Eigenvalues and Eigenvectors Geometric Algorithms Lecture 18

CAS CS 132

Practice Problem

Suppose A is a 234×300 matrix. What is the smallest possible value for dim(Nul(A))? What is the largest possible value?

What is the smallest possible value for rank(A)? What is the largest possible value?

Objectives

- of eigenvalues and eigenvectors
- 2. Determine how to <u>verify</u> eigenvalues and eigenvectors
- <u>linear systems</u>

1. <u>Motivate</u> and introduce the fundamental notion

3. Look at the <u>subspace</u> generated by eigenvectors

4. Apply the study of eigenvectors to <u>dynamical</u>

Eigenvalues Eigenvectors Null Space Eigenspace Linear Dynamical Systems Closed-Form Solutions

Motivation

demo

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- \rightarrow

* square matrices

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- \rightarrow

All matrices do some combination of these things

* square matrices

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- » ... Today's focus

All matrices do some combination of these things

* square matrices

What's special about scaling?

What's special about scaling?

We don't need a whole matrix to do scaling

What's special about scaling?

We don't need a whole matrix to do scaling

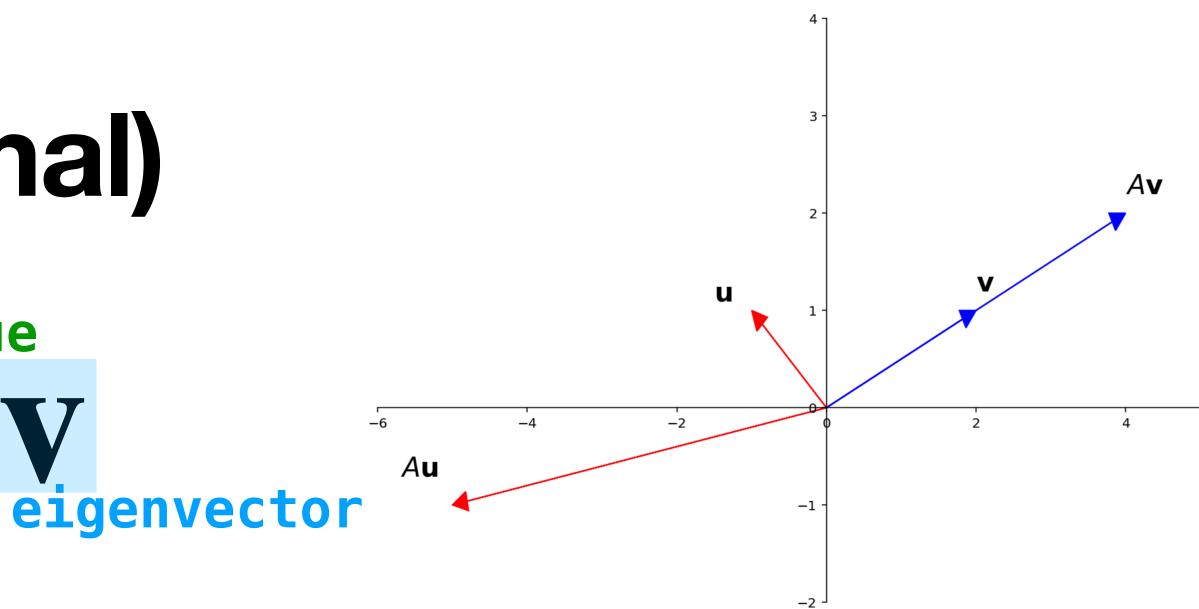
does to v.

$\mathbf{X} \mapsto C\mathbf{X}$

So if $A\mathbf{v} = c\mathbf{v}$ then it's "easy to describe" what A

Eigenvectors (Informal)

