CAS CS 132

Diagonalization Geometric Algorithms Lecture 20

Objectives

1. Finish our discussion on the characteristic

- polynomial
- 2. Motivate diagonalization via linear systems
- 3. Describe how to diagonalize a matrix

dynamical systems and changes of coordinate

Keywords

multiplicity similar matrices diagonalizable matrices change of basis eigenbasis

Recap: Characteristic Polynomial

det(*A*) is an value associate with the matrix *A*

det(*A*) is an value associate with the matrix *A* **Theorem.** A matrix is invertible if and only if $det(A) \neq 0$

det(*A*) is an value associate with the matrix *A* **Theorem.** A matrix is invertible if and only if $det(A) \neq 0$

So by the Invertible Matrix Theorem:

- det(*A*) is an value associate with the matrix *A* **Theorem.** A matrix is invertible if and only if $det(A) \neq 0$ So by the Invertible Matrix Theorem:
- $det(A \lambda I) = 0$ \equiv $(A \lambda I)\mathbf{x} = \mathbf{0}$ has nontrivial solutions
	- ≡ *λ* is an eigenvalue of *A*

- det(*A*) is an value associate with the matrix *A* **Theorem.** A matrix is invertible if and only if $det(A) \neq 0$
- So by the Invertible Matrix Theorem:
- $det(A \lambda I) = 0$ \equiv $(A \lambda I)\mathbf{x} = \mathbf{0}$ has nontrivial solutions **polynomial in** *λ*
	- ≡ *λ* is an eigenvalue of *A*

Question. Determine the eigenvalues of *A*.

Question. Determine the eigenvalues of *A*. **Solution.** Find the *roots* of the characteristic polynomial of *A*, which is

viewed as a *polynomial* in *λ*.

-
-
- $det(A \lambda I)$
	-

Question. Determine the eigenvalues of *A*. **Solution.** Find the *roots* of the characteristic polynomial of *A*, which is

viewed as a *polynomial* in *λ*. We'll also use

-
-
- $det(A \lambda I)$
	-

numpy.linalg.eig(A)

1 − 1 [7 − 3 $\lambda = -1$

Example: Triangular matrix

The characteristic polynomial of a triangular

1 −3 0 6 0 0 1 1 0 0 1 2 $0 \t 0 \t 4$

matrix comes <u>pre-factored</u>:
 ϕ
 ϕ (A · λ) = $\begin{pmatrix} 1-\lambda & 0 & 0 & 6 \\ 0 & -\lambda & 1 & 1 \\ 0 & 0 & 1-\lambda & 2 \\ 0 & 0 & 0 & 4-\lambda \end{pmatrix}$ = $(1-\lambda)(-\lambda)(4-\lambda)$

An Observation: Multiplicity

*λ*1 (*λ* − 1)

2 (*λ* − 4)

1 multiplicities

In the examples so far, we've seen a number appear as a root multiple times

An Observation: Multiplicity *λ*1 (*λ* − 1) 2 (*λ* − 4) 1 multiplicities

An Observation: Multiplicity *λ*1 (*λ* − 1) 2

In the examples so far, we've seen a number appear as a root multiple times the root

This is called the **(algebraic) multiplicity** of

$$
1)^2 (\lambda - 4)^{1 \text{ multiplicities}}
$$

In the examples so far, we've seen a number appear as a root multiple times

An Observation: Multiplicity *λ*1 (*λ* − 1) 2

This is called the **(algebraic) multiplicity** of

the root

Is the multiplicity meaningful in this context?

$$
1)^2 (\lambda - 4)^{1 \text{ multiplicities}}
$$

Multiplicity and Dimension

Theorem. The dimension of the eigenspace of *A* $multiplicity$ of λ in $det(A - \lambda I)$ (and <u>at least</u> 1)

for the eigenvalue λ is <u>at most</u> the

The multiplicity is an upper bound on "how large" the eigenspace is

Example

Let A be a 5 \times 5 matrix with characteristic *polynomial* (*x* − 1) 3 (*x* − 3)(*x* + 5) *» What is ?* 𝗋𝖺𝗇𝗄(*A*) *»* What is the minimum possible rank of $A-I$?

