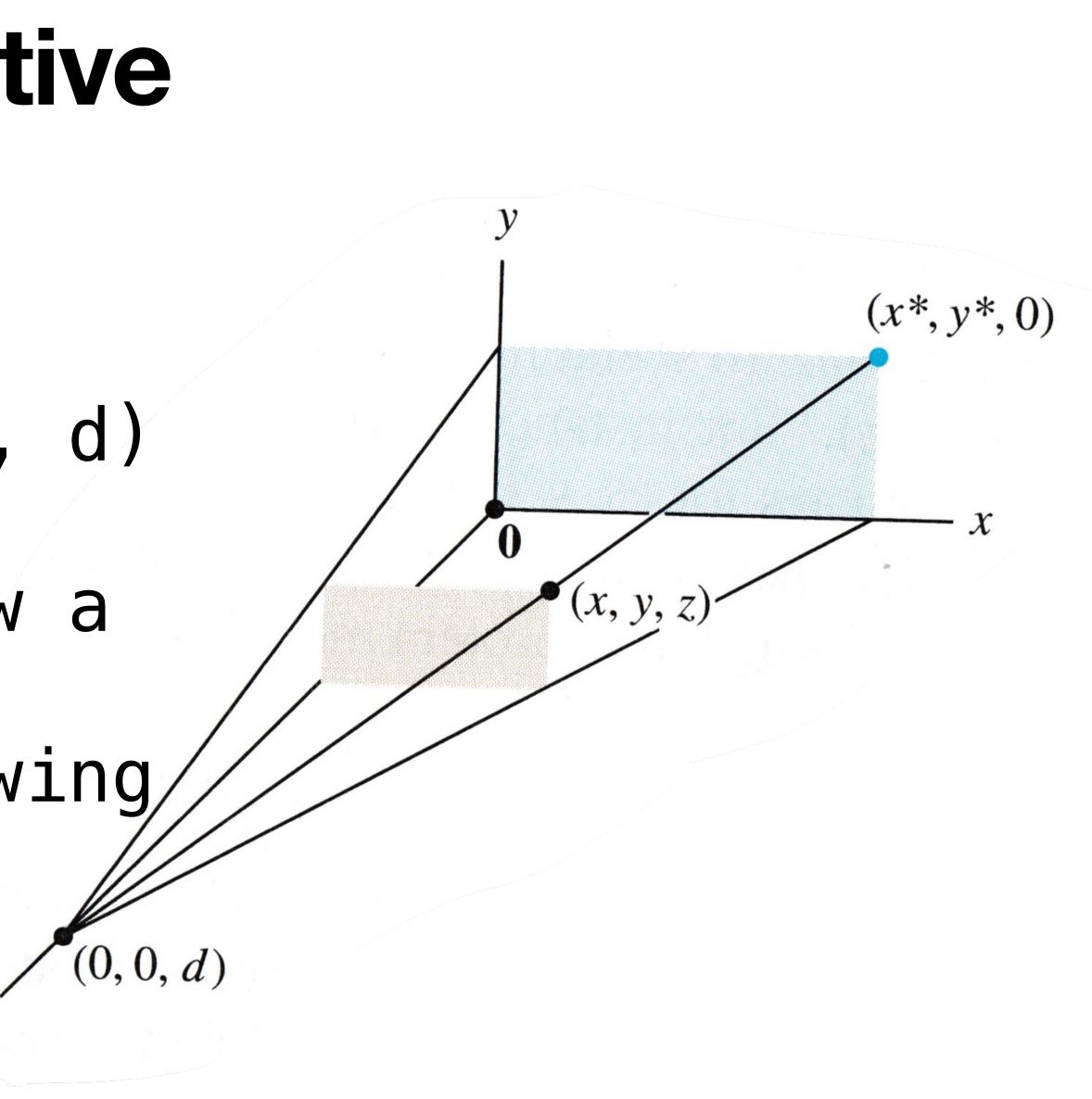
Light enters our eyes (or camera) at a single point from all directions.