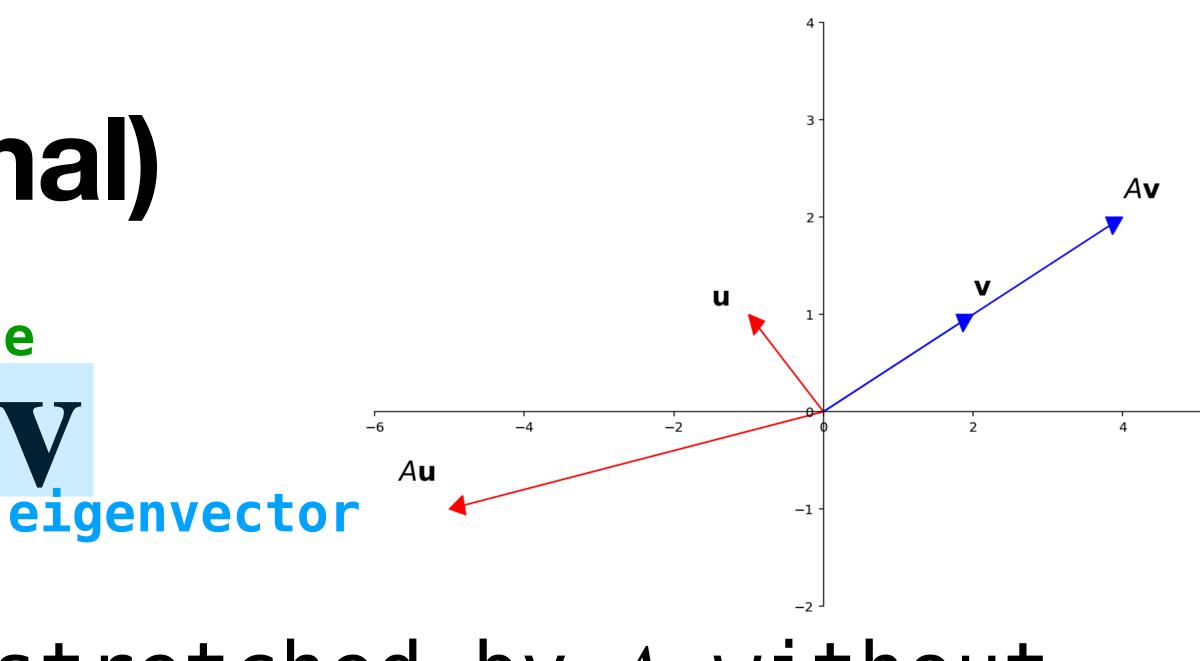
AV = 200



6

Eigenvectors (Informal) eigenvalue Av = /

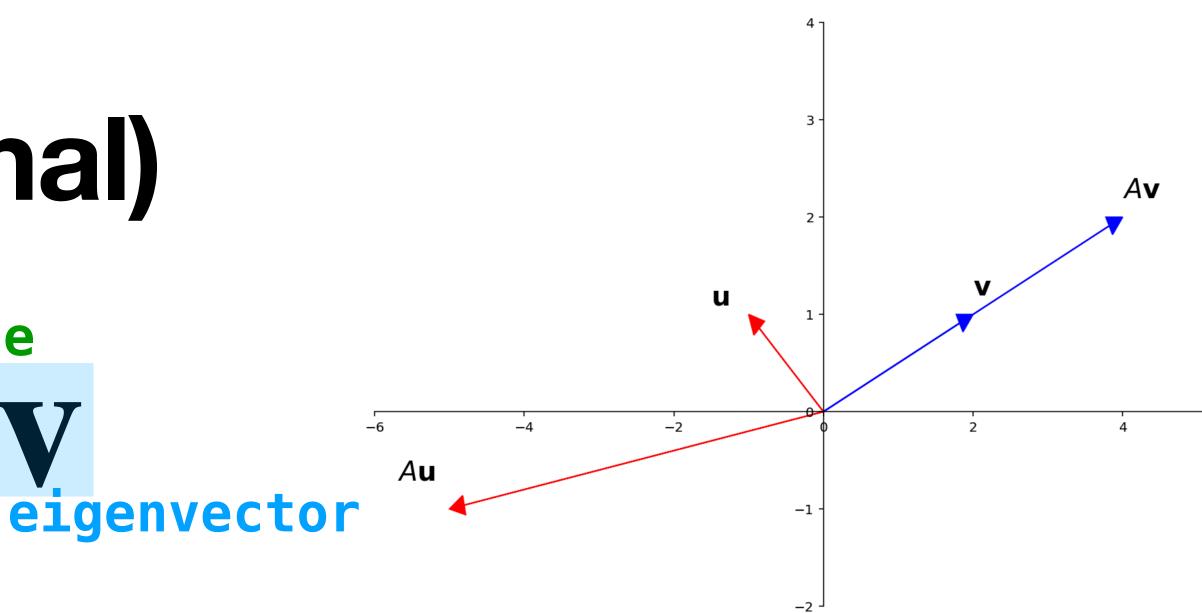
Eigenvectors of A are stretched by A without changing their direction.



Eigenvectors (Informal) eigenvalue $Av = \lambda$

Eigenvectors of A are stretched by A without changing their direction.

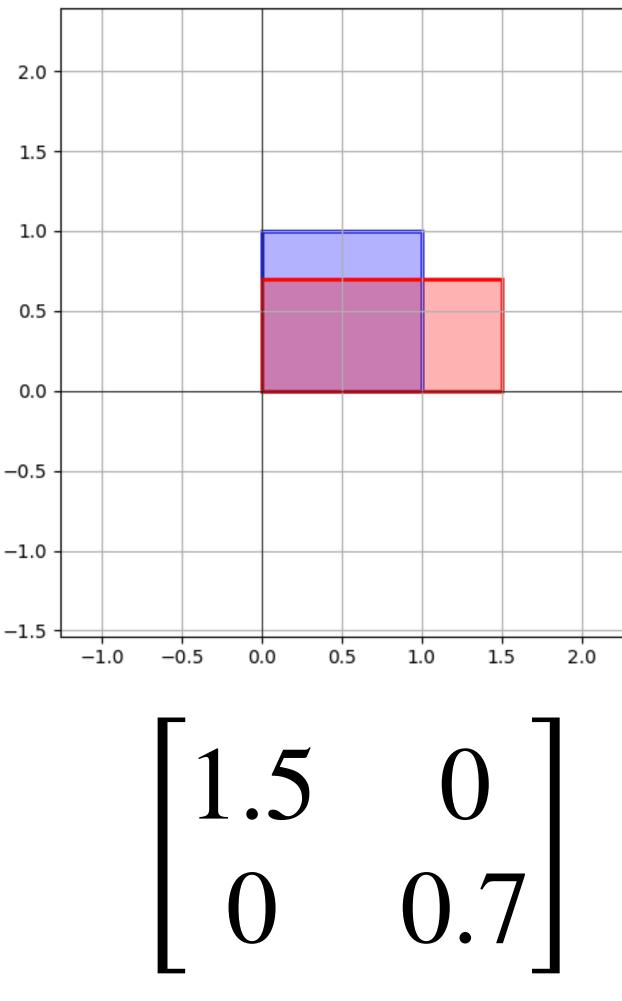
The amount they are stretched is called the eigenvalue.



Example: Unequal Scaling

It's "easy to describe" how unequal scaling transforms vectors.

It transforms each entry individually and then combines them.



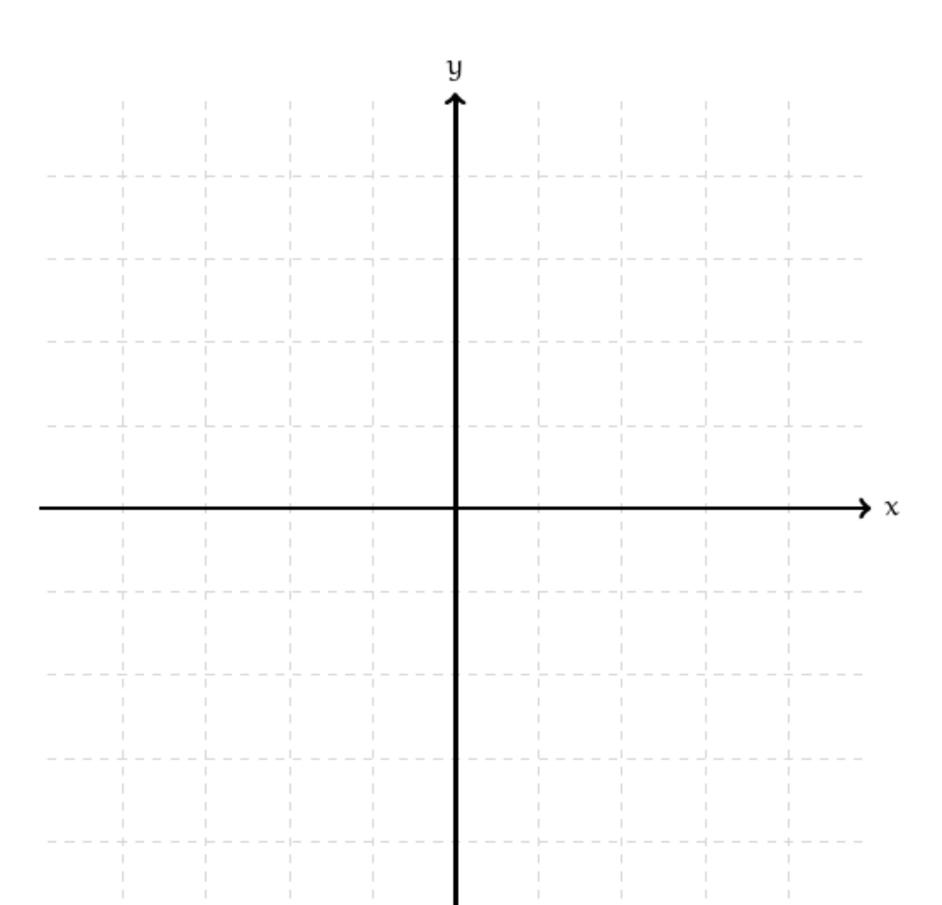
Eigenbases (Informal)

