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Lecture 20



Objectives

1. Finish our discussion on the characteristic 
polynomial 

2. Motivate diagonalization via linear 
dynamical systems and changes of coordinate 
systems 

3. Describe how to diagonalize a matrix
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Recall: Determinants and Invertibility

 is an value associate with the matrix det(A) A

Theorem. A matrix is invertible if and only if 
det(A) ≠ 0

So by the Invertible Matrix Theorem:

         has nontrivial solutionsdet(A − λI) = 0 ≡ (A − λI)x = 0
polynomial in λ

     is an eigenvalue of ≡ λ A
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How To: Finding Eigenvalues

Question. Determine the eigenvalues of .A

Solution. Find the roots of the characteristic 
polynomial of , which isA

det(A − λI)
viewed as a polynomial in .λ

We'll also use

numpy.linalg.eig(A)



Example A = [1 −1
7 −3]



Example: Triangular matrix

The characteristic polynomial of a triangular 
matrix comes pre-factored:

1 −3 0 6
0 0 1 1
0 0 1 2
0 0 0 4
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An Observation: Multiplicity

In the examples so far, we've seen a number 
appear as a root multiple times

This is called the (algebraic) multiplicity of 
the root

Is the multiplicity meaningful in this context?

λ1(λ − 1)2(λ − 4)1 multiplicities



Multiplicity and Dimension

Theorem. The dimension of the eigenspace of  
for the eigenvalue  is at most the 
multiplicity of  in  (and at least )

A
λ

λ det(A − λI) 1

The multiplicity is an upper bound on 
"how large" the eigenspace is



Example

Let  be a  matrix with characteristic 
polynomial  

» What is ? 

» What is the minimum possible rank of ?

A 5 × 5
(x − 1)3(x − 3)(x + 5)

%&'((A)

A − I



Practice Problem

Determine the eigenvalues and an eigenbasis for 
the above matrix

[5 1
4 2]



Answer [5 1
4 2]



Motivating Diagonalization via 
Linear Dynamical Systems
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Recall: Eigenbasis

Definition. An eigenbasis of  for the matrix  
is a basis of  made up of eigenvectors of 

H A
H A

We will be almost exclusively interested of 
eigenbases of  when ℝn A ∈ ℝn×n

The Question. When can we describe any vector 
in  as a unique linear combination of 
eigenvectors of ?

ℝn

A



Recall: Linear Dynamical Systems

A linear dynamical system describes a sequence of 
state vectors starting at  v0

v1 = Av0

v2 = Av1 = A2v0

v3 = Av2 = A3v0

v4 = Av3 = A4v0
⋮



Recall: Linear Dynamical Systems

A linear dynamical system describes a sequence of 
state vectors starting at  v0

v1 = Av0

v2 = Av1 = A2v0

v3 = Av2 = A3v0

v4 = Av3 = A4v0
⋮

multiplying by 
 changes the 

state.
A



demo



Eigenbases and Closed-Form solutions
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Given , ifvk = Avk−1 = Akv0

v0 = α1b1 + α2b2 + α3b3

then

Akv0 = α1λk
1b1 + α2λk

2b2 + α3λk
3b3

Verify:
closed-form solution

Eigenbases and Closed-Form solutions

eigenvectors of A

eigenvalues of A



Application: Eigenbases and Limiting Behavior

Theorem. If  has an eigenbasis with eigenvalues 
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Theorem. If  has an eigenbasis with eigenvalues 

 
then  for some vector . 

In the long term, the system grows exponentially in .

A

λ1 ≥ λ2… ≥ λk

vk ∼ λk
1u u

λ1
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The Takeaway

Given a basis  for , we only need to know 
how  behaves on .

ℬ ℝn

A ∈ ℝn ℬ

Sometimes,  behaves simply on , as in the 
case of eigenbases.