Closer things "appear bigger" in our field of vision.

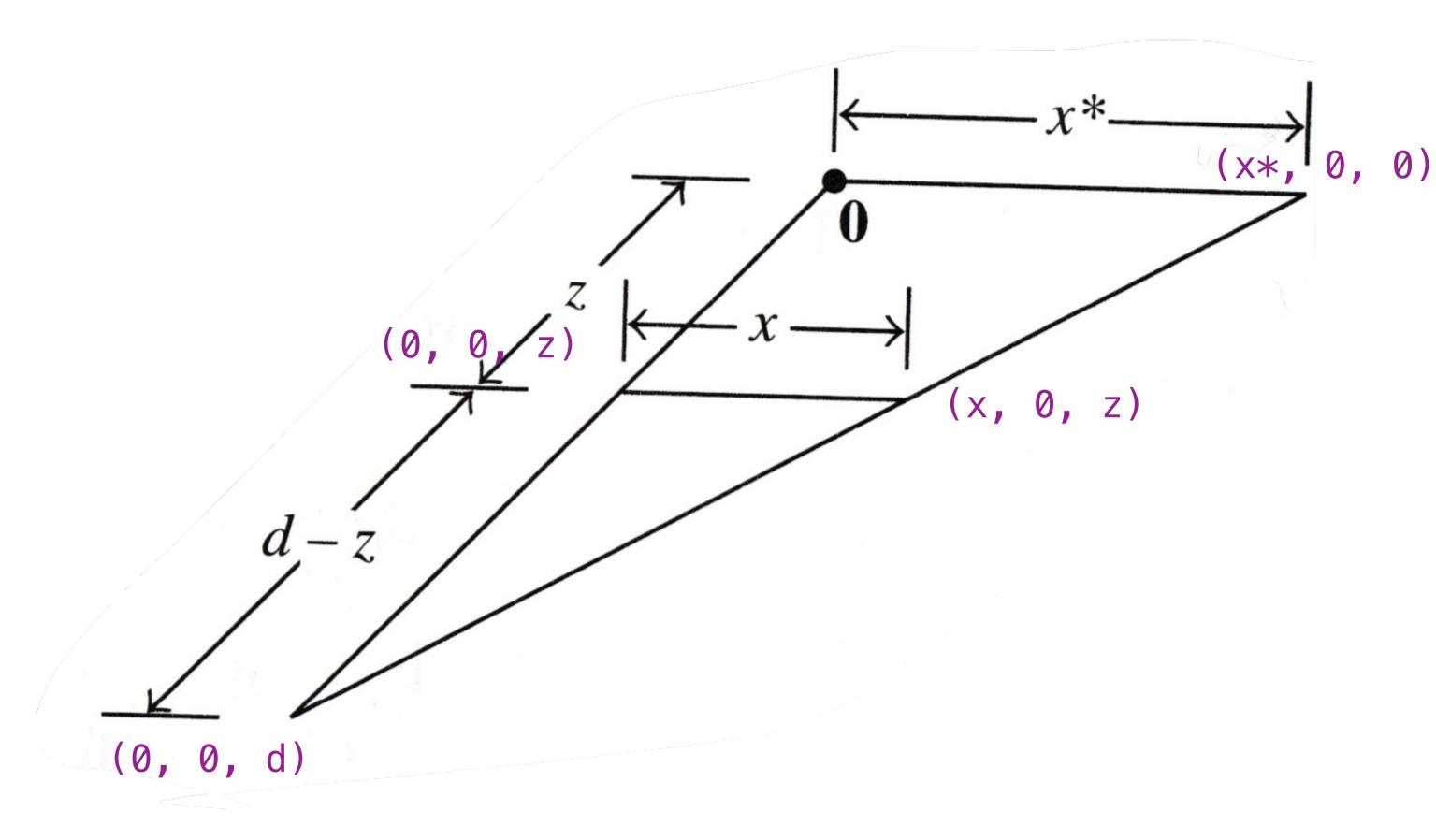


Computing Perspective

Problem. Given a
viewing position (0, 0, d)
and a viewing plane
(xy-axis) determine how a
point (x, y, z) is
projected onto the viewing
plane.