 $rank(A-I) + dim (NU (A-I)) = 5$ which Meen dim. of the \leq 3 $\text{rank}(A - J) \geq 2$

Practice Problem

$\overline{}$ 5 1 4 2]

Determine the eigenvalues and an eigenbasis for the above matrix

Challeage: Show that any 2×2 matrix with positive
entries has 2 distinct eigenvalues (discriminant)

 $\overline{}$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ $= \lambda^2 - 7 \lambda + 6$ $=(\lambda - 6)(\lambda - 1)$ A - $I = \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1/4 \\ 0 & 0 \end{bmatrix} \begin{matrix} x_1 = -1/4x_2 \\ x_1 \text{ is free} \end{matrix}$

Answer det $(A - \lambda I) = det \begin{bmatrix} 5-\lambda & 1 \\ 4 & 2-\lambda \end{bmatrix} =$ $(5 - \lambda)(2 - \lambda) - 4 = 10 - 7\lambda + \lambda^2 - 4$ Solve: $(A - 1I)Z = 0$ Sobe: $(A - GT) \ge 0$
 $\begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 7 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$
 $\begin{bmatrix} 6 \\ 1 \\ 2 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 \\ 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$
 $\begin{bmatrix} x_1 = x_2 \\ x_2 \text{ is free} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Motivating Diagonalization via Linear Dynamical Systems

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A

is a basis of H made up of eigenvectors of A

We will be almost exclusively interested of eigenbases of ℝⁿ when $A \in \mathbb{R}^{n \times n}$

Definition. An eigenbasis of H for the matrix A

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A

We will be almost exclusively interested of eigenbases of \mathbb{R}^n when $A \in \mathbb{R}^{n \times n}$

The Question. When can we describe any vector in \mathbb{R}^n as a unique linear combination of eigenvectors of A?

Recall: Linear Dynamical Systems A **linear dynamical system** describes a sequence of state vectors starting at v_0 $\mathbf{v}_1 = A\mathbf{v}_0$ $$ $$ $$ $\ddot{\bullet}$

-
-
-
-

Recall: Linear Dynamical Systems A **linear dynamical system** describes a sequence of state vectors starting at v_0 $\mathbf{v}_1 = A\mathbf{v}_0$ $$ $$ $$ $\ddot{\bullet}$

multiplying by changes the *A***state.**

demo

Eigenbases and Closed-Form solutions

Eigenbases and Closed-Form solutions

Given $\mathbf{v}_k = A \mathbf{v}_{k-1} = A^k \mathbf{v}_0$, if

 $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$

 $$ eigenvectors of *A*

Eigenbases and Closed-Form solutions

Given $\mathbf{v}_k = A \mathbf{v}_{k-1} = A^k \mathbf{v}_0$, if

then

 A^{k} **v**₀ = $\alpha_1 \lambda_1^{k}$ **b**₁ + $\alpha_2 \lambda_2^{k}$ **b**₂ + $\alpha_3 \lambda_3^{k}$ **b**₃

Given $\mathbf{v}_k = A \mathbf{v}_{k-1} = A^k \mathbf{v}_0$, if $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$ eigenvectors of *A*

Eigenbases and Closed-Form solutions
then

Given $\mathbf{v}_k = A \mathbf{v}_{k-1} = A^k \mathbf{v}_0$, if $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$ eigenvectors of *A*

 A^{k} **v**₀ = $\alpha_1 \lambda_1^{k}$ **b**₁ + $\alpha_2 \lambda_2^{k}$ **b**₂ + $\alpha_3 \lambda_3^{k}$ **b**₃ eigenvalues of *A*

