### The Characteristic Equation Geometric Algorithms Lecture 19

CAS CS 132

# **Practice Problem**

#### Determine the dimension of the eigenspace of A for the eigenvalue 4.

(try not to do any row reductions)

 $\begin{bmatrix} 5 & 2 & 3 & 0 \\ -1 & 2 & -3 & 1 \\ 2 & 4 & 10 & 0 \\ 1 & 2 & 3 & 5 \end{bmatrix}$ 





rank (A-4J)=2  $\begin{cases} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} ; s$ 



### **Objectives**

- 2. Get a primer on <u>determinants</u>
- verify them)

# 1. Briefly recap eigenvalues and eigenvectors

3. Determine how to <u>find eigenvalues</u> (not just

### Keyword

eigenvectors eigenvalues eigenspaces eigenbases determinant characteristic equation polynomial roots triangular matrices multiplicity

Recap

### **Recall: Eigenvalues/vectors**

#### A nonzero vector v in $\mathbb{R}^n$ and real number $\lambda$ are an **eigenvector and eigenvalue** for a $n \times n$ matrix A if



 $A\mathbf{v} = \lambda \mathbf{v}$ 

### **Recall: Eigenvalues/vectors**

#### A nonzero vector v in $\mathbb{R}^n$ and real number $\lambda$ are an eigenvector and eigenvalue for a $n \times n$ matrix A if



 $A\mathbf{v} = \lambda \mathbf{v}$ 

### **Recall: Eigenvalues/vectors**

### A nonzero vector v in $\mathbb{R}^n$ and real number $\lambda$ are A if



an eigenvector and eigenvalue for a  $n \times n$  matrix

 $A\mathbf{v} = \lambda \mathbf{v}$ 

v is "just scaled" by A, not rotated



Question. Determine if v is an eigenvector of A and determine the corresponding eigenvalues.

- Question. Determine if v is an eigenvector of A and determine the corresponding eigenvalues.
- Solution. Easy. Work out the matrix-vector multiplication.

- **Question.** Determine if v is an eigenvector of A and determine the corresponding eigenvalues.
- Solution. Easy. Work out the matrix-vector multiplication. Example.



# **Question.** Find an eigenvector of A whose corresponding eigenvalue is $\lambda$ .

#### Question. Find an eigenvector of A whose corresponding eigenvalue is $\lambda$ . **Solution.** Find a nontrivial solution to

- $(A \lambda I)\mathbf{x} = \mathbf{0}$

std. state, = eigen reps 入二1

Question. Find an eigenvector of A whose corresponding eigenvalue is  $\lambda$ . **Solution.** Find a nontrivial solution to

that  $A - \lambda I$  is **not** invertible (by IMT).

- $(A \lambda I)\mathbf{x} = \mathbf{0}$
- If we don't need the vector we can just show

# **Question.** Find a basis for the eigenspace of A corresponding to $\lambda$ .

# **Question.** Find a basis for the eigenspace of A corresponding to $\lambda$ . **Solution.** Find a basis for $Nul(A - \lambda I)$ .



### for $Nul(A - \lambda I)$ . $\lambda J = 0$

### **Question.** Find a basis for the eigenspace of A corresponding to $\lambda$ . **Solution.** Find a basis for $Nul(A - \lambda I)$ .

(we did this for our recap problem)

How do eigenvectors relate to linear dynamical systems?

### **Recall: (Closed-Form) Solutions**

### **Recall: (Closed-Form) Solutions**

A (closed-form) solution of a linear dynamical system  $\mathbf{v}_{i+1} = A\mathbf{v}_i$  is an expression for  $\mathbf{v}_k$  which is does not contain  $A^k$  or previously defined terms

### **Recall: (Closed-Form) Solutions**

A (closed-form) solution of a linear dynamical system  $\mathbf{v}_{i+1} = A\mathbf{v}_i$  is an expression for  $\mathbf{v}_k$  which is does not contain  $A^k$  or previously defined terms

In other word, it does not depend on  $A^k$  and is not **recursive** 







### initial state is an eigenvector:



- It's easy to give a closed-form solution if the
  - $\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$



initial state is an eigenvector:

It's easy to give a closed-form solution if the No dependence on  $A^k$  or  $\mathbf{v}_{k-1}$  $\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$ 



initial state is an eigenvector:

eigenvectors.