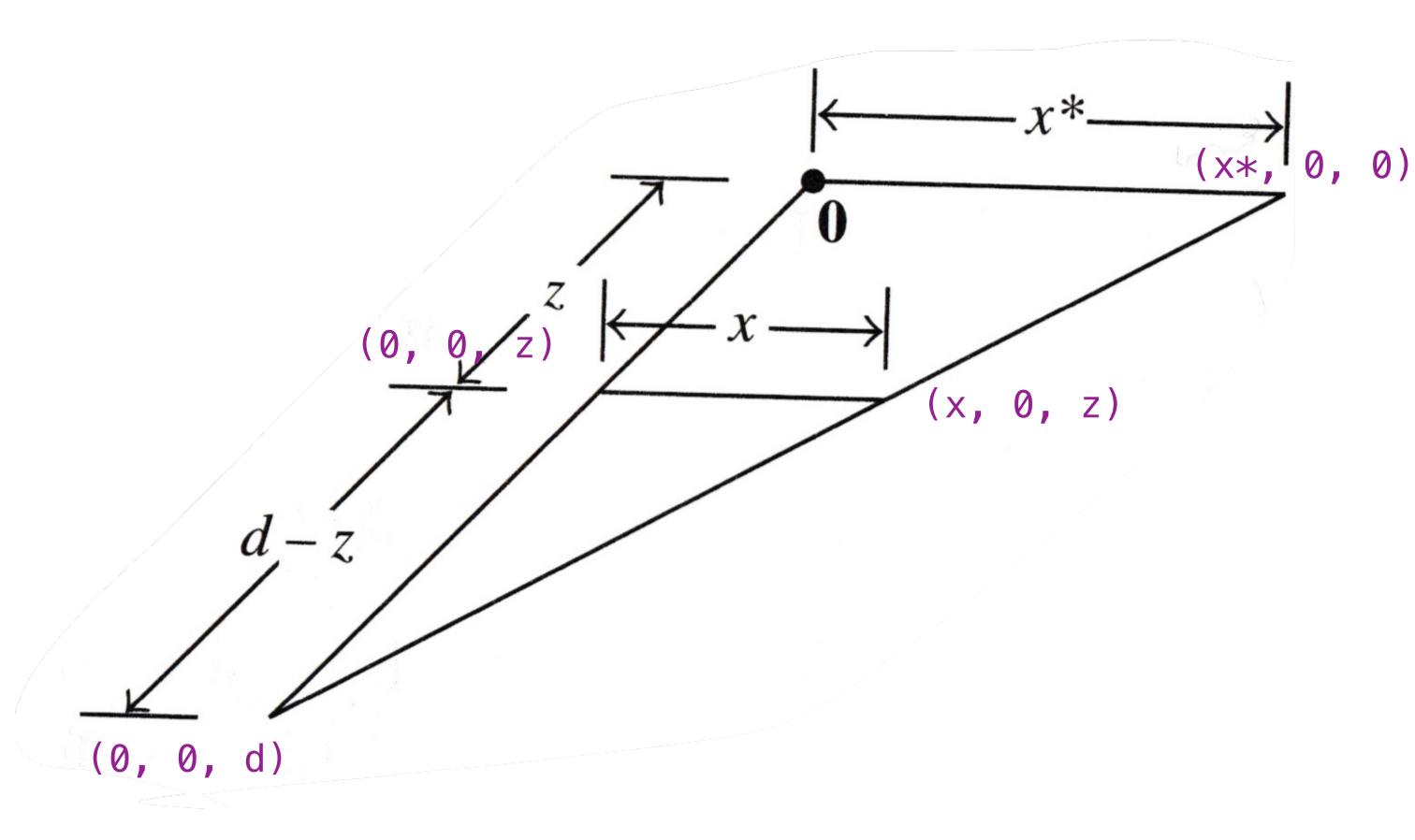


Similar Triangles



Similar Triangles