Eigenbases and Closed-Form solutions

then A^k **v**⁰ = $\alpha_1 \lambda_1^k$ **b**₁ + $\alpha_2 \lambda_2^k$

Verify: $A^{k}(a, b, a, b)$ + d₂b + dz b₃) = α, Δ^k b, α, Δ^k

Given
$$
\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k \mathbf{v}_0
$$
, if eigenvectors of A
 $\mathbf{v}_0 = \alpha_1 \mathbf{b}_1 + \alpha_2 \mathbf{b}_2 + \alpha_3 \mathbf{b}_3$

eigenvalues of A
\n
$$
\mathbf{b}_1 + \alpha_2 \lambda_2^k \mathbf{b}_2 + \alpha_3 \lambda_3^k \mathbf{b}_3
$$
\nclosed-form solution

$$
P_{3}+a_{3}A^{k}b_{3} = \alpha_{1}\lambda_{1}^{k}b_{3}^{k}b_{3}^{k}
$$

Eigenbases and Closed-Form solutions

Application: Eigenbases and Limiting Behavior

Theorem. If A has an eigenbasis with eigenvalues then $v_k \sim \lambda_1^k u$ for some vector u . $\lambda_1 \geq$

$$
\lambda_2 \dots \geq \lambda_k
$$

-
- **In the long term, the system grows <u>exponentially in** λ_1 **</u>.**

Application: Eigenbases and Limiting Behavior

Theorem. If A has an eigenbasis with eigenvalues then $v_k \sim \lambda_1^k u$ for some vector u . $\lambda_1 \geq$

$$
\lambda_2 \dots \geq \lambda_k
$$

In the long term, the system grows <u>exponentially in λ_1 **</u>.**

Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know $how A \in \mathbb{R}^n$ behaves on \mathscr{B} .

 $how A \in \mathbb{R}^n$ behaves on \mathscr{B} .

case of eigenbases.

Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know Sometimes, A behaves simply on \mathscr{B} , as in the

- Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know $how A \in \mathbb{R}^n$ behaves on \mathscr{B} .
- Sometimes, A behaves simply on \mathscr{B} , as in the case of eigenbases.
- **What we're really doing is changing our coordinate system to expose a behavior of** *A***.**

Recap: Change of Basis

Recall: Bases define Coordinate Systems

FIGURE 1 Standard graph paper.

FIGURE 2 β -graph paper.

every vector as a linear combination of vectors in ℬ

FIGURE 2 β -graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is exactly one way to write

Recall: Bases define Coordinate Systems

FIGURE 1 Standard graph paper.

every vector as a linear combination of vectors in ℬ

Every basis provides a way to write down *coordinates* of a vector

FIGURE 2 B -graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is exactly one way to write

Recall: Bases define Coordinate Systems

FIGURE 1 Standard graph paper.

every vector as a linear combination of vectors in ℬ

Every basis provides a way to write down *coordinates* of a vector

FIGURE 2 B -graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is exactly one way to write

ℬ **defines a "different grid for our graph paper"**

Recall: Bases define Coordinate Systems

FIGURE 1 Standard graph paper.

Let v be a vector in a \mathbb{R}^n and let $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ be a basis of \mathbb{R}^n where

 $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \ldots + a_n \mathbf{b}_n$

Let v be a vector in a \mathbb{R}^n and let $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ be a basis of \mathbb{R}^n where

is

-
- $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \ldots + a_n \mathbf{b}_n$
- **Definition.** The **coordinate vector of** v relative to $\mathscr B$

Let v be a vector in a \mathbb{R}^n and let $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ be a basis of \mathbb{R}^n where

Definition. The **coordinate vector of** v relative to $\mathscr B$ is

 $\left[\mathbf{v}\right]$ \mathscr{B} =

 $\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \ldots + a_n \mathbf{b}_n$

FIGURE 1 Standard graph paper.

FIGURE 2 B-graph paper. $B = ([] , []$

Question (Conceptual)

then the columns of B form a basis \mathscr{B} of \mathbb{R}^n *What is the matrix that implements the transformation* $CB^{5} = T^{6}$ $C = B^{-1}$ $\mathbf{X} \mapsto [\mathbf{X}]_{\mathscr{B}} =$

 w *h* c **r** $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + ... + c_n \mathbf{b}_n$?