- It's easy to give a closed-form solution if the
  - No dependence on  $A^k$  or  $\mathbf{v}_{k-1}$  $\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$
- <u>The Key Point.</u> This is still true of sums of



### **Solutions in terms of eigenvectors**

Let's simplify  $A^k \mathbf{v}$ , given we have eigenvectors  $\mathbf{b}_1, \mathbf{b}_2$  for A which span all of  $\mathbb{R}^2$ :  $\mathbf{v} = \mathbf{b}, \mathbf{v} = \mathbf{b}_1$ 



### **Eigenvectors and Growth in the Limit**

if  $\mathbf{v}_0$  can be written in terms of eigenvectors  $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$  of A with eigenvalues

term, the system grows exponentially in  $\lambda_1$ ). Verify: v,= 6,+6,

- **Theorem.** For a linear dynamical system A with initial state  $\mathbf{v}_0$ ,
  - $\lambda_1 > \lambda_2 \dots \geq \lambda_k$
- then  $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$  for some constant  $c_1$  (in other words, in the long

$$V_{k} = \lambda_{1}b_{1} + \lambda_{2}b_{1} = b_{1} + (\lambda_{1}b_{1} + \lambda_{2}b_{1}) = b_{1} + (\lambda_{1}b_{1} + \lambda_{2}b_{$$



**Definition.** An eigenbasis of  $\mathbb{R}^n$  for a  $n \times n$ eigenvectors of A.

### matrix A is a basis of $\mathbb{R}^n$ made up entirely of

**Definition.** An eigenbasis of  $\mathbb{R}^n$  for a  $n \times n$ eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

### matrix A is a basis of $\mathbb{R}^n$ made up entirely of

**Definition.** An eigenbasis of  $\mathbb{R}^n$  for a  $n \times n$ eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

Not all matrices have eigenbases.

### matrix A is a basis of $\mathbb{R}^n$ made up entirely of

## **Eigenbases and Growth in the Limit**

**Theorem.** For a linear dynamical system A with

eigenvalue of A and  $b_1$  is its eigenvalue.

- initial state  $v_0$ , if A has an eigenbasis  $b_1, ..., b_k$ , then
  - $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$
- for some constant  $c_1$ , where where  $\lambda_1$  is the largest

## **Eigenbases and Growth in the Limit**

**Theorem.** For a linear dynamical system A with

eigenvalue of A and  $\mathbf{b}_1$  is its eigenvalue.

initial state  $v_0$ , if A has an eigenbasis  $b_1, \ldots, b_k$ , then

$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

- for some constant  $c_1$ , where where  $\lambda_1$  is the **largest** 
  - The largest eigenvalue describes the long-term exponential behavior of the system.

## **Example: CS Major Growth**

see the notes for more details



This is clearly exponential. If we want to "extract" the exponent, we need to look at the <u>largest eigenvalue</u>.

 $\begin{bmatrix} v_{0,1} \\ v_{0,2} \\ v_{0,3} \\ v_{0,4} \end{bmatrix} = \begin{bmatrix} \# \text{ of year 1 students enrolled in 2024} \\ \# \text{ of year 2 students enrolled in 2024} \\ \# \text{ of year 3 students enrolled in 2024} \\ \# \text{ of year 4 students enrolled in 2024} \end{bmatrix}$ 

$$\mathbf{v}_{k} = A^{k} \mathbf{v}_{0} \sim \begin{array}{c} \lambda_{1} \\ \lambda_{1} \\ \lambda_{1} \end{array}$$
 (A is determined by least squares)



## moving on...

## Finding Eigenvalues

## Finding Eigenvalues

**Question.** Determine the eigenvalues of A, along with their associated eigenspaces.

## Finding Eigenvalues

with their associated eigenspaces.

in the equation

# Question. Determine the eigenvalues of A, along

**Solution (Idea).** Can we somehow "solve for  $\lambda$ "

 $(A - \lambda I)\mathbf{x} = \mathbf{0}$ 

## Determinants

## An Aside: Determinants are Mysterious

Determinants are strangely polarizing

Some people love them, some people hate them

We'll only scratch the surface...

