Diagonalization

Geometric Algorithms
Lecture 20

Objectives

- 1. Finish our discussion on the characteristic polynomial
- 2. Motivate diagonalization via linear dynamical systems and changes of coordinate systems
- 3. Describe how to diagonalize a matrix

Keywords

```
multiplicity
similar matrices
diagonalizable matrices
change of basis
eigenbasis
```

Recap: Characteristic Polynomial

det(A) is an value associate with the matrix A

 $\det(A)$ is an value associate with the matrix A **Theorem.** A matrix is invertible if and only if $\det(A) \neq 0$

det(A) is an value associate with the matrix A

Theorem. A matrix is invertible if and only if $det(A) \neq 0$

So by the Invertible Matrix Theorem:

det(A) is an value associate with the matrix A

Theorem. A matrix is invertible if and only if $det(A) \neq 0$

So by the Invertible Matrix Theorem:

$$\det(A - \lambda I) = 0 \qquad \equiv \qquad (A - \lambda I)\mathbf{x} = \mathbf{0} \text{ has nontrivial solutions}$$

$$\equiv \qquad \lambda \text{ is an eigenvalue of } A$$

det(A) is an value associate with the matrix A

Theorem. A matrix is invertible if and only if $det(A) \neq 0$

So by the Invertible Matrix Theorem:

```
\det(A - \lambda I) = 0
polynomial in \lambda
\equiv (A - \lambda I)\mathbf{x} = \mathbf{0} \text{ has nontrivial solutions}
\equiv \lambda \text{ is an eigenvalue of } A
```

Question. Determine the eigenvalues of A.

Question. Determine the eigenvalues of A_{ullet}

Solution. Find the roots of the characteristic polynomial of A, which is

$$\det(A - \lambda I)$$

viewed as a polynomial in λ .

Question. Determine the eigenvalues of A_{ullet}

Solution. Find the roots of the characteristic polynomial of A, which is

 $\det(A - \lambda I)$

viewed as a polynomial in λ .

We'll also use

numpy.linalg.eig(A)

Example
$$\begin{bmatrix} 1 & -1 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 4 & -6 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 & -6 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ 4 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ 4 & -3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ -3 \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & -3 \\ 4 & -3 - \lambda \end{bmatrix} = (-1) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$det(A - \lambda I) = (1 - \lambda)(-3 - \lambda) - (-4)$$

$$= -3 - \lambda + 3\lambda + \lambda^{2} + 4$$

$$= \lambda' + 2\lambda + 1$$

to verify aignorphis =
$$\lambda^2 + 2\lambda + 1$$

to $A - (-1)I)x = 5$

$$A - (-1)I = 5$$

$$A - (-1)I = 5$$

to verify a generate:
$$= \lambda^{2} + 2\lambda + 1$$

$$= \sqrt{\lambda - (-1)L} \times = \vec{0} \quad (\lambda + 1)^{2}$$

$$A + T = \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1/2 \\ 0 & 0 \end{bmatrix} \times_{2} \text{ is free}$$

$$\frac{2}{2} \times \frac{1}{2} \times \frac{1}$$

Example: Triangular matrix

$$\begin{bmatrix} 1 & -3 & 0 & 6 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

The characteristic polynomial of a triangular matrix comes <u>pre-factored</u>:

$$\det(A - \lambda I) = \begin{cases} 1 - \lambda & 0 & 0 & 6 \\ 0 & -\lambda & 1 & 1 \\ 0 & 0 & 1 - \lambda & 2 \\ 0 & 0 & 0 & 4 - \lambda \end{cases} = (1 - \lambda)(-\lambda)(4 - \lambda)$$

$$\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1}$$
 multiplicities

$$\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1}$$
 multiplicities

In the examples so far, we've seen a number appear as a root <u>multiple times</u>

$$\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1}$$
 multiplicities

In the examples so far, we've seen a number appear as a root <u>multiple times</u>

This is called the (algebraic) multiplicity of the root

$$\lambda^{1}(\lambda-1)^{2}(\lambda-4)^{1}$$
 multiplicities

In the examples so far, we've seen a number appear as a root <u>multiple times</u>

This is called the (algebraic) multiplicity of the root

Is the multiplicity meaningful in this context?

Multiplicity and Dimension

Theorem. The dimension of the eigenspace of A for the eigenvalue λ is <u>at most</u> the multiplicity of λ in $\det(A - \lambda I)$ (and <u>at least</u> 1)

The multiplicity is an upper bound on "how large" the eigenspace is

Example

Let A be a 5×5 matrix with characteristic polynomial $(x-1)^3(x-3)(x+5)$

- » What is rank(A)? 5, 50 is not an eigenvalue
- \gg What is the minimum possible rank of A-I?

rank
$$(A-I)$$
 + dim $(Nul (A-I)) = 5$ which mean dim. of the ≤ 3 bank $(A-I) \geq 7$ rigenspace for 1

Practice Problem

Determine the eigenvalues and an eigenbasis for the above matrix

Answer det
$$(A - \lambda I) = det \begin{pmatrix} 5 - \lambda & 1 \\ 4 & 1 - \lambda \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 4 & 2 \end{pmatrix}$$

$$(5 - \lambda)(2 - \lambda) - 4 = 10 - 7 \lambda + \lambda^{2} - 4$$

$$= \lambda^{2} - 7 \lambda + 6$$

$$= (\lambda - 6)(\lambda - 1)$$
Solve: $(A - 1I)\bar{x} = \bar{0}$

$$A - I = \begin{pmatrix} 4 & 1 \\ 4 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1/4 \\ 0 & 0 \end{pmatrix} \times_{1} = \begin{pmatrix} 1/4 \\ 1/4 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 1 \\ 4 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 1 \\ 4 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} -1/4 \\ 4 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1/4 \\ 0 & 0 \end{pmatrix} \times_{1} = \begin{pmatrix} -1/4 \\ 4 & 1 \end{pmatrix}$$

Motivating Diagonalization via Linear Dynamical Systems

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A

We will be almost exclusively interested of eigenbases of \mathbb{R}^n when $A \in \mathbb{R}^{n \times n}$

Definition. An eigenbasis of H for the matrix A is a basis of H made up of eigenvectors of A

We will be almost exclusively interested of eigenbases of \mathbb{R}^n when $A \in \mathbb{R}^{n \times n}$

<u>The Question.</u> When can we describe any vector in \mathbb{R}^n as a unique linear combination of eigenvectors of A?