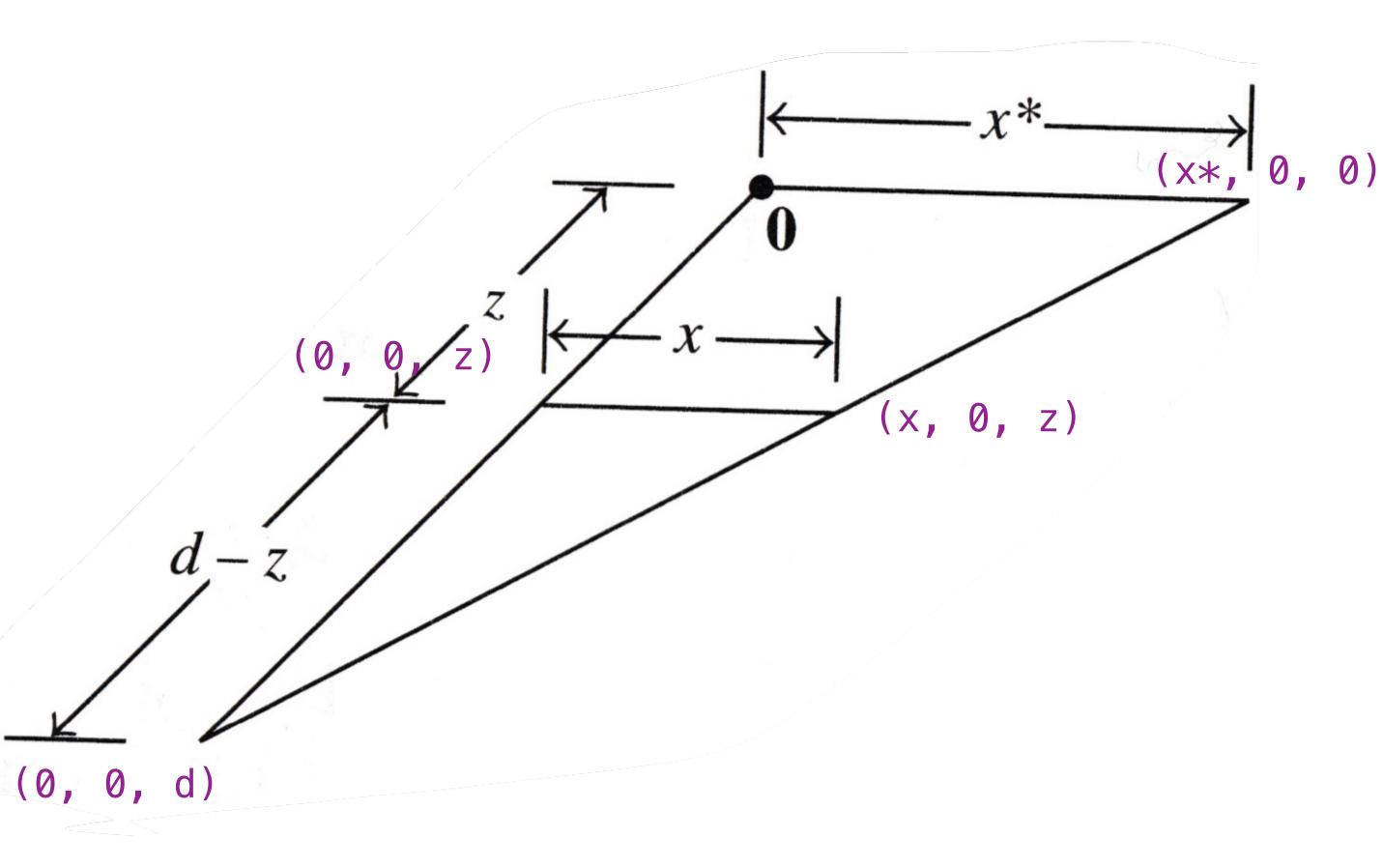
Similar triangles are triangles with the same angles (in the same order).