- We know that if a $n \times n$ matrix $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$ is invertible,
	-

Change of Basis Matrix

Theorem. If $\mathscr{B} = {\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n}$ form a basis of \mathbb{R}^n , then

$[\mathbf{x}]_{\mathscr{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]$ −1 **x**

Matrix inverses perform changes of bases.

How To: Change of Basis

Question. Given a basis $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ of \mathbb{R}^n , find the matrix which implements $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$. **Solution.** Construct the matrix $[\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]^{-1}$.

-
- −1

Write the change-of-bases matrix for the basis ([

FIGURE 1 Standard graph paper.

FIGURE 2 B -graph paper.

1

0]

,

 \mathbf{I}

1

 2]

Diagonalization

 0 0 0 −0.4 0 0 0 22 0 0 0 0

ex.

Definition. A $n \times n$ matrix A is **diagonal** if $i \neq j$ if and only if $A_{ij} = 0$

$$
\begin{bmatrix}\n 1 & 0 & 0 & 0 \\
 0 & -0.4 & 0 & 0 \\
 0 & 0 & 22 & 0 \\
 0 & 0 & 0 & 0\n\end{bmatrix}
$$

Definition. A *n* × *n* matrix *A* is **diagonal** if

Only the diagonal entries can be nonzero

$$
\begin{bmatrix}\n1 & 0 & 0 & 0 \\
0 & -0.4 & 0 & 0 \\
0 & 0 & 22 & 0 \\
0 & 0 & 0 & 0\n\end{bmatrix}
$$

 $i \neq j$ if and only if $A_{ij} = 0$

ex.

- $i \neq j$ if and only if $A_{ij} = 0$
- **Definition.** A *n* × *n* matrix *A* is **diagonal** if *Only the diagonal entries can be nonzero* **Diagonal matrices are scaling matrices**

$$
\begin{bmatrix}\n 1 & 0 & 0 & 0 \\
 0 & -0.4 & 0 & 0 \\
 0 & 0 & 22 & 0 \\
 0 & 0 & 0 & 0\n \end{bmatrix}
$$

Recall: Unequal Scaling

The scaling matrix *affects each component of a vector in a simple way*

> 1.5*x* $\begin{array}{c} 1.5x \\ 0.7y \end{array}$ [

The diagonal entries scale each corresponding entry

1.5 0

 $\overline{}$

0 0.7] [

x

 y] = $|$

High level question: When do matrices "behave" like scaling matrices "up to" change of basis?

The idea. Matrices behave like scaling matrices

on eigenvectors.

The idea. Matrices behave like scaling matrices

$(xe_1 + ye_2) = x2e_1 + y(-3)e_2$

 $(y**b**) = x\lambda_1**b**_1 + y\lambda_2**b**$

on eigenvectors.

$$
\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} (
$$

$$
A \begin{bmatrix} x \\ y \end{bmatrix}_{\mathscr{B}} = A(xb_1 + b_2)
$$

The idea. Matrices behave like scaling matrices

$(xe_1 + ye_2) = x2e_1 + y(-3)e_2$

 $(y**b**) = x\lambda_1**b**_1 + y\lambda_2**b**_2$ eigenates

on eigenvectors.

$$
\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}
$$

$$
A \begin{bmatrix} x \\ y \end{bmatrix}_{\mathscr{B}} = A(x\mathbf{b}_1 -
$$

The fundamental question: Can we expose this behavior in terms of a *matrix factorization*?

Recall: Matrix Factorization

Recall: Matrix Factorization

A **factorization** of a matrix A is an equation which expresses A as a product of one or more matrices, e.g.,

A = *PBP*−¹
Recall: Matrix Factorization

A **factorization** of a matrix A is an equation which expresses A as a product of one or more matrices, e.g.,

» make working with A easier » expose important information about *A*

$A = PBP^{-1}$

Factorizations can:

Definition. A matrix A is similar to a matrix B if there is some invertible matrix P such that $A = PBP^{-1}$

A and *B* are the same up to a change of basis

Similar Matrices and Eigenvalues

Theorem. Similar matrices have the same eigenvalues. 7 de+(P) *
\de+(B-XI) * $det(P(B - \lambda I)^{2} | P)P^{-1}) = \frac{det(B - \lambda I)}{2}$