Recall: Linear Dynamical Systems

$$\mathbf{v}_{1} = A\mathbf{v}_{0}$$
 $\mathbf{v}_{2} = A\mathbf{v}_{1} = A^{2}\mathbf{v}_{0}$
 $\mathbf{v}_{3} = A\mathbf{v}_{2} = A^{3}\mathbf{v}_{0}$
 $\mathbf{v}_{4} = A\mathbf{v}_{3} = A^{4}\mathbf{v}_{0}$
 \vdots

A linear dynamical system describes a sequence of state vectors starting at \mathbf{v}_0

Recall: Linear Dynamical Systems

$$\begin{aligned} \mathbf{v}_1 &= A \mathbf{v}_0 \\ \mathbf{v}_2 &= A \mathbf{v}_1 = A^2 \mathbf{v}_0 \\ \mathbf{v}_3 &= A \mathbf{v}_2 = A^3 \mathbf{v}_0 \\ \mathbf{v}_4 &= A \mathbf{v}_3 = A^4 \mathbf{v}_0 \\ &\vdots \end{aligned} \qquad \begin{array}{l} \text{multiplying by} \\ A \text{ changes the state.} \\ \mathbf{v}_4 &= A \mathbf{v}_3 = A^4 \mathbf{v}_0 \\ &\vdots \end{aligned}$$

A linear dynamical system describes a sequence of state vectors starting at \mathbf{v}_0

demo

Given
$$\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k\mathbf{v}_0$$
, if
$$\mathbf{v}_0 = \alpha_1\mathbf{b}_1 + \alpha_2\mathbf{b}_2 + \alpha_3\mathbf{b}_3$$

Given
$$\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k\mathbf{v}_0$$
, if
$$\mathbf{v}_0 = \alpha_1\mathbf{b}_1 + \alpha_2\mathbf{b}_2 + \alpha_3\mathbf{b}_3$$

Given
$$\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k\mathbf{v}_0$$
, if
$$\mathbf{v}_0 = \alpha_1\mathbf{b}_1 + \alpha_2\mathbf{b}_2 + \alpha_3\mathbf{b}_3$$

then

$$A^k \mathbf{v}_0 = \alpha_1 \lambda_1^k \mathbf{b}_1 + \alpha_2 \lambda_2^k \mathbf{b}_2 + \alpha_3 \lambda_3^k \mathbf{b}_3$$

Eigenbases and Closed-Form solutions

Given
$$\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k\mathbf{v}_0$$
, if
$$\mathbf{v}_0 = \alpha_1\mathbf{b}_1 + \alpha_2\mathbf{b}_2 + \alpha_3\mathbf{b}_3$$

then

eigenvalues of
$$A$$

$$A^k \mathbf{v}_0 = \alpha_1 \lambda_1^k \mathbf{b}_1 + \alpha_2 \lambda_2^k \mathbf{b}_2 + \alpha_3 \lambda_3^k \mathbf{b}_3$$

Eigenbases and Closed-Form solutions

Given
$$\mathbf{v}_k = A\mathbf{v}_{k-1} = A^k\mathbf{v}_0$$
, if
$$\mathbf{v}_0 = \alpha_1\mathbf{b}_1 + \alpha_2\mathbf{b}_2 + \alpha_3\mathbf{b}_3$$

then

eigenvalues of
$$A$$

$$A^{k}\mathbf{v}_{0} = \alpha_{1} \lambda_{1}^{k} \mathbf{b}_{1} + \alpha_{2} \lambda_{2}^{k} \mathbf{b}_{2} + \alpha_{3} \lambda_{3}^{k} \mathbf{b}_{3}$$

$$\text{closed-form solution}$$

Verify:
$$A^{k}(\alpha, \vec{b}, + \alpha_{2}\vec{b} + \alpha_{3}\vec{b}_{2}) = \alpha_{1}A^{k}\vec{b}_{1} + \alpha_{2}A^{k}\vec{b}_{2} + \alpha_{3}A^{k}\vec{b}_{3} = \alpha_{1}A^{k}\vec{b}_{1} + \alpha_{3}A^{k}\vec{b}_{3} + \alpha_{3}A^{k}\vec{b}_{3}$$

$$\alpha_{1}A^{k}\vec{b}_{1} + \alpha_{2}A^{k}\vec{b}_{2} + \alpha_{3}A^{k}\vec{b}_{3} = \alpha_{1}A^{k}\vec{b}_{1} + \alpha_{3}A^{k}\vec{b}_{3} + \alpha_{3}A^{k}\vec{b}_{3}$$

Application: Eigenbases and Limiting Behavior

Theorem. If A has an eigenbasis with eigenvalues

$$\lambda_1 \geq \lambda_2 \ldots \geq \lambda_k$$

then $\mathbf{v}_k \sim \lambda_1^k \mathbf{u}$ for some vector \mathbf{u} .

In the long term, the system grows <u>exponentially in λ_1 </u>.

Application: Eigenbases and Limiting Behavior

Theorem. If A has an eigenbasis with eigenvalues

$$\lambda_1 \geq \lambda_2 \ldots \geq \lambda_k$$

then $\mathbf{v}_k \sim \lambda_1^k \mathbf{u}$ for some vector \mathbf{u} .

In the long term, the system grows <u>exponentially in λ_1 </u>.

Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know how $A \in \mathbb{R}^n$ behaves on \mathscr{B} .

Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know how $A \in \mathbb{R}^n$ behaves on \mathscr{B} .

Sometimes, A behaves simply on \mathcal{B} , as in the case of <u>eigenbases</u>.

Given a basis \mathscr{B} for \mathbb{R}^n , we only need to know how $A \in \mathbb{R}^n$ behaves on \mathscr{B} .

Sometimes, A behaves simply on \mathcal{B} , as in the case of <u>eigenbases</u>.

What we're really doing is <u>changing our</u> <u>coordinate system</u> to expose a behavior of A.

Recap: Change of Basis

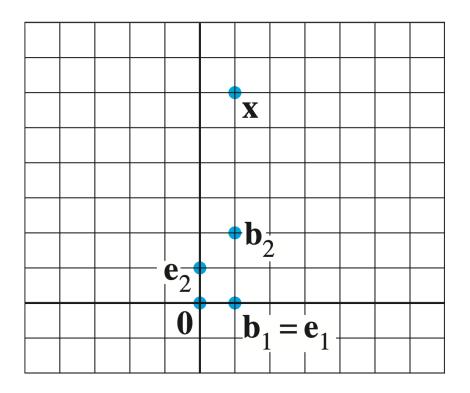


FIGURE 1 Standard graph paper.