A ℬ

What we're really doing is changing our 
coordinate system to expose a behavior of .A
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Given a basis  of , there is exactly one way to write 
every vector as a linear combination of vectors in 

ℬ ℝn

ℬ
Every basis provides a way to write down coordinates of a 
vector

 defines a "different grid for our graph paper"ℬ

Recall: Bases define Coordinate Systems

Linear Algebra and its Applications (Lay, Lay, McDonald)
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Recall: Coordinate Vectors
Let  be a vector in a  and let  be a 
basis of  where

v ℝn ℬ = (b1, b2, …, bn)
ℝn

v = a1b1 + a2b2 + … + anbn

Definition. The coordinate vector of  relative to  
is

v ℬ

[v]ℬ =

a1
a2
⋮
an



Recall: Coordinate Vectors

Linear Algebra and its Applications (Lay, Lay, McDonald)



Question (Conceptual)

We know that if a  matrix  is invertible, 
then the columns of  form a basis  of  

What is the matrix that implements the transformation 

 

where ?

n × n B = [b1 b2 … bn]
B ℬ ℝn

x ↦ [x]ℬ =

c1
c2
⋮
cn

x = c1b1 + c2b2 + … + cnbn



Change of Basis Matrix

Theorem. If  form a basis of , 
then 

 

Matrix inverses perform changes of bases.

ℬ = {b1, b2, …, bn} ℝn

[x]ℬ = [b1 b2 … bn]−1x



How To: Change of Basis

Question. Given a basis  of , 
find the matrix which implements . 

Solution. Construct the matrix .

ℬ = (b1, b2, …, bn) ℝn

x ↦ [x]ℬ

[b1 b2 … bn]−1



Example

Write the change-of-bases matrix for the basis  ([1
0], [1

2])



Diagonalization



Diagonal Matrices
1 0 0 0
0 −0.4 0 0
0 0 22 0
0 0 0 0

ex.
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ex.



Diagonal Matrices

Definition. A  matrix  is diagonal ifn × n A

  if and only if i ≠ j Aij = 0

Only the diagonal entries can be nonzero

Diagonal matrices are scaling matrices

1 0 0 0
0 −0.4 0 0
0 0 22 0
0 0 0 0

ex.



Recall: Unequal Scaling
The scaling matrix affects each 
component of a vector in a 
simple way 

The diagonal entries scale each 
corresponding entry 

[1.5 0
0 0.7] [x

y] = [1.5x
0.7y] [1.5 0

0 0.7]



High level question: 
When do matrices "behave" like scaling 

matrices "up to" change of basis?



Scaling and Eigenvectors
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Scaling and Eigenvectors

The idea. Matrices behave like scaling matrices 
on eigenvectors.

[2 0
0 −3] [x

y] = [2 0
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Scaling and Eigenvectors

The idea. Matrices behave like scaling matrices 
on eigenvectors.

[2 0
0 −3] [x

y] = [2 0
0 3](xe1 + ye2) = x2e1 + y(−3)e2

A [x
y]ℬ

= A(xb1 + yb2) = xλ1b1 + yλ2b2



The fundamental question: 
Can we expose this behavior in 
terms of a matrix factorization?



Recall: Matrix Factorization
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Recall: Matrix Factorization

A factorization of a matrix  is an equation 
which expresses  as a product of one or more 
matrices, e.g.,

A
A

A = PBP−1

Factorizations can:

  » make working with  easier 
  » expose important information about 

A
A



Similar Matrices

Definition. A matrix  is similar to a matrix  
if there is some invertible matrix  such that 

 

 and  are the same up to a change of basis

A B
P

A = PBP−1

A B

A = PBP−1



Similar Matrices and Eigenvalues

Theorem. Similar matrices have the same eigenvalues. 

Verify:



Diagonalizable Matrices
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Diagonalizable Matrices

Definition. A matrix  is diagonalizable if it 
is similar to a diagonal matrix

A

There is an invertible matrix  and diagonal 
matrix  such that 

P
D A = PDP−1

Diagonalizable matrices are the same as scaling 
matrices up to a change of basis



Important: Not all Matrices are Diagonalizable

This is very different from the LU factorization 

We will need to figure out which matrices are 
diagonalizable 

Question. Is the zero matrix diagonalizable?