#### **Down with Determinants!**

**Sheldon Axler** 

det

------

102 (1995), 139-154.

ry writing from the Mathematical Association of America.

without determinants. The standard proof that a square matrix of complex numbers has an eigenvalue uses erminants, this allows us to define the multiplicity of an eigenvalue and to prove that the number of eigenva haracteristic and minimal polynomials and then prove that they behave as expected. This leads to an easy p determinants, this paper gives a simple proof of the finite-dimensional spectral theorem.

this paper. The book is intended to be a text for a second course in linear algebra.

A determinant is a number associated with a matrix.

A determinant is a number associated with a matrix.

**Notation.** We will write det(A) for the determinant of A.

A determinant is a number associated with a matrix.

**Notation.** We will write det(A) for the determinant of A.

entries of A.

#### In broad strokes, it's a big sum of products of

## A Scary-Looking Definition (we won't use)

$$det(A) = \sum_{\sigma \in S_n} (-1)$$

#### We can think of this function as a procedure:

```
1 FUNCTION det(A):
    total = 0
3
      s = 1 IF (# of swaps necessary) is even ELSE -1
4
5
6
    RETURN total
```

 $^{\text{sgn}(\sigma)}A_{1\sigma(1)}A_{2\sigma(2)}\dots A_{n\sigma(n)}$ 

**FOR** all matrix B we can get by swapping a bunch of rows of A: total += s \* (product of the diagonal entries of B)

#### The Determinant of $2 \times 2$ Matrices

# $det \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

# $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & b \\ -c & a \end{bmatrix}$



#### The Determinant of $2 \times 2$ Matrices

# $\det \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \frac{ad}{b} - bc$



 $(-1)^{0}ad$ 

#### The Determinant of $2 \times 2$ Matrices





 $(-1)^{1}cb$ 

#### The Determinant of 3 × 3 matrices



#### The Determinant of 3 x 3 matrices



$$bfg + cdh - ceg - bdi - afh$$

$$\rightarrow^{0} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

 $(-1)^{0}aei$ 

#### The Determinant of $3 \times 3$ matrices



$$bfg + cdh - ceg - bdi - afh$$

$$\rightarrow^{2} \begin{bmatrix} g & h & i \\ a & b & c \\ d & e & f \end{bmatrix}$$

 $(-1)^2 gbf$ 

#### The Determinant of 3 x 3 matrices



$$\rightarrow^{2} \begin{bmatrix} d & e & f \\ g & h & i \\ a & b & c \end{bmatrix}$$

 $(-1)^{2}dhc$ 

#### The Determinant of $3 \times 3$ matrices



$$\rightarrow^{1} \begin{bmatrix} g & h & i \\ d & e & f \\ a & b & c \end{bmatrix}$$

 $(-1)^1 gec$ 

#### The Determinant of $3 \times 3$ matrices



$$\rightarrow^{1} \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}$$

 $(-1)^1 dbi$ 

#### The Determinant of 3 x 3 matrices



$$\rightarrow^{1} \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix}$$

 $(-1)^{1}ahf$ 

#### **Another Perspective**

Let's row reduce an arbitrary  $2 \times 2$  matrix:  $\begin{bmatrix} a & b \\ ac & ad \end{bmatrix} \sim \begin{bmatrix} a & b \\ 0 & ad - bc \end{bmatrix}$ 







#### **Another Perspective**

Let's row reduce an arbitrary  $3 \times 3$  matrix: f a h 1 ( A

|    | 6  | C   |        | Å |  |
|----|----|-----|--------|---|--|
| ad | al | af  | $\sim$ | Ð |  |
| ag | ah | ori |        |   |  |





# ae-bd af-cd ah-bg ai-cg



**Theorem.** A matrix is i  $det(A) \neq 0$ .

#### Theorem. A matrix is invertible if and only if

 $det(A) \neq 0$ .