Similar Triangles

Similar triangles are triangles with the same angles (in the same order).

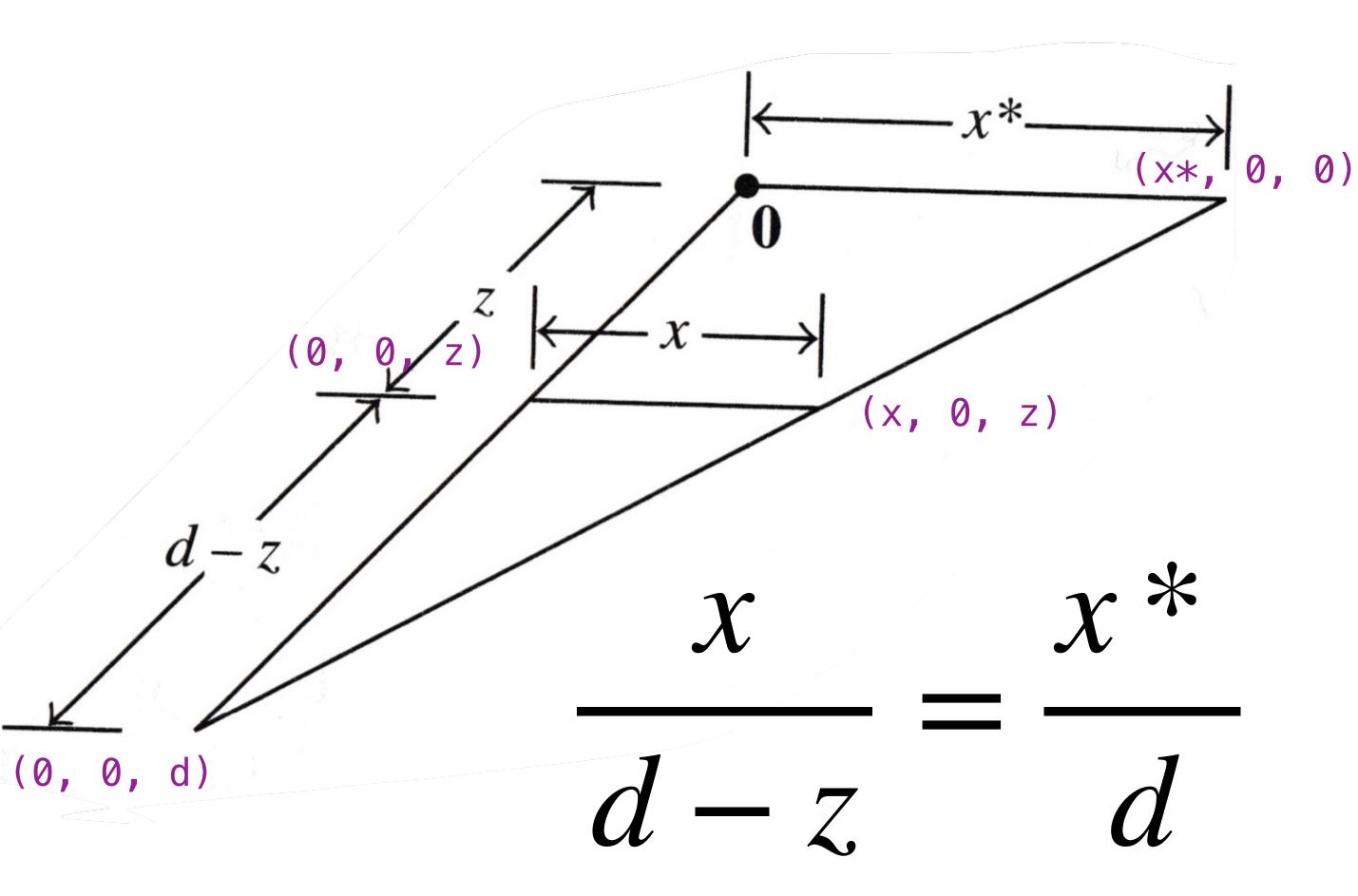
Similar triangles preserve side ratios.