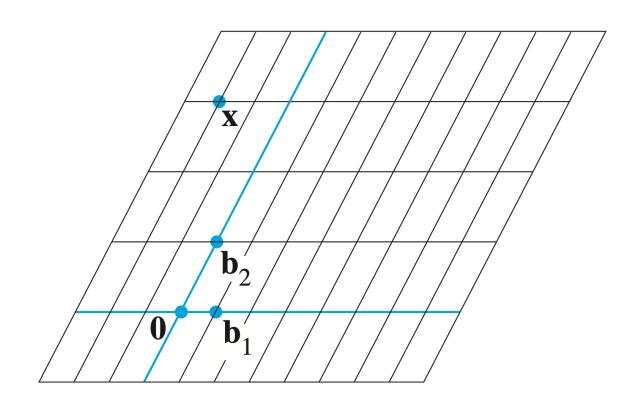


FIGURE 2 \mathcal{B} -graph paper.

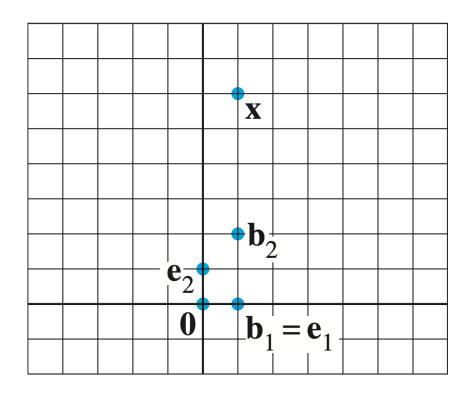


FIGURE 1 Standard graph paper.

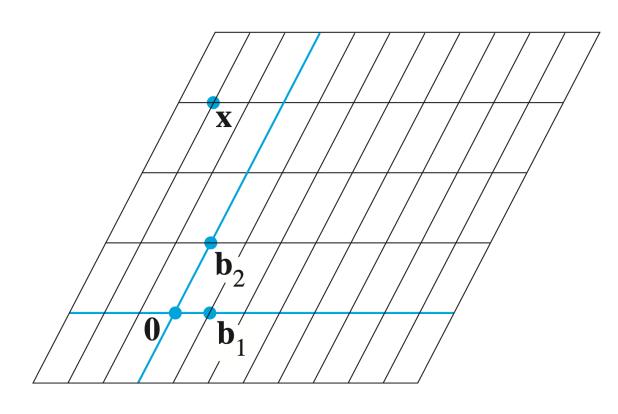


FIGURE 2 \mathcal{B} -graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is **exactly one way** to write every vector as a linear combination of vectors in \mathscr{B}

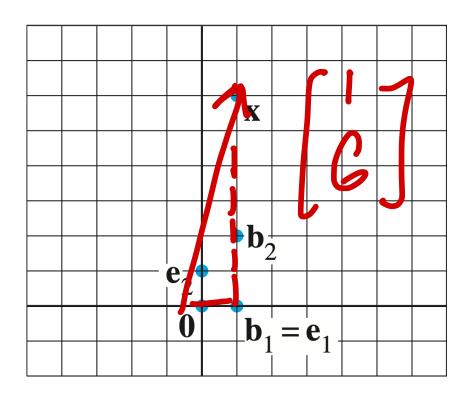


FIGURE 1 Standard graph paper.

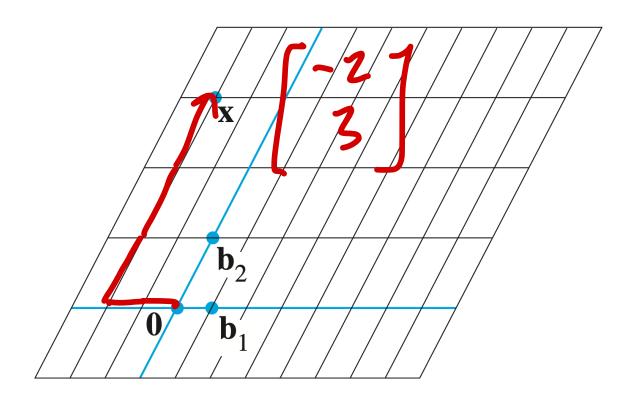


FIGURE 2 \mathcal{B} -graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is **exactly one way** to write every vector as a linear combination of vectors in \mathscr{B}

Every basis provides a way to write down *coordinates* of a vector

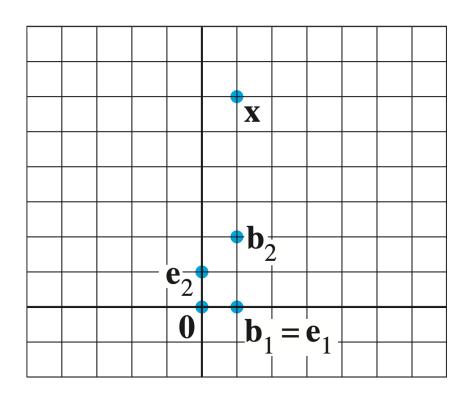


FIGURE 1 Standard graph paper.

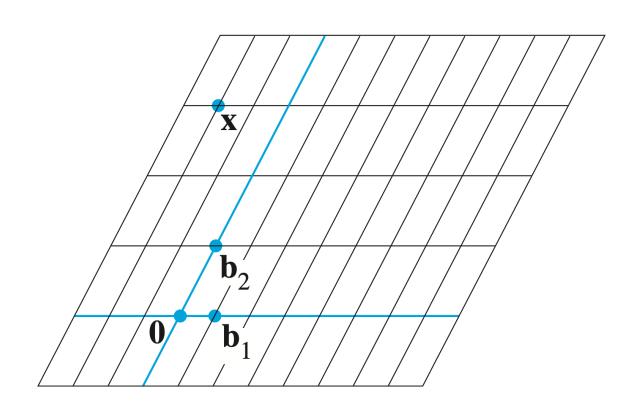


FIGURE 2 \mathcal{B} -graph paper.