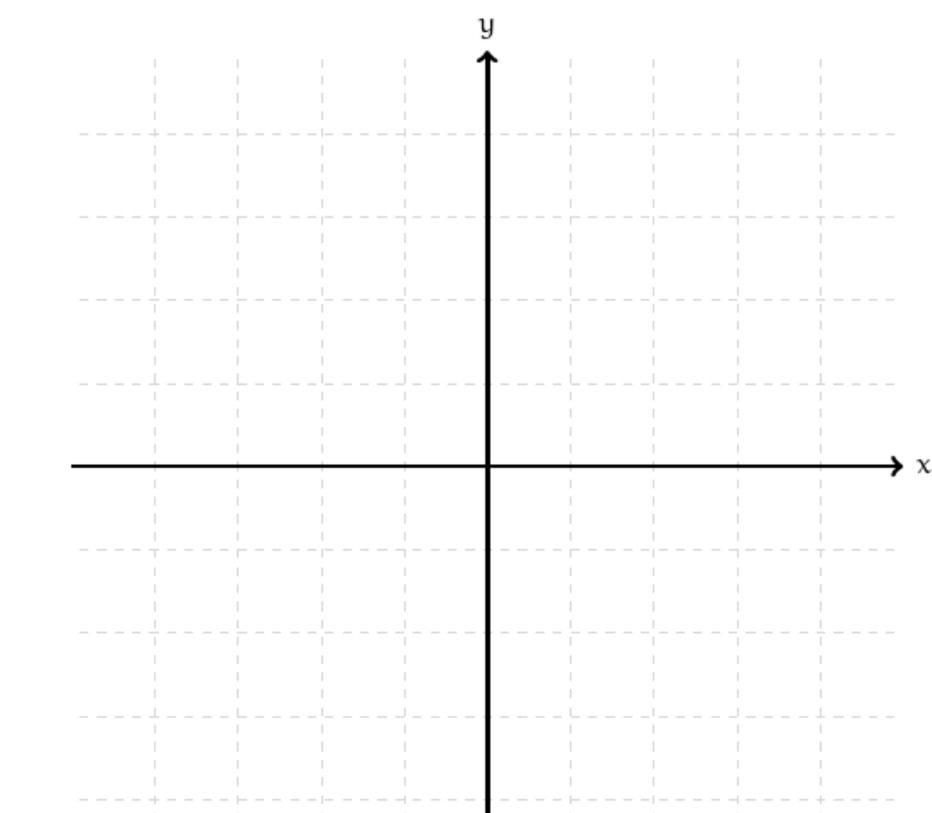
Eigenbases (Informal) Imagine if $\mathbf{v} = 2\mathbf{b}_1 - \mathbf{b}_2 - 5\mathbf{b}_3$ and $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are eigenvectors of A. Then

$A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$

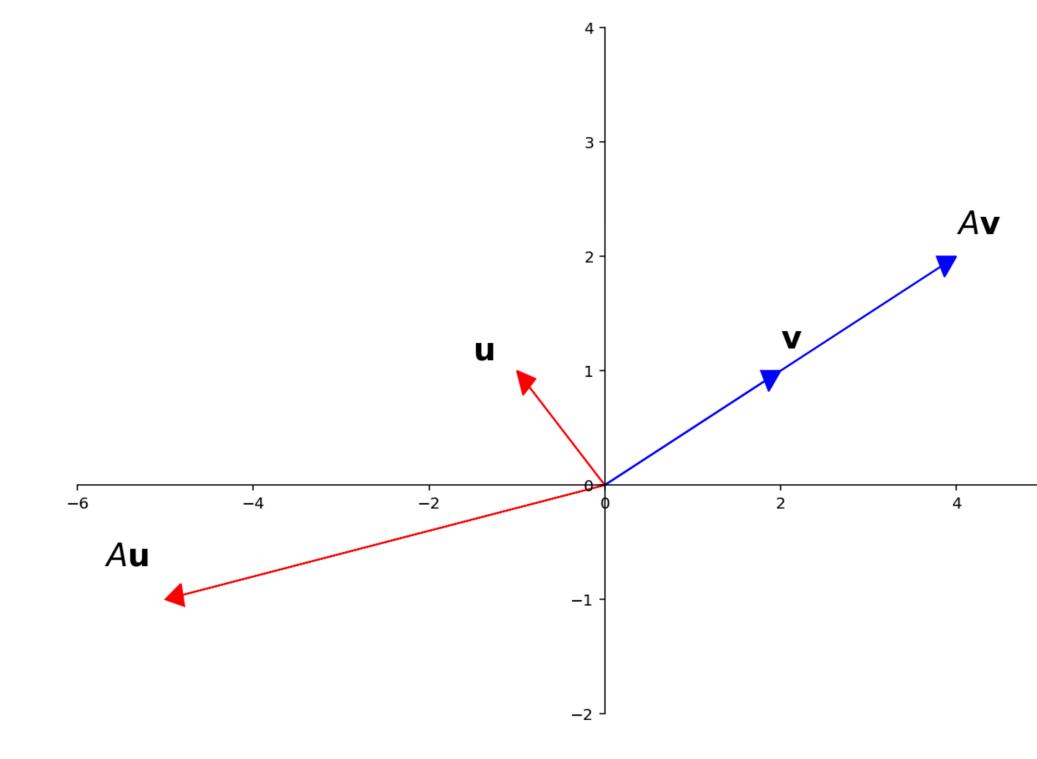
Eigenbases (Informal) Imagine if $\mathbf{v} = 2\mathbf{b}_1 - \mathbf{b}_2 - 5\mathbf{b}_3$ and $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are eigenvectors of A. Then $A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$ It's "easy to describe" how A transforms v. It transforms each "component" individually and then combines them. Verify:

Eigenbases (Pictorially)

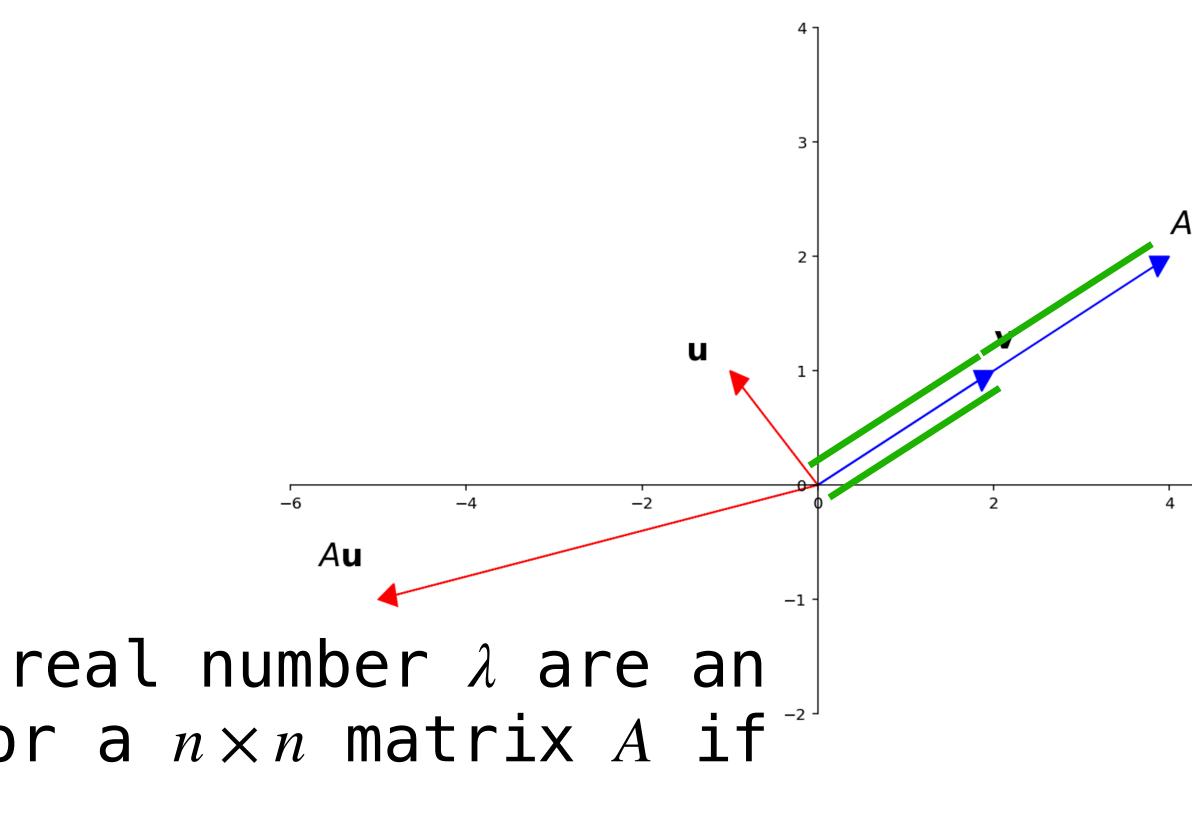




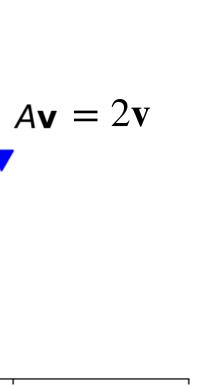
Eigenvalues and Eigenvectors



A nonzero vector v in \mathbb{R}^n and real number λ are an **eigenvector and eigenvalue** for a $n \times n$ matrix A if⁻²