Similar Triangles

Similar triangles are triangles with the same angles (in the same order).

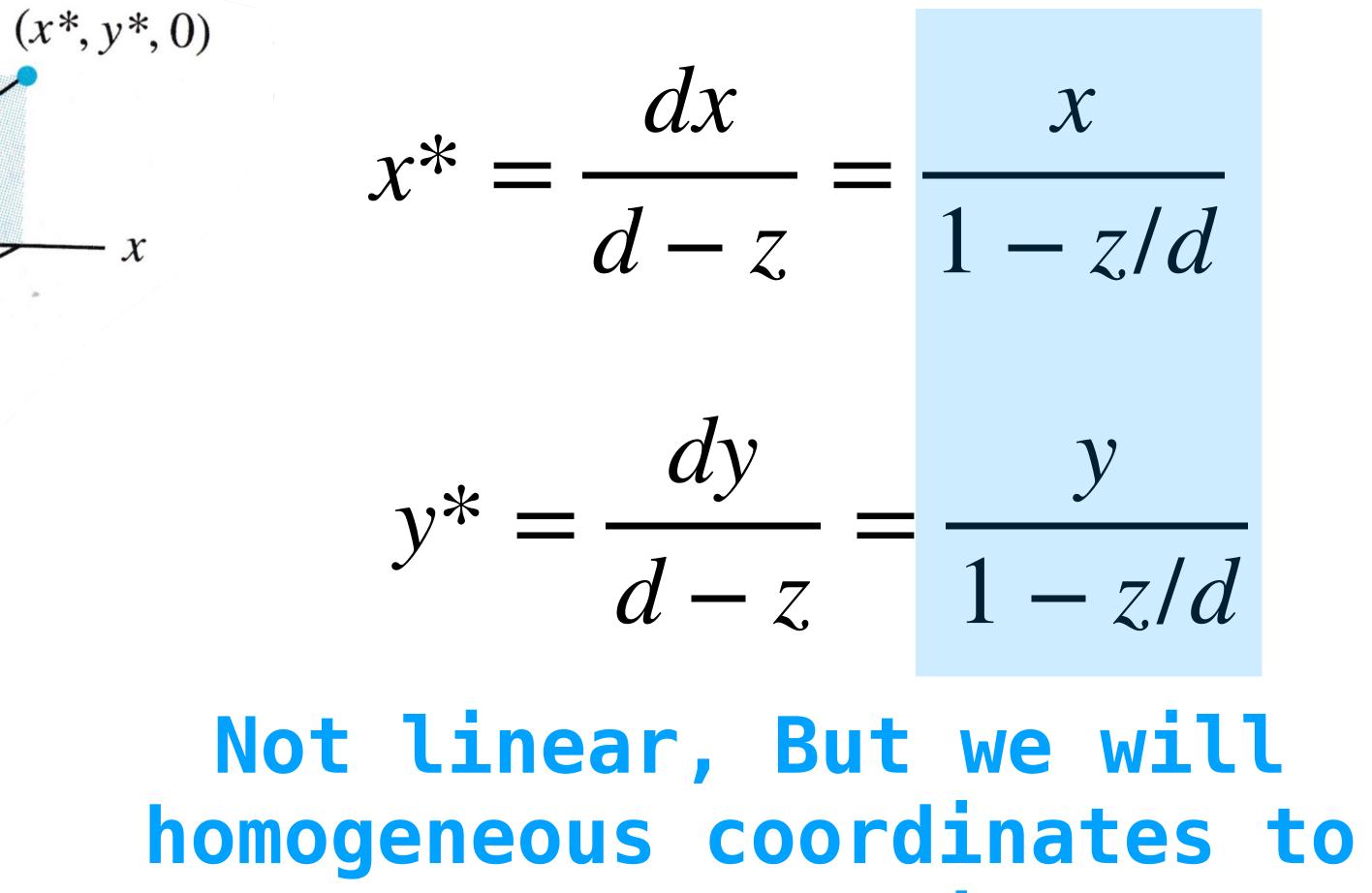
Similar triangles preserve side ratios.