Verify: $A = PBP^{-1}$
det $(A - \lambda T)^{-1}$ det ($PBP^{-1} - \lambda I) =$ det ($P(BP^{-1}-P^{-1}\lambda I)$) = det $(P(B - P^{\prime} \lambda I P) P^{\prime}) = d\theta$

is similar to a diagonal matrix

Definition. A matrix A is diagonalizable if it

is similar to a diagonal matrix

There is an invertible matrix P and <u>diagonal</u> matrix *D* such that $A = PDP^{-1}$

Definition. A matrix A is diagonalizable if it

is similar to a diagonal matrix

There is an invertible matrix P and <u>diagonal</u> matrix *D* such that $A = PDP^{-1}$

Diagonalizable matrices are the same as scaling matrices up to a change of basis

Definition. A matrix A is diagonalizable if it

Important: Not all Matrices are Diagonalizable

This is very different from the LU factorization We will need to figure out which matrices are diagonalizable *Question. Is the zero matrix diagonalizable?*

 P o P^{-1} = P 0 = 0

Application: Matrix Powers

Theorem. If $A = PBP^{-1}$, then $A^k = PB^kP^{-1}$ It may be easier to take the power of B (as in the case of diagonal matrices) Verify:

 $P A^{K} P^{-1}$

only take the power of *B*

How To: Matrix Powers

then compute *PD^k P*−¹ *Remember that*

> *a* 0 0 0 *b* 0 *k*

Question. Given A is diagonalizable, determine A^k Solution. Find it's diagonalization *PDP*^{−1} and

 $\begin{bmatrix} 0 & 0 & c \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & c^k \end{bmatrix}$ = *a^k* 0 0 0 b^k 0

But how do we find the diagonalization...

Diagonalization and Eigenvectors

Suppose we have a diagonalization What do we know about it? $A = PDP^{-1}$

Columns of *P* **are eigenvectors** $\rho \geqslant \frac{1}{\rho}$ *λ*¹ 0 0 −1 $0 \lambda_2$ 0 $A = [p_1 p_2 p_3]$ [**p**¹ **p**² **p**3] $0 \quad \lambda_3$ Verify:
 $\overrightarrow{AD} = PDP^1 \overrightarrow{P_1} = PDP \overrightarrow{e_1} = P \begin{bmatrix} \frac{\lambda_1}{0} \\ \frac{\lambda_2}{0} \end{bmatrix} = P \lambda_1 \overrightarrow{e_1}$ $=\lambda P\vec{e}$ = $\lambda \vec{p}$

Columns of *P* **are eigenvectors** $A = [p_1 p_2 p_3]$ *λ*¹ 0 0 $0 \lambda_2$ 0 $0 \quad \lambda_3$ [**p**¹ **p**² **p**3] −1

In fact, the columns of *P* form an eigenbasis of ℝⁿ for *A*

Columns of *P* **are eigenvectors** $A = [p_1 p_2 p_3]$ *λ*¹ 0 0 $0 \lambda_2$ 0 $0 \quad \lambda_3$ [**p**¹ **p**² **p**3] −1

In fact, the columns of *P* form an eigenbasis of ℝⁿ for *A*

And the entries of *D* are the eigenvalues associated to each eigenvector

Columns of *P* **are eigenvectors** $A = [p_1 p_2 p_3]$ *λ*¹ 0 0 $0 \lambda_2$ 0 $0 \quad \lambda_3$ [**p**¹ **p**² **p**3] −1

In fact, the columns of *P* form an eigenbasis of ℝⁿ for *A*

And the entries of *D* are the eigenvalues associated to each eigenvector

Columns of *P* **are eigenvectors** $A = [p_1 \ p_2 \ p_3]$ *λ*¹ 0 0 0 λ_2 0 $0 \quad \lambda_3$ [**p**¹ **p**² **p**3] eigenbasis
n. n. n. l () λ_2 () \ln n. n. l⁻¹ eigenvalues