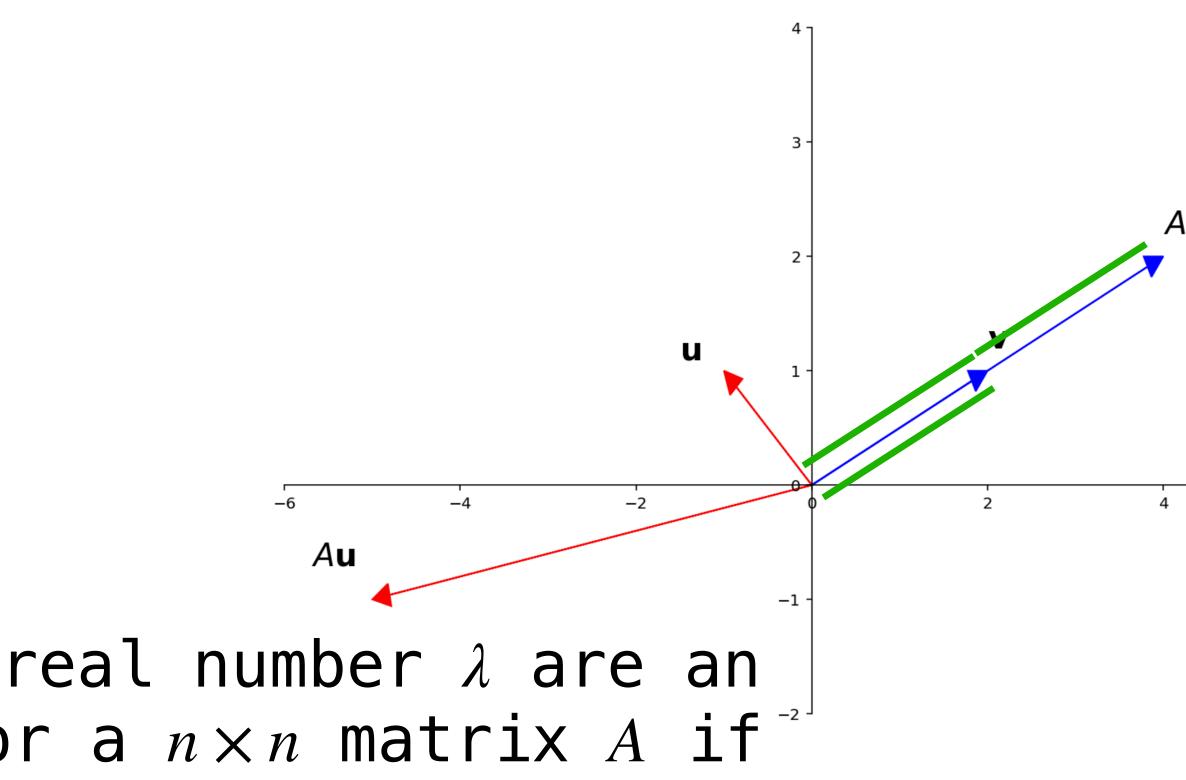


 $A\mathbf{v} = \lambda \mathbf{v}$

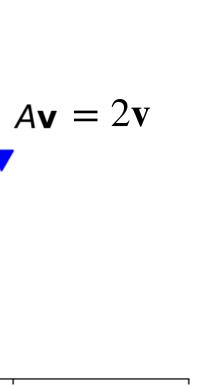


A nonzero vector v in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if⁻²

We will say that v is an eigenvector of/for the eigenvalue λ , and that λ is the eigenvalue <u>of/corresponding to</u> v.

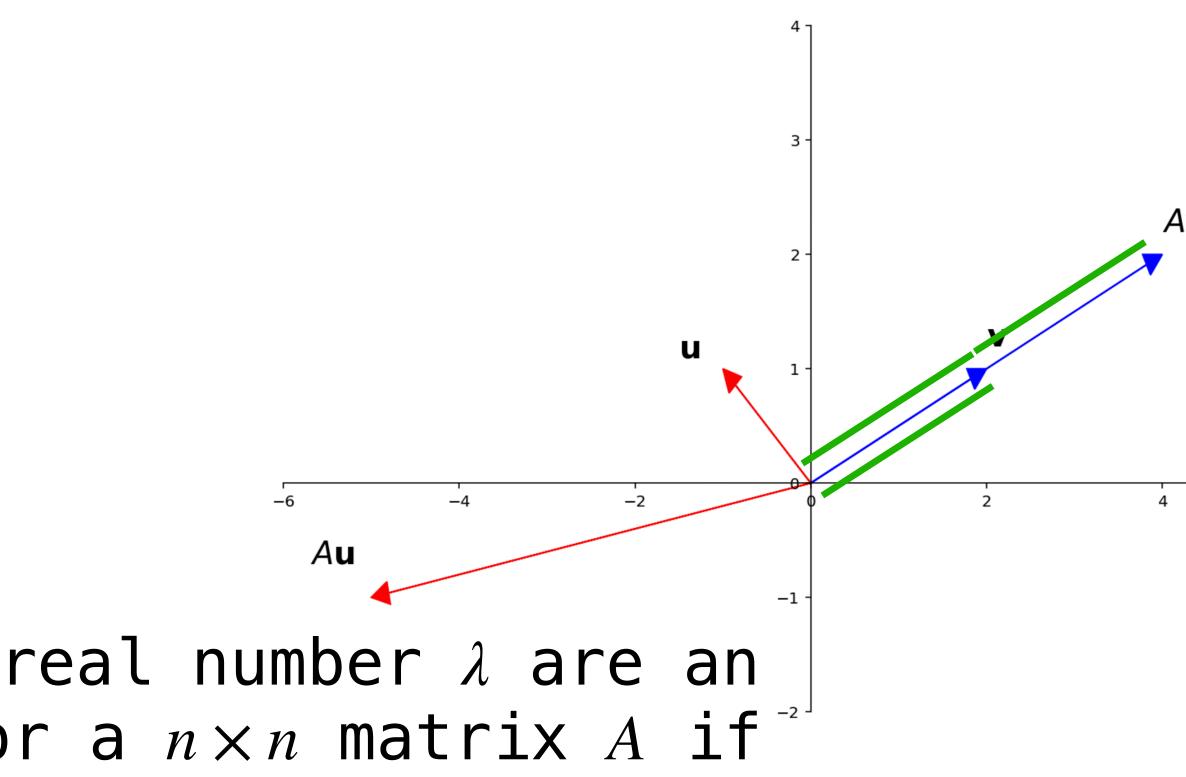


 $A\mathbf{v} = \lambda \mathbf{v}$



A nonzero vector v in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

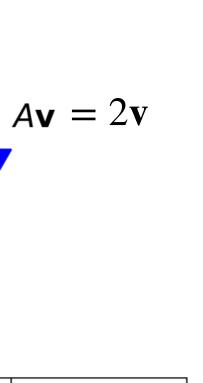
- λ , and that λ is the eigenvalue <u>of/corresponding to</u> v.
- 0 to be an eigenvalue.



 $A\mathbf{v} = \lambda \mathbf{v}$

We will say that v is an eigenvector <u>of/for</u> the eigenvalue

Note. Eigenvectors <u>must</u> be nonzero, but it is possible for



What if 0 is an eigenvalue?

What if 0 is an eigenvalue?

v, then

If A has the eigenvalue 0 with the eigenvector

$A\mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0}$

What if 0 is an eigenvalue?

- v, then

- In other words,
 - \gg v \in Nul(A)

If A has the eigenvalue 0 with the eigenvector

$A\mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0}$

» v is a nontrivial solution to Av = 0

Theorem. A $n \times n$ matrix is invertible if and only if it <u>does not</u> have 0 as an eigenvalue.