So we can yet again extend the IMT:

#### **Theorem.** A matrix is invertible if and only if

- $det(A) \neq 0$ .
- So we can yet again extend the IMT:
- » A is invertible
- $\Rightarrow \det(A) \neq 0$
- » 0 is not an eigenvalue

These must be all true or all false.

#### **Theorem.** A matrix is invertible if and only if

# Determinants (the definition we'll use) $det(A) = \frac{(-1)^{s}}{c} U_{11}U_{22}...U_{nn}$

# **Determinants (the definition we'll use)** $\det(A) = \frac{(-1)^s}{U_{11}U_{22}...U_{nn}}$

# by the above equation, where

# **Determinants (the definition we'll use)** $\det(A) = \frac{(-1)^s}{----}U_{11}U_{22}...U_{nn}$

# by the above equation, where

• U is an echelon form of A

- **Defintion.** The **determinant** of a matrix A is given

# **Determinants (the definition we'll use)** $\det(A) = \frac{(-1)^s}{----}U_{11}U_{22}...U_{nn}$

# by the above equation, where

- U is an <u>echelon form</u> of A
- s is the number of row swaps used to get U

# **Determinants (the definition we'll use)** $\det(A) = \frac{(-1)^s}{----}U_{11}U_{22}...U_{nn}$

# by the above equation, where

- U is an <u>echelon form</u> of A
- s is the number of row swaps used to get U
- c is the product of all scalings used to get U



# **Determinants (the definition we'll use)** $det(A) = \frac{(-1)^{s}}{c} \frac{V_{11}U_{22}...U_{nn}}{V_{nn}}$

# by the above equation, where

- U is an <u>echelon form</u> of A
- s is the number of row <u>swaps</u> used to get U
- c is the product of all scalings used to get U



## **Determinants (the definition we'll use)** $det(A) = \frac{(-1)^{s} \text{ product of diagonal entries}}{U_{11}U_{22}...U_{nn}}$ C 0 if A is not invertible

## by the above equation, where

- U is an <u>echelon form</u> of A
- s is the number of row <u>swaps</u> used to get U
- c is the product of all scalings used to get U

**Defintion.** The **determinant** of a matrix A is given





 $\frac{(-1)^{5}}{(-1)^{5}} \mathcal{U}_{11} \mathcal{U}_{22} \mathcal{U}_{33} = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$ 

 $\begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix} \xrightarrow{R_{1} - R_{2} - 2R_{2}} \begin{bmatrix} 1 & 5 & 0 \\ 0 & -6 & -1 \\ 0 & -6 & -1 \\ 0 & -7 & 0 \end{bmatrix} \xrightarrow{R_{3} - 2R_{2}} \begin{bmatrix} 1 & 5 & 0 \\ 0 & -6 & -1 \\ 0 & -6 & 0 \end{bmatrix}$  $\frac{(-1)}{3}(1)(-6)(1) = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$ 







## Example (Again) $\frac{(...)}{c} (...) (...) (...) (...) (...) = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$ Let's find the determinant of this matrix again but with a different sequence of row operations:

 $\begin{pmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{pmatrix} \xrightarrow{F_1 \leftrightarrow F_2} \begin{pmatrix} 2 & 4 & -1 \\ 1 & 5 & 0 \\ 0 & -2 & 0 \end{pmatrix} \xrightarrow{F_1 \leftarrow F_1/2} \begin{pmatrix} 1 & 2 & -1/2 \\ 1 & 5 & 0' \\ 1 & 5 & 0' \\ 0 & -2 & 0 \end{pmatrix} \xrightarrow{F_2 \leftarrow F_2} \begin{pmatrix} -1 & 2 & -1/2 \\ 1 & 5 & 0' \\ 0 & -2 & 0 \end{pmatrix} \xrightarrow{F_2 \leftarrow F_2} \begin{pmatrix} -1 & 2 & -1/2 \\ 1 & 5 & 0' \\ 0 & -2 & 0 \end{pmatrix} \xrightarrow{F_2 \leftarrow F_2} \begin{pmatrix} -1 & 2 & -1/2 \\ 1 & 5 & 0' \\ 0 & -2 & 0 \end{pmatrix}$  $\begin{bmatrix} 1 & 2 & -\frac{1}{2} \\ 0 & 3 & \frac{1}{2} \\ 0 & -2 & 0 \end{bmatrix} \xrightarrow{F_2 \leftarrow 2F_2} \begin{bmatrix} 1 & 2 & -\frac{1}{2} \\ F_3 \leftarrow 3F_3 \\ 0 & G & 1 \\ 0 & -G & 0 \end{bmatrix} \xrightarrow{F_3 \leftarrow F_3 + F_2} \begin{bmatrix} 1 & 2 & -\frac{1}{2} \\ 0 & G & 1 \\ 0 & 0 & 1 \end{bmatrix}$ 







## The definition holds no matter which sequence of row operations you use.

**Question.** Determine the determinant of a matrix A. Solution.

1. Convert A to an echelon form  $U_{\bullet}$ 

- 1. Convert A to an echelon form  $U_{\bullet}$
- 2. Keep track of the number of row swaps you used, call this s, and the product of all scalings, call this c

- 1. Convert A to an echelon form U.
- 2. Keep track of the number of row swaps you used, call this s, and the product of all scalings, call this c
- 3. Determine the product of entries along the diagonal of  $U_{i}$  call this P.

- 1. Convert A to an echelon form  $U_{\bullet}$
- 2. Keep track of the number of row swaps you used, call this s, and the product of all scalings, call this c
- 3. Determine the product of entries along the diagonal of  $U_{i}$ , call this P.
- 4. The determinant of A is  $\frac{(-1)^{s}P}{d}$ .

## The Shorter Version

# Beyond small matrices, we'll just use a computer With NumPy:

## numpy.linalg.det(A)

**Properties of Determinants** 

## **Properties of Determinants (1)** det(AB) = det(A) det(B)It follows that AB is invertible if and only if A and B are invertible (we won't verify this)

## **Example Question**

## A = IUse the fact that det(AB) = det(A) det(B) to give an expression for $det(A^{-1})$ in terms of det(A). de+(I) = det (0000) 0000 0000 0000Hint. What is det(I)?

det (AA-1) = det (A) det (A')  $det(A^{-1}) = 1$ det(A)l det(I)



## **Properties of Determinants (2)**

## A is invertible.

(we also won't verify this)

## $det(A^T) = det(A)$

## It follows that $A^T$ is invertible if and only if

## **Example Question**

## If $A^{-1} = A^T$ , then what are the possible values of det(A)?



 $det(A^T)^z = 1$ 



 $det(A^{T}) = det(A^{T}) = \frac{1}{det(A)} = \frac{1}{det(A)}$  $det(A) = det(A^{T})$ 



## **Properties of Determinants (3)**

product of entries along the diagonal.





## Find the determinant of the above matrix.

# $\begin{bmatrix} 1 & 5 & -4 \\ -1 & -5 & 5 \\ -2 & -8 & 7 \end{bmatrix}$



## **Characteristic Equation**



The determinant of a matrix A is an <u>arithmetic</u> <u>expression</u> written in terms of the entries of A.



The determinant of a matrix A is an <u>arithmetic</u> <u>expression</u> written in terms of the entries of A.

But a matrix may not have numbers as entries.



The determinant of a matrix A is an <u>arithmetic</u> <u>expression</u> written in terms of the entries of A.

But a matrix may not have numbers as entries. We might think of the matrix  $A - \lambda I$  has having polynomials as entries.



The determinant of a matrix A is an <u>arithmetic</u> <u>expression</u> written in terms of the entries of A.

But a matrix may not have numbers as entries. We might think of the matrix  $A - \lambda I$  has having polynomials as entries.

Then  $det(A - \lambda I)$  is a **polynomial**.