The Transformation (x, y, z)(0, 0, d)

not diffudée $(x^*, y^*, 0)$ dx ${\mathcal X}$ x^* -1 - z/dd - zX dy $= \frac{1}{d-z} = \frac{1}{1-z/d}$

The Transformation (x, y, z)(0, 0, d)



address this

A Trick with Homogeneous Coordinates $\begin{bmatrix} x \\ y \\ z \\ h \end{bmatrix} \mapsto \begin{bmatrix} x/h \\ y/h \\ z/h \end{bmatrix}$

homogeneous to Cartesian

A Trick with Homogeneous Coordinates $\begin{bmatrix} x \\ y \\ z \\ h \end{bmatrix} \mapsto \begin{bmatrix} x/h \\ y/h \\ z/h \end{bmatrix}$

We can compute perspective using homogeneous coordinates if we allow the extra entry to vary.

homogeneous to Cartesian

A Trick with Homogeneous Coordinates $\begin{bmatrix} x \\ y \\ z \\ h \end{bmatrix} \mapsto \begin{bmatrix} x/h \\ y/h \\ z/h \end{bmatrix} \qquad \begin{bmatrix} Y \\ Y \\ Y \\ 7 \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} x_{l_1} \\ y_{l_2} \\ 7_{l_2} \\ 7_{l_1} \end{bmatrix}$

We can compute perspective using homogeneous coordinates if we allow the extra entry to vary.