Given a basis \mathscr{B} of \mathbb{R}^n , there is **exactly one way** to write every vector as a linear combination of vectors in \mathscr{B}

Every basis provides a way to write down *coordinates* of a vector

defines a "different grid for our graph paper"

Let \mathbf{v} be a vector in a \mathbb{R}^n and let $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ be a basis of \mathbb{R}^n where

$$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_n \mathbf{b}_n$$

Let \mathbf{v} be a vector in a \mathbb{R}^n and let $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ be a basis of \mathbb{R}^n where

$$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_n \mathbf{b}_n$$

Definition. The coordinate vector of \mathbf{v} relative to \mathscr{B} is

Let \mathbf{v} be a vector in a \mathbb{R}^n and let $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ be a basis of \mathbb{R}^n where

$$\mathbf{v} = a_1 \mathbf{b}_1 + a_2 \mathbf{b}_2 + \dots + a_n \mathbf{b}_n$$

Definition. The coordinate vector of v relative to \mathscr{B} is

$$[\mathbf{v}]_{\mathscr{B}} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

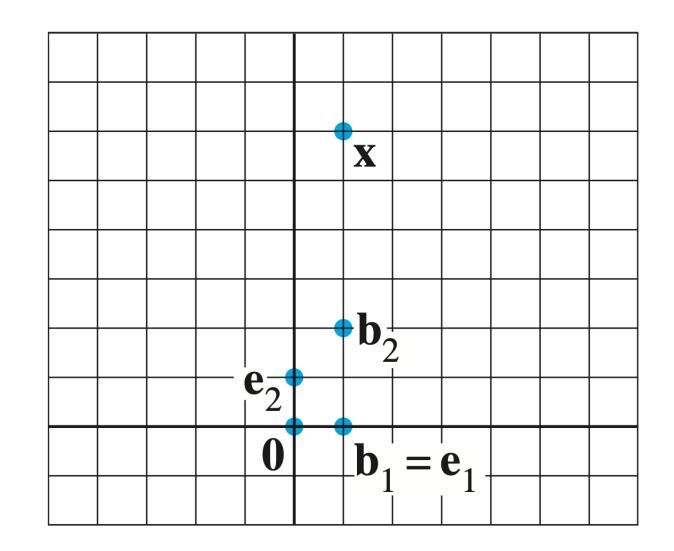


FIGURE 1 Standard graph paper.

FIGURE 2 \mathcal{B} -graph paper.

Question (Conceptual)

We know that if a $n \times n$ matrix $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ ... \ \mathbf{b}_n]$ is invertible, then the columns of B form a basis \mathscr{B} of \mathbb{R}^n

What is the matrix that implements the transformation

$$CB^{S^{-1}} = T^{S^{-1}}$$

$$C = C^{-1}$$

$$C$$

where $\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_n \mathbf{b}_n$?

Change of Basis Matrix

Theorem. If $\mathscr{B} = \{\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n\}$ form a basis of \mathbb{R}^n , then

$$[\mathbf{x}]_{\mathscr{B}} = [\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]^{-1} \mathbf{x}$$

Matrix inverses perform changes of bases.

How To: Change of Basis

Question. Given a basis $\mathscr{B} = (\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_n)$ of \mathbb{R}^n , find the matrix which implements $\mathbf{x} \mapsto [\mathbf{x}]_{\mathscr{B}}$.

Solution. Construct the matrix $[\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_n]^{-1}$.

Example

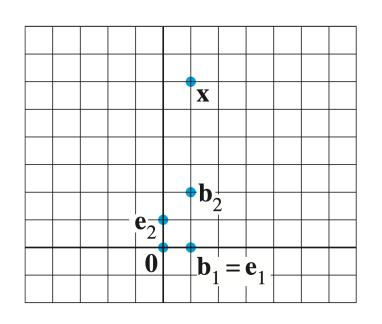


FIGURE 1 Standard graph paper.

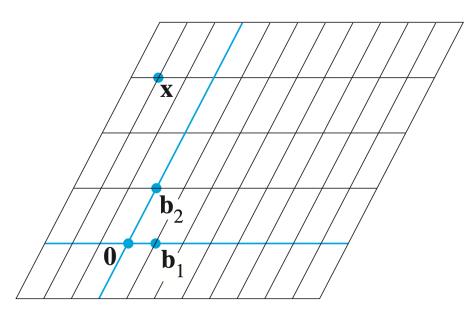


FIGURE 2 \mathcal{B} -graph paper.

Write the change-of-bases matrix for the basis $\left(\begin{vmatrix}1\\0\end{vmatrix},\begin{vmatrix}1\\2\end{vmatrix}\right)$

Diagonalization

 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -0.4 & 0 & 0 \\ 0 & 0 & 22 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -0.4 & 0 & 0 \\ 0 & 0 & 22 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Definition. A $n \times n$ matrix A is **diagonal** if $i \neq j$ if and only if $A_{ij} = 0$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -0.4 & 0 & 0 \\ 0 & 0 & 22 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Definition. A $n \times n$ matrix A is **diagonal** if

 $i \neq j$ if and only if $A_{ij} = 0$

Only the diagonal entries can be nonzero

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -0.4 & 0 & 0 \\ 0 & 0 & 22 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Definition. A $n \times n$ matrix A is **diagonal** if

 $i \neq j$ if and only if $A_{ij} = 0$

Only the diagonal entries can be nonzero

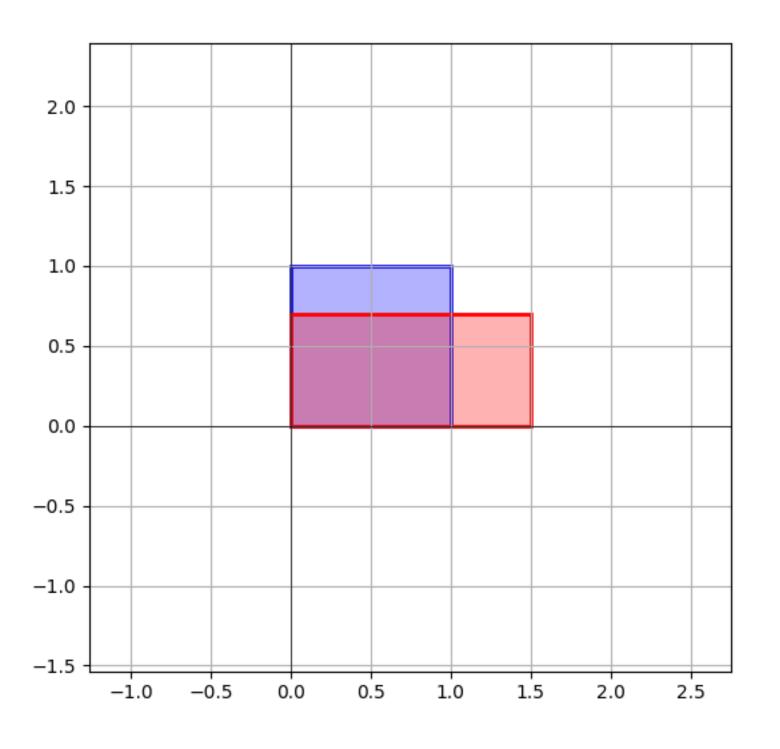
Diagonal matrices are scaling matrices

Recall: Unequal Scaling

The scaling matrix affects each component of a vector in a simple way

The diagonal entries <u>scale</u> each corresponding entry

$$\begin{bmatrix} 1.5 & 0 \\ 0 & 0.7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1.5x \\ 0.7y \end{bmatrix}$$



High level question:

When do matrices "behave" like scaling matrices "up to" change of basis?