A diagonalization exposes a lot of information about *A*

Theorem. A matrix is diagonalizable if and only if it has an eigenbasis

- **Theorem.** A matrix is diagonalizable if and only
	-

if it has an eigenbasis

(we just did the hard part, if a matrix is diagonalizable then it has an **eigenbasis**)

if it has an eigenbasis

(we just did the hard part, if a matrix is diagonalizable then it has an **eigenbasis**)

- **Theorem.** A matrix is diagonalizable if and only
	-
- We can use the same recipe to go in the other direction, given an eigenbasis, we can **build a**

diagonalization

Diagonalizing a Matrix

A = *PDP*−¹

$A = PDP^{-1}$

The columns of *P* form an eigenbasis for *A*

The columns of *P* form an eigenbasis for *A* The diagonal of D are the eigenvalues for each

column of *P*

$A = PDP^{-1}$

The columns of *P* form an eigenbasis for *A*

The matrix P^{-1} is a change of basis to this **eigenbasis of** *A*

$A = PDP^{-1}$

The diagonal of D are the eigenvalues for each

column of *P*

Step 1: Eigenvalues

Find all the eigenvalues of *A Find the roots of* det(*A* − *λI*) *e.g.*

$\det(A - \lambda I) = -(\lambda - 1)(\lambda + 2)^2$ $\lambda = 1 - 2$

 $A =$ 1 3 3 -3 -5 3 3 3 1

Step 2: Eigenvectors

Find **bases** of the corresponding eigenspaces *e.g.*

$\mathsf{Null}(A-I) = \mathsf{span}$

 $Nu(A + 2I) = span$

Step 3: Construct P

If there are n eigenvectors from the previous step they form an **eigenbasis**

Build the matrix with these vectors as the columns

e.g.

$$
P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}
$$

Step 5: Construct D

Note the order. It should be the same as the order of columns of P

Build the matrix with eigenvalues as diagonal entries

e.g.

 $D =$ 1 0 0 $0 -2 0$ $\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$

Step 6: Invert P

Find the inverse of P (we know how to do this)

P (we know how $D =$ 1 0 0 $0 -2 0$ $\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$ $A =$ 1 3 3 -3 -5 3 3 3 1 $P =$ 1 −1 −1 −1 1 0 ¹ ⁰ ¹]

Putting it Together

1 0 0 $0 -2 0$ $\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$ 1 −1 −1 −1 1 0 ¹ ⁰ ¹] *A P D P*^{−1}

−1

How to: Diagonalizing a Matrix

Question. Find a diagonalization of $A \in \mathbb{R}^n$, or determine that A is not diagonalizable

Solution.

-
- 2. Otherwise, build a matrix P whose columns are the eigenvectors of A
- *in the same order*
- 4. Invert *P*
- 5. The diagonalization of A is PDP^{-1}

1. Find the eigenvalues of A, and bases for their eigenspaces. If these eigenvectors don't form a basis of \mathbb{R}^n , then A is **not diagonalizable**

3. Then build a diagonal matrix D whose entries are the eigenvalues of A

We know how to do every step, its a matter of putting it all together

Example of Failure: Shearing

- The shearing matrix has a single eigenvalue with an eigenspace of dimension 1
- We can't build an eigenbasis of \mathbb{R}^2 for A
- In other words, A is not diagonalizable

 $\lambda = 1$

 $det(A - \lambda I) = (\lambda - 1)^{2}$

 $A = |$

Important case: Distinct Eigenvalues

eigenvalues, then it is diagonalizable

This is because eigenvectors with distinct eigenvalues are *linearly independent*

- **Theorem.** If an $n \times n$ matrix has has n distinct
	-

Example *Find a diagonalization of the above matrix* $\overline{}$ 2 0 −1 1]

The Picture

−1

Example (Geometric)

 $\lambda = 2$

 $D = |$

Example (Geometric)

$A = PDP^{-1}$ −1 0 $1 \quad 1$ 1 0 $0 \quad 2 \quad 1$ −1 0 $1 \quad 1$ −1