### A root of a polynomial p(x) is a value r such that p(r) = 0.





A root of a polynomial p(x) is a value r such that p(r) = 0. (A polynomial may have many roots)



- A root of a polynomial p(x) is a value r such that p(r) = 0.
- (A polynomial may have many roots)
- If r is a root of p(x), then it is possible to find a polynomial q(x)such that
  - p(x) = (x r)q(x)





Definition. The characteristic polynomial of a variable  $\lambda$ .

## matrix A is $det(A - \lambda I)$ viewed as a polynomial in the

Definition. The characteristic polynomial of a variable  $\lambda$ .

roots.

## matrix A is $det(A - \lambda I)$ viewed as a polynomial in the

## This is a polynomial with the eigenvalues of A as

Definition. The characteristic polynomial of a variable  $\lambda$ .

roots.

So we can "solve" for the eigenvalues in the equation

- matrix A is  $det(A \lambda I)$  viewed as a polynomial in the
- This is a polynomial with the eigenvalues of A as

 $\det(A - \lambda I) = 0$ 

## Let's find the characteristic polynomial of this matrix:



1 1 1 0 **Example:**  $2 \times 2$  **Matrix**  $\int_{1}^{1} \circ \int_{0}^{1} \int_{0$ 



# **A Special Linear Dynamical System** $\mathbf{v}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{v}_k \qquad \mathbf{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Consider the system given by the above matrix. What does this system represent?:  $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 2$  $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix} \cdots$ 





## Fibonacci Numbers

 $F_0 = 0$ **define** fib(n):  $F_1 = 1$  $F_k = F_{k-1} + F_{k-2}$ return curr

recurrence relation.



curr, next  $\leftarrow 0$ , 1 repeat n times: curr, next ← next, curr + next

## The Fibonacci numbers are defined in terms of a

### They seem to crop-up in nature, engineering, etc.

https://commons.wikimedia.org/wiki/File:FibonacciChamomile.PNG



## **Recall: The Picture**



### The eigenvalue of this matrix is the golden ratio



# **Golden Ratio**

## This is the largest eigenvalue of $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$

The "long term behavior" is the Fibonacci sequence is defined by the golden ratio:



$$F_{k} = \Theta(Q^{k})$$

## **Example: Triangular matrix**

## The characteristic polynomial of a triangular matrix comes pre-factored: $\begin{bmatrix} 1-\lambda & 0 & 0 & 1\\ 0 & 7 & 0 & 0 & 1\\ 0 & 0 & 1-\lambda & 0 & 0\\ 0 & 0 & 0 & 1-\lambda & 0 & 0 \\ 0 & 0 & 0 & 0 & 1-\lambda & 0 \\ 0 & 0 & 0 & 0 & 1-\lambda & 0 \\ \end{bmatrix}$

 $\begin{bmatrix} 1 & -3 & 0 & 6 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 4 \end{bmatrix}$ 

$$(1-\lambda)^{2}(-\lambda)(4-\lambda)$$

$$\lambda = 1, 0, 4$$



## How To: Finding Eigenvalues

## How To: Finding Eigenvalues

## Question. Find all eigenvalues of the matrix A.

## How To: Finding Eigenvalues

polynomial of A.

## Question. Find all eigenvalues of the matrix A. Solution. Find the roots of the characteristic

# An Observation: Multiplicity $\lambda^{1}(\lambda - 1)^{2}(\lambda - 1)^$

In the examples so far, we've seen a number appear as a root multiple times.

This is called the multiplicity of the root.

Is the multiplicity meaningful in this context?

$$1)^2(\lambda - 4)^1$$
 multiplicities

## tiplicity of the root.

## **Multiplicity and Dimension**

for the eigenvalue  $\lambda$  is <u>at most</u> the multiplicity of  $\lambda$  in det $(A - \lambda I)$ .

> The multiplicity is an upper bound on "how large" the eigenspace is.

# **Theorem.** The dimension of the eigenspace of A

## Example

Let A be a  $5 \times 5$  matrix with characteristic polynomial  $(x - 1)^3(x - 3)(x + 5)$ .

- » What is rank(A)?

## » What is the minimum possible rank of A - I?