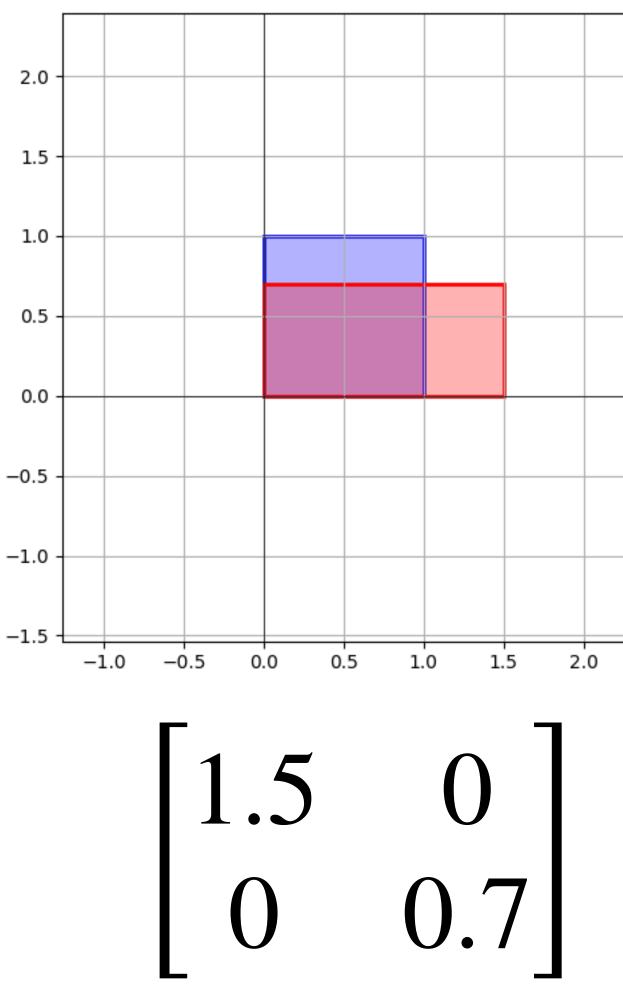
if it <u>does not</u> have 0 as an eigenvalue.

- **Theorem.** A $n \times n$ matrix is invertible if and only
- To reiterate. An eigenvalue 0 is equivalent to

- **Theorem.** A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.
- To reiterate. An eigenvalue 0 is equivalent to
 - » $A\mathbf{x} = \mathbf{0}$ has no nontrivial solutions » the columns of A are linearly dependent » $Col(A) \neq \mathbb{R}^n$
 - ≫ ∎ ∎ ∎

Example: Unequal Scaling

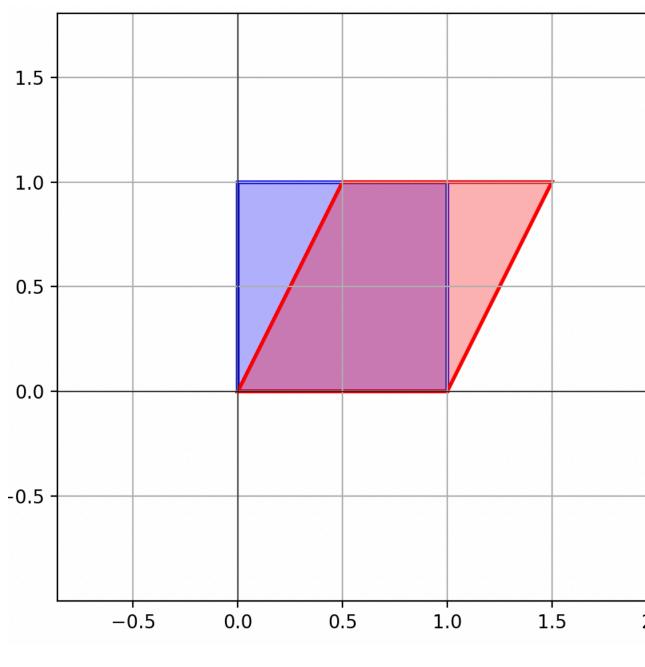
Let's determine it's eigenvalues and eigenvectors:



2.5				

Example: Shearing

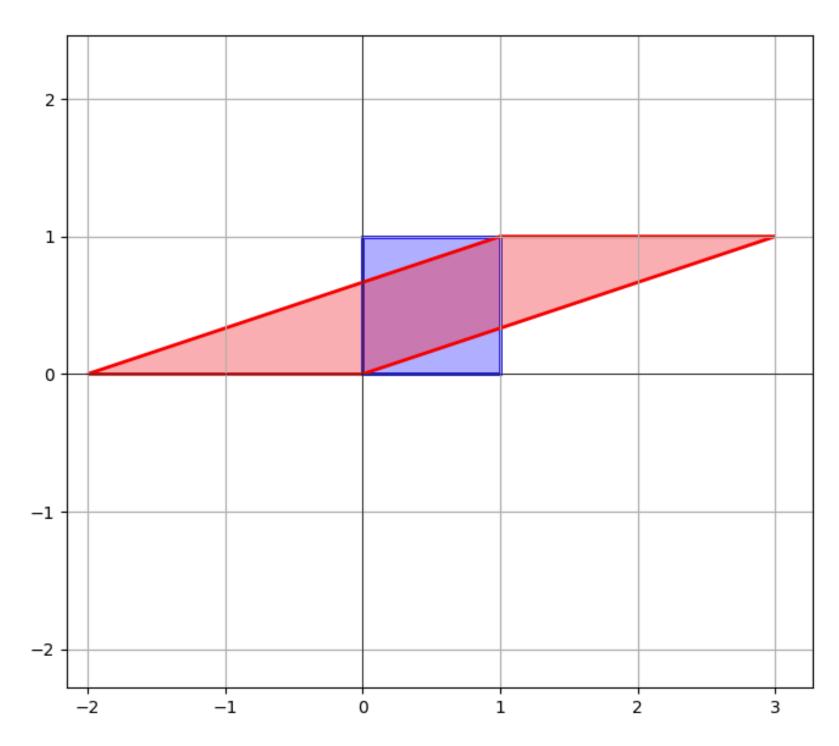
Let's determine it's eigenvalues and eigenvectors:



0.5

223	1999 A.	
2	.0	•

Example (Algebraic) $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$



How do we verify eigenvalues and eigenvectors?

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication.

$\begin{vmatrix} 6 \\ -5 \end{vmatrix} \begin{vmatrix} 3 \\ -2 \end{vmatrix} \begin{vmatrix} 1 & 6 \\ 5 & 2 \end{vmatrix}$

This is harder...

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

This is harder...

What vector do we check???

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

This is harder... **Question.** Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$. What vector do we check??? Before we go over how to do this...

Verifying Eigenvalues (Warm Up)

Question. Verify that 1 is an eigenvalue of

Solution:

- $\begin{bmatrix} 0.1 & 0.7 \\ 0.9 & 0.3 \end{bmatrix}$
- Hint. Recall our discussion of Markov Chains.