The idea. Matrices behave like scaling matrices on eigenvectors.

The idea. Matrices behave like scaling matrices on eigenvectors.

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} (x\mathbf{e}_1 + y\mathbf{e}_2) = x2\mathbf{e}_1 + y(-3)\mathbf{e}_2$$
$$A \begin{bmatrix} x \\ y \end{bmatrix}_{\varnothing} = A(x\mathbf{b}_1 + y\mathbf{b}_2) = x\lambda_1\mathbf{b}_1 + y\lambda_2\mathbf{b}_2$$

The idea. Matrices behave like scaling matrices on eigenvectors.

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} (x\mathbf{e}_1 + y\mathbf{e}_2) = x2\mathbf{e}_1 + y(-3)\mathbf{e}_2$$

$$A \begin{bmatrix} x \\ y \end{bmatrix}_{\mathscr{B}} = A(x\mathbf{b}_1 + y\mathbf{b}_2) = x\lambda_1\mathbf{b}_1 + y\lambda_2\mathbf{b}_2$$

$$= x\lambda_1\mathbf{b}_1 + y\lambda_2\mathbf{b}_2$$

$$= x\lambda_2\mathbf{b}_1 + y\lambda_2\mathbf{b}_2$$

The fundamental question: Can we expose this behavior in terms of a matrix factorization?

Recall: Matrix Factorization

Recall: Matrix Factorization

A factorization of a matrix A is an equation which expresses A as a product of one or more matrices, e.g.,

$$A = PBP^{-1}$$

Recall: Matrix Factorization

A factorization of a matrix A is an equation which expresses A as a product of one or more matrices, e.g.,

$$A = PBP^{-1}$$

Factorizations can:

- » make working with A easier
- \gg expose important information about A

Similar Matrices

A =
$$PBP^{-1}$$

Definition. A matrix A is similar to a matrix Bif there is some invertible matrix P such that $A = PRP^{-1}$

A and B are the same up to a change of basis

Similar Matrices and Eigenvalues

Theorem. Similar matrices have the <u>same eigenvalues</u>.

Definition. A matrix A is **diagonalizable** if it is similar to a diagonal matrix

Definition. A matrix A is **diagonalizable** if it is similar to a diagonal matrix

There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$

Definition. A matrix A is **diagonalizable** if it is similar to a diagonal matrix

There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$

Diagonalizable matrices are the same as scaling matrices up to a change of basis

Important: Not all Matrices are Diagonalizable

This is very different from the LU factorization

We will need to figure out which matrices are diagonalizable

Question. Is the zero matrix diagonalizable?

Application: Matrix Powers

only take the power of B

Theorem. If $A = PBP^{-1}$, then $A^k = PB^kP^{-1}$

It may be easier to take the power of B (as in

How To: Matrix Powers

Question. Given A is diagonalizable, determine A^k **Solution.** Find it's diagonalization PDP^{-1} and then compute PD^kP^{-1}

Remember that

$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}^k = \begin{bmatrix} a^k & 0 & 0 \\ 0 & b^k & 0 \\ 0 & 0 & c^k \end{bmatrix}$$

But how do we find the diagonalization..

Diagonalization and Eigenvectors

Suppose we have a diagonalization $A = PDP^{-1}$

What do we know about it?

Columns of P are eigenvectors $P \in P$

$$A = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]^{-1}$$

Verify:

$$AP = PDP'P_1 = PD\vec{e}_1 = P \begin{bmatrix} \lambda_1 \\ 0 \end{bmatrix} = P\lambda, \vec{e}_1$$

$$= \lambda P\vec{e}_1 = \lambda \vec{e}_2$$

$$A = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]^{-1}$$

$$A = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]^{-1}$$

In fact, the columns of P form an $\mathbf{eigenbasis}$ of \mathbb{R}^n for A

$$A = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3]^{-1}$$

In fact, the columns of P form an ${f eigenbasis}$ of \mathbb{R}^n for A

And the entries of ${\it D}$ are the **eigenvalues** associated to each eigenvector

$$A = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix}^{-1}$$

In fact, the columns of P form an $\operatorname{\mathbf{eigenbasis}}$ of \mathbb{R}^n for A

And the entries of ${\it D}$ are the **eigenvalues** associated to each eigenvector

A diagonalization exposes a lot of information about A

Theorem. A matrix is diagonalizable if and only if it has an eigenbasis

Theorem. A matrix is diagonalizable if and only if it has an eigenbasis

(we just did the hard part, if a matrix is diagonalizable then it has an eigenbasis)

Theorem. A matrix is diagonalizable if and only if it has an eigenbasis

(we just did the hard part, if a matrix is diagonalizable then it has an eigenbasis)

We can use the same recipe to go in the other direction, given an eigenbasis, we can **build a diagonalization**

Diagonalizing a Matrix

$$A = PDP^{-1}$$

$$A = PDP^{-1}$$

The columns of P form an <u>eigenbasis</u> for A

$$A = PDP^{-1}$$

The columns of P form an <u>eigenbasis</u> for AThe diagonal of D are the eigenvalues for each column of P

$$A = PDP^{-1}$$

The columns of P form an <u>eigenbasis</u> for A

The diagonal of ${\it D}$ are the eigenvalues for each column of ${\it P}$

The matrix P^{-1} is a change of basis to this eigenbasis of $\cal A$

Step 1: Eigenvalues

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & 3 \\ 3 & 3 & 1 \end{bmatrix}$$

Find all the eigenvalues of A Find the roots of $\det(A-\lambda I)$ e.g.

$$\det(A - \lambda I) = -(\lambda - 1)(\lambda + 2)^{2}$$

$$\lambda = 1 - 7$$

Step 2: Eigenvectors

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & 3 \\ 3 & 3 & 1 \end{bmatrix}$$

Find **bases** of the corresponding eigenspaces λ_2

 $\lambda_2 = -2$

$$\operatorname{Nul}(A - I) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

$$\operatorname{Nul}(A+2I) = \operatorname{span}\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$

Step 3: Construct P

If there are n eigenvectors from the previous step they form an **eigenbasis**

Build the matrix with these vectors as the columns

e.g.