Application: Matrix Powers

Theorem. If , then  

It may be easier to take the power of  (as in 
the case of diagonal matrices) 

Verify: 

A = PBP−1 Ak = PBkP−1

B

only take the power of B



How To: Matrix Powers

Question. Given  is diagonalizable, determine  

Solution. Find it's diagonalization  and 
then compute  

Remember that 

A Ak

PDP−1

PDkP−1

a 0 0
0 b 0
0 0 c

k

=
ak 0 0
0 bk 0
0 0 ck



But how do we find the 
diagonalization...



Diagonalization and Eigenvectors



Suppose we have a diagonalization 
 

 What do we know about it?
A = PDP−1



Columns of  are eigenvectorsP

Verify:

A = [p1 p2 p3]
λ1 0 0
0 λ2 0
0 0 λ3

[p1 p2 p3]−1
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Columns of  are eigenvectorsP

In fact, the columns of  form an eigenbasis of  for P ℝn

A

A = [p1 p2 p3]
λ1 0 0
0 λ2 0
0 0 λ3

[p1 p2 p3]−1



Columns of  are eigenvectorsP

In fact, the columns of  form an eigenbasis of  for P ℝn

A

And the entries of  are the eigenvalues associated 
to each eigenvector

D

A = [p1 p2 p3]
λ1 0 0
0 λ2 0
0 0 λ3

[p1 p2 p3]−1



Columns of  are eigenvectorsP

In fact, the columns of  form an eigenbasis of  for P ℝn

A

And the entries of  are the eigenvalues associated 
to each eigenvector

D

A diagonalization exposes a lot of information about A

A = [p1 p2 p3]
λ1 0 0
0 λ2 0
0 0 λ3

[p1 p2 p3]−1eigenbasis

eigenvalues
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The Diagonalization Theorem

Theorem. A matrix is diagonalizable if and only 
if it has an eigenbasis

(we just did the hard part, if a matrix is 
diagonalizable then it has an eigenbasis)

We can use the same recipe to go in the other 
direction, given an eigenbasis, we can build a 
diagonalization



Diagonalizing a Matrix



High Level
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High Level

The columns of  form an eigenbasis for P A

The diagonal of  are the eigenvalues for each 
column of 

D
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A = PDP−1



High Level

The columns of  form an eigenbasis for P A

The diagonal of  are the eigenvalues for each 
column of 

D
P

The matrix  is a change of basis to this 
eigenbasis of 

P−1

A

A = PDP−1



Step 1: Eigenvalues

Find all the eigenvalues of  

Find the roots of  

e.g. 

 

A

det(A − λI)

det(A − λI) = − (λ − 1)(λ + 2)2

A =
1 3 3

−3 −5 3
3 3 1



Step 2: Eigenvectors

Find bases of the corresponding eigenspaces 

e.g. 

 !"#(A − I) = %&'( {[
1

−1
1 ]}

!"#(A + 2I) = %&'( {[
−1
1
0 ], [

−1
0
1 ]}

A =
1 3 3

−3 −5 3
3 3 1

λ1 = 1
λ2 = − 2



Step 3: Construct P

If there are  eigenvectors from the 
previous step they form an eigenbasis 

Build the matrix with these vectors 
as the columns 

e.g. 

n

P = [
1 −1 −1

−1 1 0
1 0 1 ]

!"#(A − I) = %&'( [
1

−1
1 ]

!"#(A + 2I) = %&'( {[
−1
1
0 ], [

−1
0
1 ]}

A =
1 3 3

−3 −5 3
3 3 1

λ1 = 1
λ2 = − 2



Step 5: Construct D

Build the matrix with eigenvalues as 
diagonal entries 

Note the order. It should be the 
same as the order of columns of  

e.g. 