Steady-States and Eigenvectors

Steady-state vectors of stochastic matrices are eigenvectors corresponding to the eigenvalue 1. How did we find steady-state vectors?:

Steady-States and Eigenvectors

v is a steady-state vector $* \equiv v \in Nul(A - I)$

*It must also be a probability vector

This is harder... **Question.** Show that λ is an eigenvalue of A. Solution:

v is an eigenvector for $\lambda \equiv \mathbf{v} \in \text{Nul}(A - \lambda I)$

This is harder...

Solution:

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

Problem

Verify that 2 is an eigenvalue of $\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$

 $\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$

How many eigenvectors can a matrix have?

Linear Independence of Eigenvectors

Theorem. * If $v_1, ..., v_k$ are eigenvectors for distinct eigenvalues, then they are linearly independent.

So an n×n matrix can have at most n eigenvalues.

Why?:

*We won't prove this.

Eigenspace

λ of $A \in \mathbb{R}^{n \times n}$ form a subspace of \mathbb{R}^n . Verify:

Fact. The set of eigenvectors for a eigenvalue

Eigenspace

Definition. The set of eigenvectors for a corresponding to λ .

It is the same as $Nul(A - \lambda I)$.

eigenvalue λ of A is called the **eigenspace** of A

How To: Basis of an Eigenspace

Question. Find a basis for the eigenspace of A corresponding to λ . **Solution.** Find a basis for $Nul(A - \lambda I)$.

We know how to do this.

Determine a basis for the eigenspace corresponding to the eigenvalue 1:

$\begin{bmatrix} -2 & 0 & 3 \\ 1 & 1 & -1 \\ -4 & 0 & 5 \end{bmatrix}$

How do we find eigenvalues?

How do we find eigenvalues? We'll cover this next time...

Eigenvalues of Triangular Matrices

Theorem. The eigenvalues of a triangular matrix are its entries along the diagonal. Verify:

Determine the eigenvectors and values of the above matrix:

$\begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$

Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

is described by a $n \times n$ matrix A. It's evolution **function** is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

- Definition. A (discrete time) linear dynamical system
- The possible states of the system are vectors in \mathbb{R}^n .

is described by a *n*×*n* matrix *A*. It's evolution **function** is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

state vector of the system after *i* time steps:

- Definition. A (discrete time) linear dynamical system
- The possible states of the system are vectors in \mathbb{R}^n .
- Given an **initial state vector** \mathbf{v}_0 , we can determine the

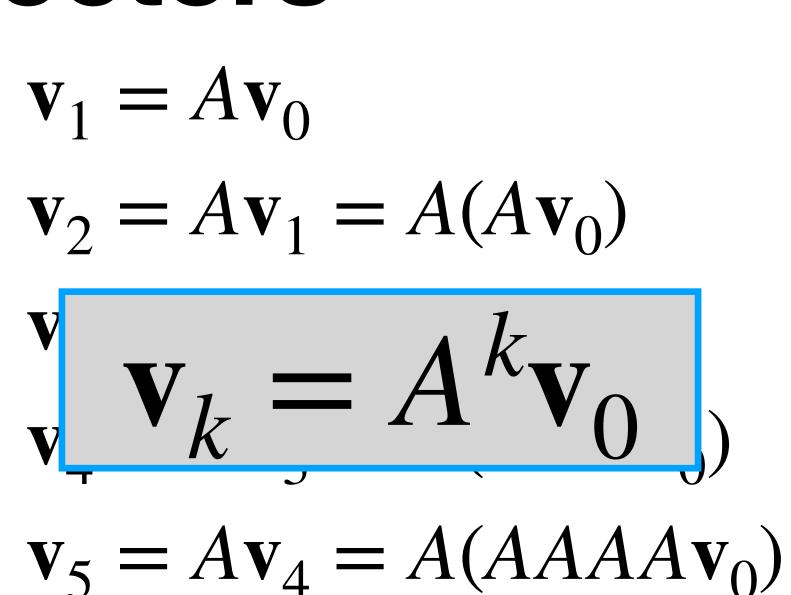
Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

The system evolves over time. A tells us how our system evolves over time. Given an initial state vector v_0 , we can determine the state vector of the system after *i* time steps:

Recall: State Vectors $\mathbf{v}_1 = A\mathbf{v}_0$ The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps difference function

- $\mathbf{v}_2 = A\mathbf{v}_1 = A(A\mathbf{v}_0)$ $\mathbf{v}_3 = A\mathbf{v}_2 = A(AA\mathbf{v}_0)$ $\mathbf{v}_4 = A\mathbf{v}_3 = A(AAA\mathbf{v}_0)$
- $\mathbf{v}_5 = A\mathbf{v}_4 = A(AAAA\mathbf{v}_0)$
- This is also called a recurrence relation or a linear

Recall: State Vectors $\mathbf{v}_1 = A\mathbf{v}_0$ The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps difference function



This is also called a recurrence relation or a linear

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k

us much about the nature of \mathbf{v}_k

It's defined in terms of A itself, which doesn't tell us much about how the system behaves

- The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is okay but it doesn't tell

us much about the nature of \mathbf{v}_k

It's defined in terms of A itself, which doesn't tell us much about how the system behaves

It's also difficult computationally because matrix multiplication is expensive

- The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is okay but it doesn't tell

(Closed-Form) Solutions

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is does not contain A^k or previously defined terms

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is does not contain A^k or previously defined terms

In other word, it does not depend on A^k and is not **recursive**

Example $\mathbf{v}_{k} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \mathbf{v}_{k-1} \qquad \mathbf{v}_{0} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$

Determine a closed for the above linear dynamical system.

initial state is an eigenvector:

- It's easy to give a closed-form solution if the
 - $\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$

initial state is an eigenvector:

It's easy to give a closed-form solution if the No dependence on A^k or \mathbf{v}_{k-1} $\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$

initial state is an eigenvector:

eigenvectors.