$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & 3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\lambda_1 = 1$$

$$\lambda_2 = -2$$

$$\operatorname{Nul}(A - I) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}$$

$$\operatorname{Nul}(A + 2I) = \operatorname{span} \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Step 5: Construct D

Build the matrix with eigenvalues as diagonal entries

Note the order. It should be the same as the order of columns of P

e.g.

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & 3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\lambda_1 = 1$$

$$\lambda_2 = -2$$

$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\lambda=1$$

Step 6: Invert P

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & 3 \\ 3 & 3 & 1 \end{bmatrix}$$

Find the inverse of P (we know how $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ to do this)

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Putting it Together

How to: Diagonalizing a Matrix

Question. Find a diagonalization of $A \in \mathbb{R}^n$, or determine that A is not diagonalizable

Solution.

- 1. Find the eigenvalues of A, and bases for their eigenspaces. If these eigenvectors don't form a basis of \mathbb{R}^n , then A is **not diagonalizable**
- 2. Otherwise, build a matrix P whose columns are the eigenvectors of A
- 3. Then build a diagonal matrix ${\it D}$ whose entries are the eigenvalues of ${\it A}$ in the same order
- 4. Invert P
- 5. The diagonalization of A is PDP^{-1}

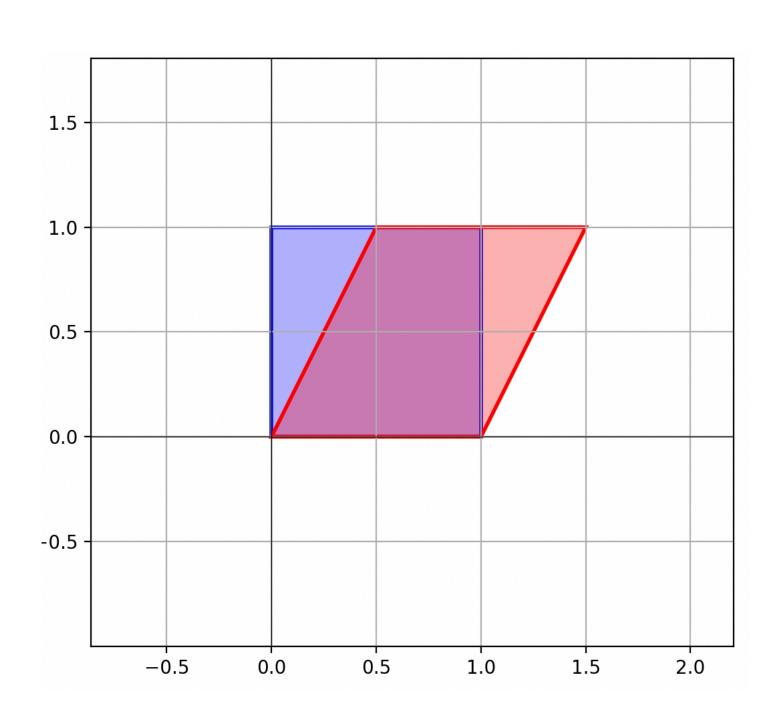
We know how to do every step, its a matter of putting it all together

Example of Failure: Shearing

$$A = \begin{bmatrix} 1 & 0.5 \\ 0 & 1 \end{bmatrix}$$

The shearing matrix has a single eigenvalue with an eigenspace of dimension 1

We can't build an eigenbasis of \mathbb{R}^2 for AIn other words, A is not diagonalizable



Important case: Distinct Eigenvalues
$$\begin{bmatrix} 1 & -3 & 4 & 2 \\ 0 & -2 & 3 & -1 \\ 0 & 0 & 10 & 5 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

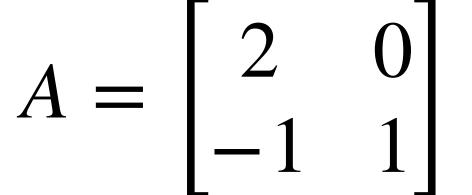
Theorem. If an $n \times n$ matrix has has n distinct eigenvalues, then it is diagonalizable

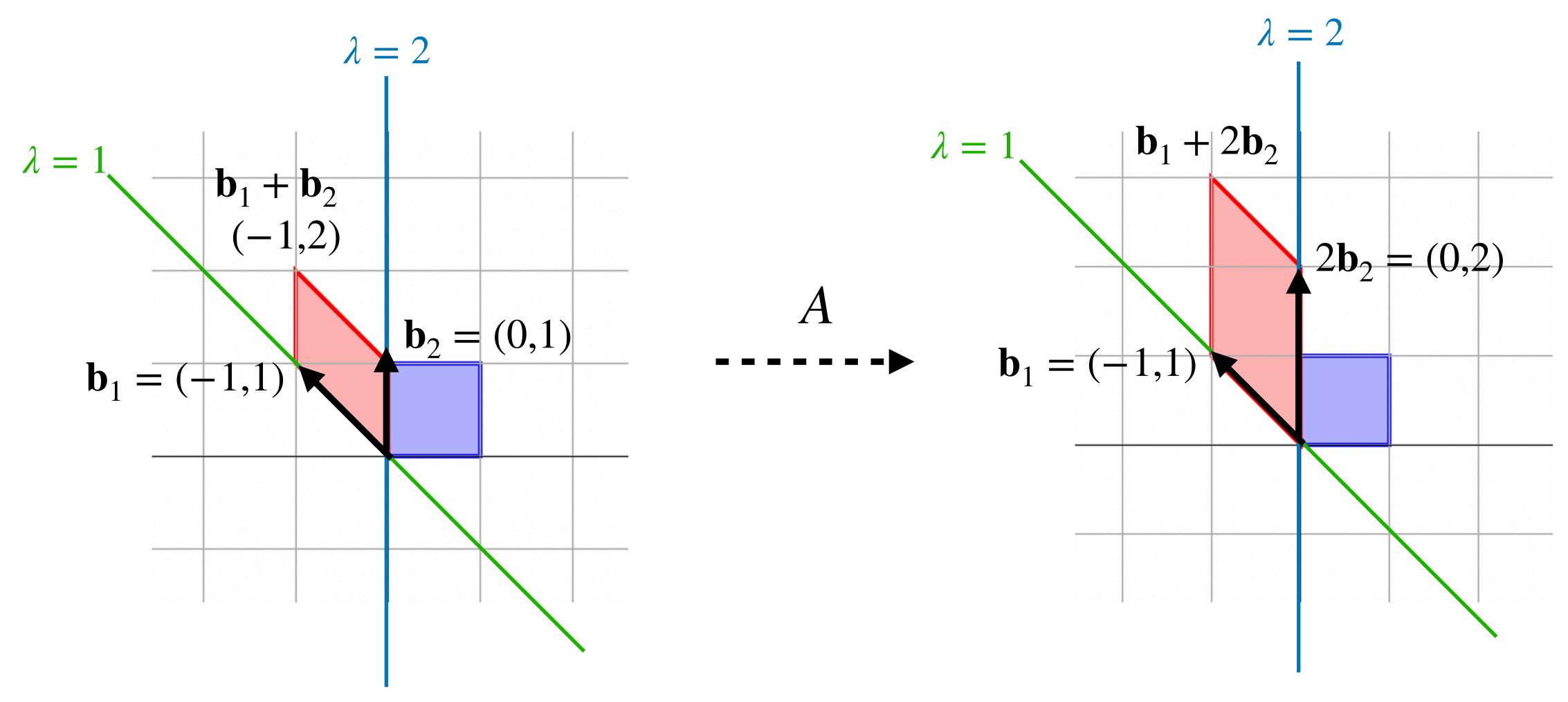
This is because eigenvectors with distinct eigenvalues are linearly independent