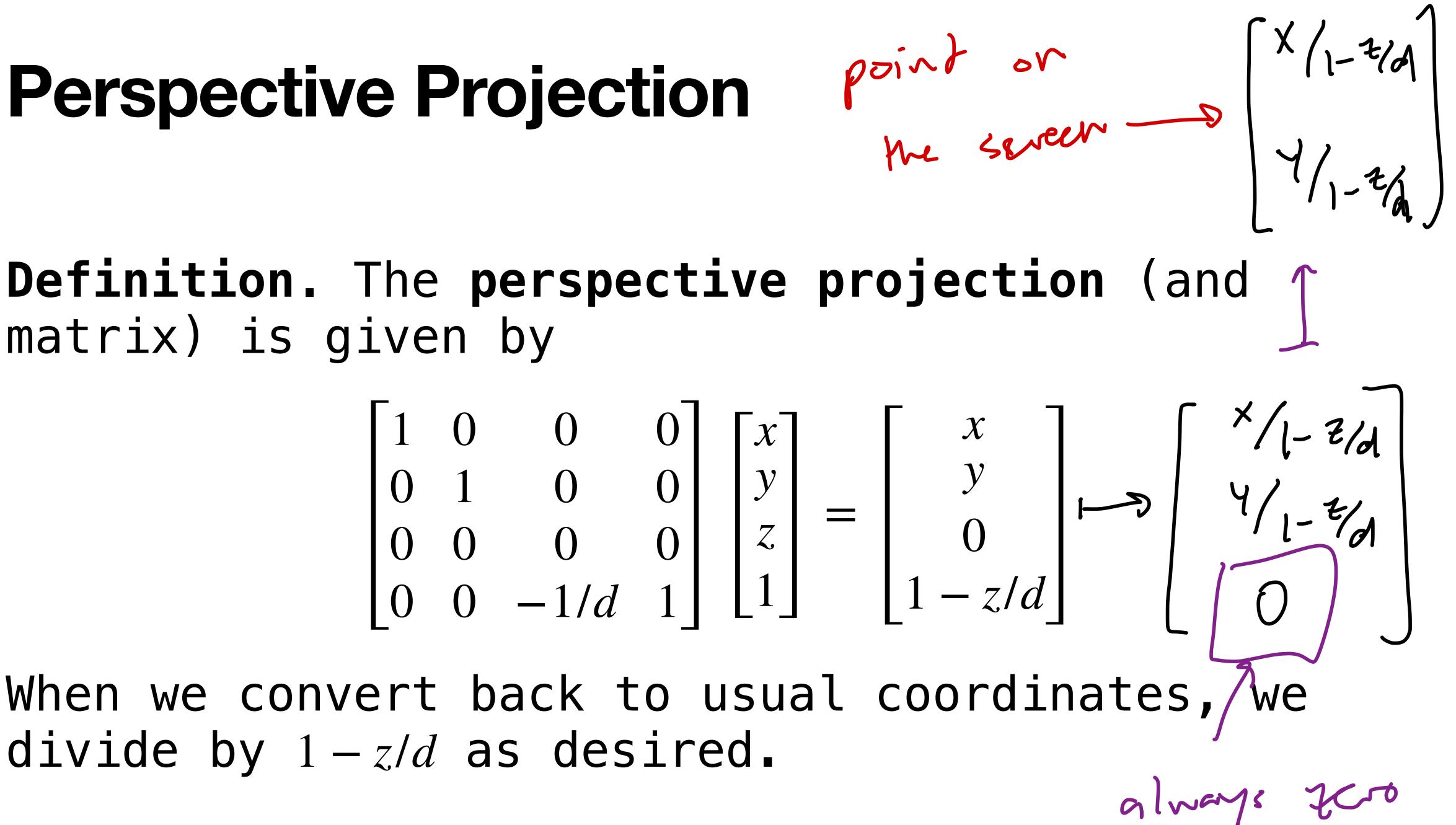
homogeneous to Cartesian

- When we convert back to normal coordinates, we divide by the extra entry (this is consistent with before).

Perspective Projection

matrix) is given by

When divide by 1 - z/d as desired.



Homework 8

1. Take in a wire frame, represented as a collection of m line segments (pairs of points in \mathbb{R}^3).

- line segments (pairs of points in \mathbb{R}^3).
- for each endpoint, in homogeneous coordinates.

1. Take in a wire frame, represented as a collection of m

2. Convert these points into a $4 \times 2m$ matrix D, one column

- line segments (pairs of points in \mathbb{R}^3).
- for each endpoint, in homogeneous coordinates.
- 3. Build a transformation matrix A to manipulate the wireframe and project it onto a viewing plane.

1. Take in a wire frame, represented as a collection of m

2. Convert these points into a $4 \times 2m$ matrix D, one column

- line segments (pairs of points in \mathbb{R}^3).
- for each endpoint, in homogeneous coordinates.
- 3. Build a transformation matrix A to manipulate the wireframe and project it onto a viewing plane.
- them back up into endpoints of line segments.

1. Take in a wire frame, represented as a collection of m

2. Convert these points into a $4 \times 2m$ matrix D, one column

4. Convert the columns of D into points in \mathbb{R}^2 , and then pair

- line segments (pairs of points in \mathbb{R}^3).
- for each endpoint, in homogeneous coordinates.
- 3. Build a transformation matrix A to manipulate the wireframe and project it onto a viewing plane.
- them back up into endpoints of line segments.
- 5. Draw the resulting image on the screen.

1. Take in a wire frame, represented as a collection of m

2. Convert these points into a $4 \times 2m$ matrix D, one column

4. Convert the columns of D into points in \mathbb{R}^2 , and then pair

demo

A Couple Words of Warning

Check your system now. Make sure you can run

dependent issue.

matplotlib (in particular matplotlib widgets). Post on piazza if there seems to be a platform