- It's easy to give a closed-form solution if the
 - No dependence on A^k or \mathbf{v}_{k-1} $\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$
- <u>The Key Point.</u> This is still true of sums of

Solutions in terms of eigenvectors

Let's simplify $A^k \mathbf{v}$, given we have eigenvectors $\mathbf{b}_1, \mathbf{b}_2$ for A which span all of \mathbb{R}^2 :

Eigenvectors and Growth in the Limit

if \mathbf{v}_0 can be written in terms of eigenvectors $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ of A with eigenvalues

term, the system grows exponentially in λ_1). Verify:

- **Theorem.** For a linear dynamical system A with initial state \mathbf{v}_0 ,
 - $\lambda_1 > \lambda_2 \dots \geq \lambda_k$
- then $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$ for some constant c_1 (in other words, in the long

Definition. An eigenbasis of \mathbb{R}^n for a $n \times n$ eigenvectors of A.

matrix A is a basis of \mathbb{R}^n made up entirely of

Definition. An eigenbasis of \mathbb{R}^n for a $n \times n$ eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

matrix A is a basis of \mathbb{R}^n made up entirely of

Definition. An eigenbasis of \mathbb{R}^n for a $n \times n$ eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

Not all matrices have eigenbases.

matrix A is a basis of \mathbb{R}^n made up entirely of

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with

eigenvalue of A and b_1 is its eigenvalue.

- initial state v_0 , if A has an eigenbasis $b_1, ..., b_k$, then
 - $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$
- for some constant c_1 , where where λ_1 is the largest

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with

eigenvalue of A and b_1 is its eigenvalue.

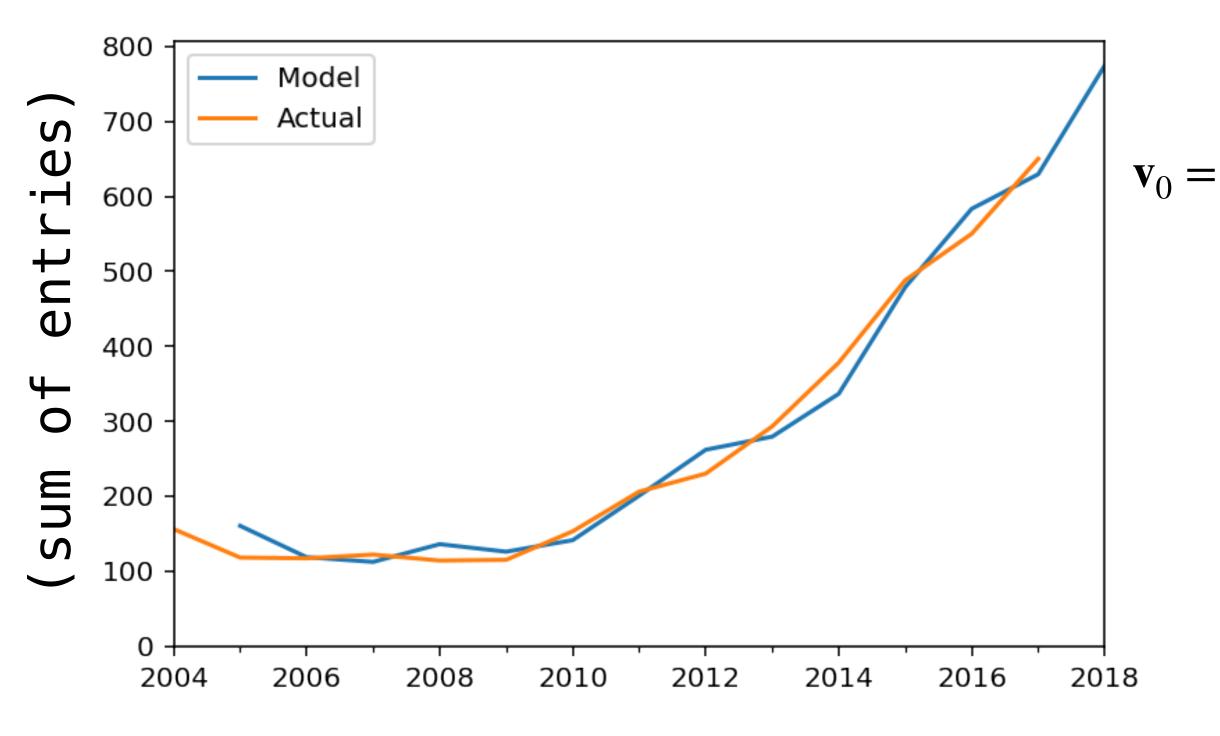
initial state v_0 , if A has an eigenbasis b_1, \ldots, b_k , then

$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

- for some constant c_1 , where where λ_1 is the **largest**
 - The largest eigenvalue describes the long-term exponential behavior of the system.

Example: CS Major Growth

see the notes for more details



This is clearly exponential. If we want to "extract" the exponent, we need to look at the <u>largest eigenvalue</u>.

$v_{0,1}$							enrolled		
$v_{0,2}$ $v_{0,3}$ $v_{0,4}$	=	#	of	year	2	students	enrolled	in	20
<i>v</i> _{0,3}							enrolled		
$v_{0,4}$		#	of	year	4	students	enrolled	in	20

$$\mathbf{v}_k = A^k \mathbf{v}_0$$

(A is determined by least squares)

024 024 024 024

Another Example: Golden Ratio

A Special Linear Dynamical System $\mathbf{v}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{v}_k \qquad \mathbf{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

What does this matrix represent?:

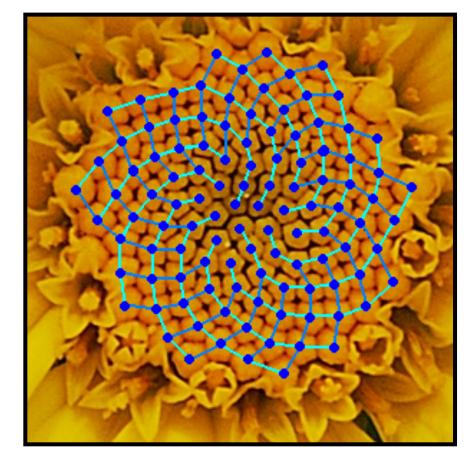
Consider the system given by the above matrix.

Fibonacci Numbers

 $F_0 = 0$ **define** fib(n): $F_1 = 1$ $F_k = F_{k-1} + F_{k-2}$ return curr

recurrence relation.

They seem to crop-up in nature.



curr, next $\leftarrow 0$, 1 repeat n times: curr, next ← next, curr + next

The Fibonacci numbers are defined in terms of a

https://commons.wikimedia.org/wiki/File:FibonacciChamomile.PNG

Golden Ratio

The "long term behavior" is the Fibonacci sequence is defined by the golden ratio.

$\varphi = \frac{1 + \sqrt{5}}{2}$

This is the largest eigenvalue of $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$.