Example

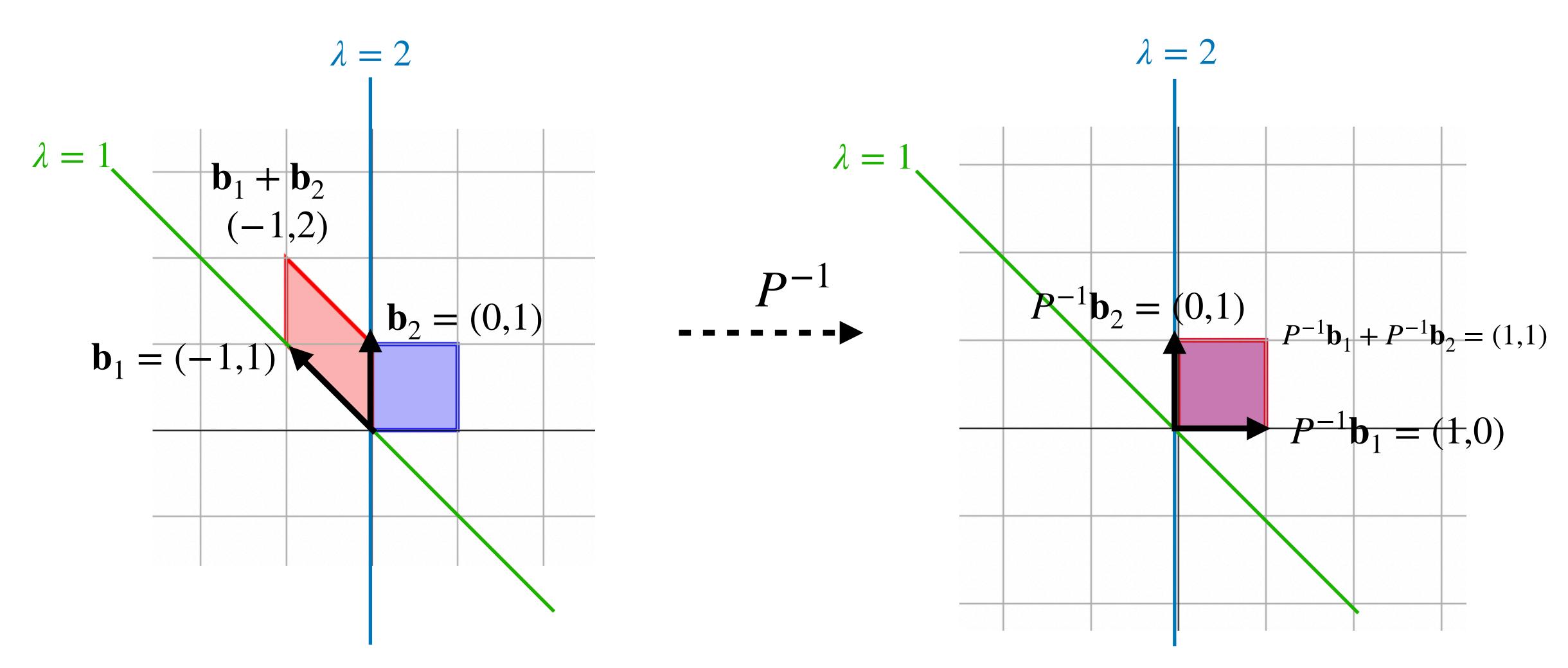
Find a diagonalization of the above matrix