P

D = [
1 0 0
0 −2 0
0 0 −2]

A =
1 3 3

−3 −5 3
3 3 1

λ1 = 1
λ2 = − 2

P = [
1 −1 −1

−1 1 0
1 0 1 ]



Step 6: Invert P

Find the inverse of  (we know how 
to do this)

P D = [
1 0 0
0 −2 0
0 0 −2]

A =
1 3 3

−3 −5 3
3 3 1

P = [
1 −1 −1

−1 1 0
1 0 1 ]



Putting it Together

1 3 3
−3 −5 3
3 3 1

= [
1 −1 −1

−1 1 0
1 0 1 ] [

1 0 0
0 −2 0
0 0 −2] [

1 −1 −1
−1 1 0
1 0 1 ]

−1
A P D P−1



How to: Diagonalizing a Matrix

Question. Find a diagonalization of , or determine that  is not 
diagonalizable 

Solution. 

1. Find the eigenvalues of , and bases for their eigenspaces. If these 
eigenvectors don't form a basis of , then  is not diagonalizable 

2. Otherwise, build a matrix  whose columns are the eigenvectors of  

3. Then build a diagonal matrix  whose entries are the eigenvalues of  
in the same order 

4. Invert  

5. The diagonalization of  is 

A ∈ ℝn A

A
ℝn A

P A

D A

P

A PDP−1



We know how to do every step, its 
a matter of putting it all 

together



Example of Failure: Shearing
The shearing matrix has a single eigenvalue 
with an eigenspace of dimension 1 

We can't build an eigenbasis of  for  

In other words,  is not diagonalizable

ℝ2 A

A

A = [1 0.5
0 1 ]



Important case: Distinct Eigenvalues

Theorem. If an  matrix has has  distinct 
eigenvalues, then it is diagonalizable 

This is because eigenvectors with distinct 
eigenvalues are linearly independent

n × n n

1 −3 4 2
0 −2 3 −1
0 0 10 5
0 0 0 6

ex.



Example

Find a diagonalization of the above matrix

[ 2 0
−1 1]



The Picture



Example (Geometric)

b1 = (−1,1)

2b2 = (0,2)

b1 + 2b2λ = 1

λ = 2

b1 = (−1,1)
b2 = (0,1)

(−1,2)
b1 + b2

λ = 1

λ = 2

A = [ 2 0
−1 1]

A



Example (Geometric)

P−1b1 = (1,0)

P−1b2 = (0,1)
P−1b1 + P−1b2 = (1,1)

λ = 1

λ = 2

b1 = (−1,1)
b2 = (0,1)

(−1,2)
b1 + b2

λ = 1

λ = 2

P−1 = [−1 0
1 1]

−1

P−1



Example (Geometric)

P−1b1 = (1,0)

2P−1b2 = (0,2)
P−1b1 + 2P−1b2 = (1,2)

λ = 1

λ = 2

P−1b1 = (1,0)

P−1b2 = (0,1)
P−1b1 + P−1b2 = (1,1)

λ = 1

λ = 2

D

D = [1 0
0 2]



Example (Geometric)

P−1b1 = (1,0)

2P−1b2 = (0,2)
P−1b1 + 2P−1b2 = (1,2)

λ = 1

λ = 2

PP−1b1 = (1,0)

2PP−1b2 = (0,2)

PP−1b1 + 2PP−1b2 = (1,2)
λ = 1

λ = 2

P = [−1 0
1 1]

P



Example (Geometric)

b1 = (−1,1)
b2 = (0,1)

(−1,2)
b1 + b2

λ = 1

λ = 2

b1 = (−1,1)

2b2 = (0,2)

b1 + 2b2λ = 1

λ = 2

A = PDP−1

[ 2 0
−1 1] = [−1 0

1 1] [1 0
0 2] [−1 0

1 1]
−1

PP−1

D