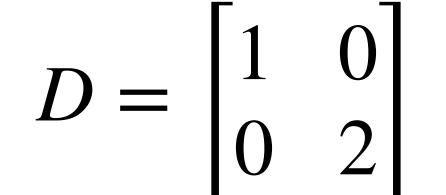
The Picture

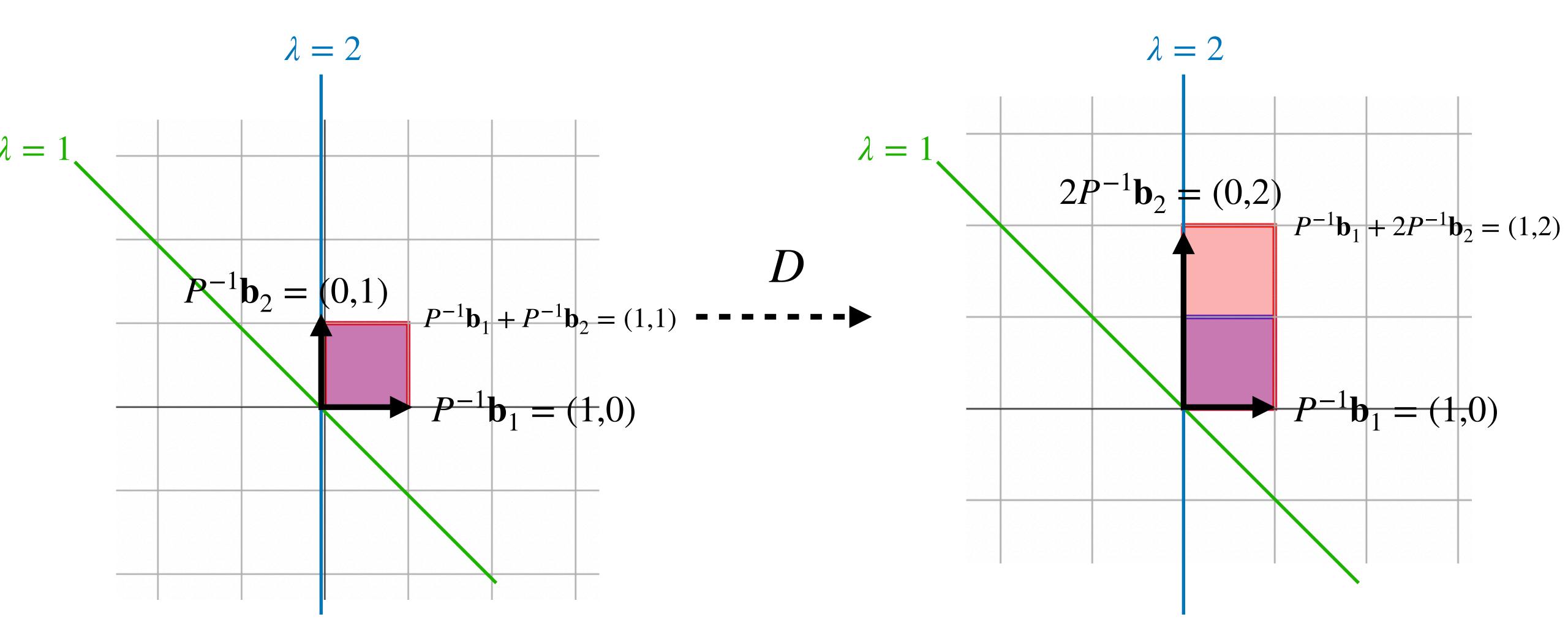


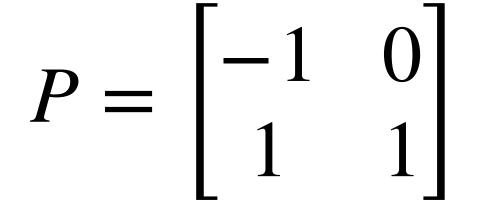


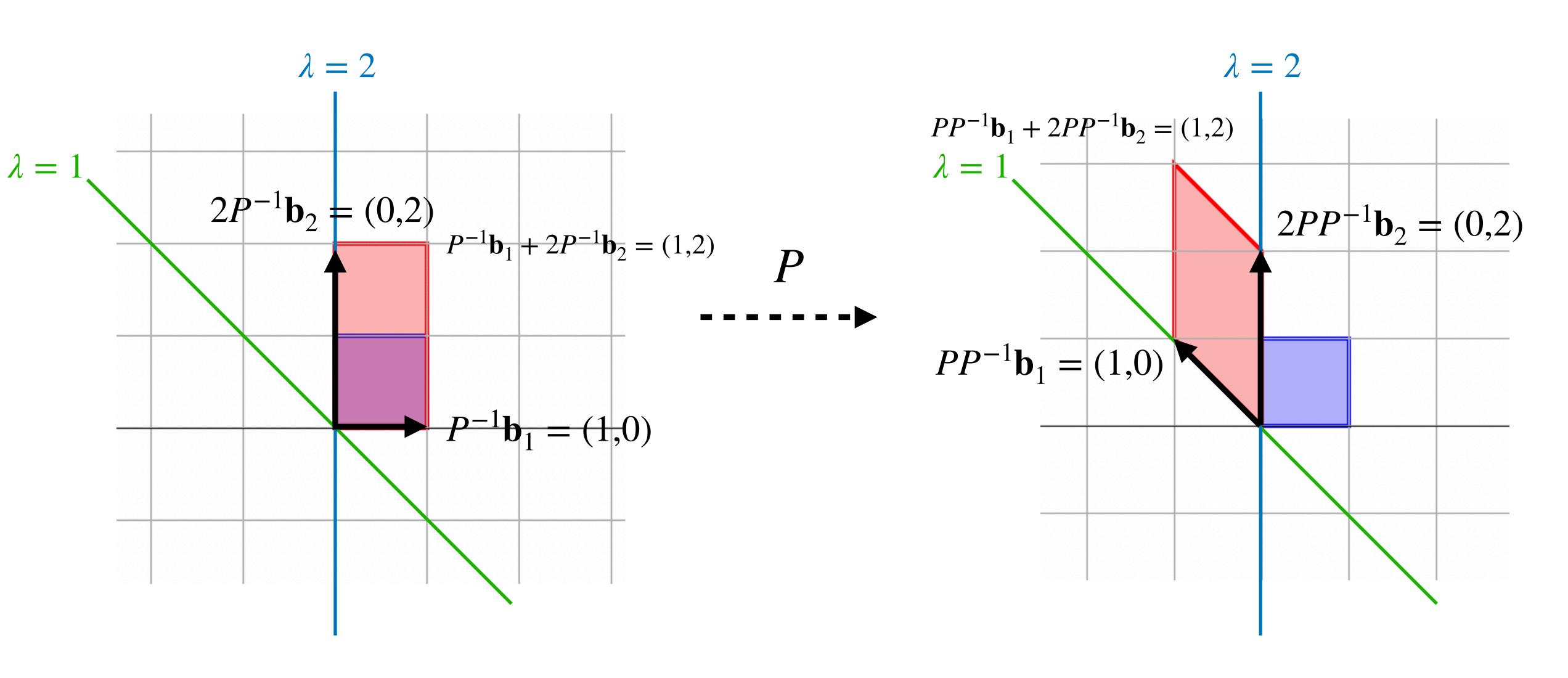
$$P^{-1} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}^{-1}$$

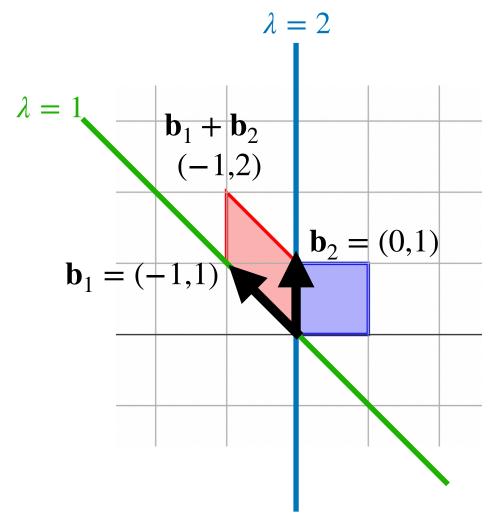












$$A = PDP^{-1}$$

$$\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}^{-1}$$

