CAS CS 132

Orthogonal Sets Geometric Algorithms Lecture 22

Practice Problem

Determine \mathbf{I} 2
3] ℬ

Objectives

- 1. Recap analytic geometry in *Rn*
- 2. Try to understand why it is useful to work with orthogonal vectors
- 3. Get a sense of how to compute orthogonal vectors
- 4. Start to connect orthogonality to matrices and linear transformations

Keywords

orthogonal orthogonal set orthogonal basis orthogonal projection orthogonal component orthonormal orthonormal set orthonormal basis orthonormal matrix orthogonal matrix

Recap: Analytic Geometry

Recall: The First Key Idea

Angles make sense in *any* dimension

Any pair of vectors in \mathbb{R}^n **span a (2D) plane**

(We could formalize this via change of bases)

Recall: The Second Key Idea

All of the basic concepts of analytic geometry

can be defined *in terms of inner products*

Spaces with inner products (like \mathbb{R}^n) are places **where you can do analytic geometry**

Recall: Inner Products

Definition. The **inner product** of two vectors **u**

$$
= \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}
$$

and \mathbf{v} in \mathbb{R}^n is

 \langle **u**, **v** \rangle =

$=$ $u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4$

Recall: Inner Products

Definition. The **inner product** of two vectors **u** and \mathbf{v} in \mathbb{R}^n is a.k.a. dot product

 \langle **u**, **v** \rangle =

$=$ $u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4$

$$
= \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}
$$

np.dot

Recall: Norms and Inner Products

The norm of a vector is the square root of the inner product with itself.

Definition. The e^2 norm of a vector v in \mathbb{R}^n is $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

Recall: Norms and Inner Products $\frac{\sqrt{2}^x}{}$

The norm of a vector is the square root of the *inner product with itself.*

It's important that $v^T v$ is nonnegative.

Definition. The e^2 norm of a vector v in \mathbb{R}^n is $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

Recall: Norms and Length

Norms give us a notion of length.

In \mathbb{R}^2 and \mathbb{R}^3 this is our existing notion of length.

Recall: Distance (Algebraically)

Definition. The distance between two points **u** and v in \mathbb{R}^n is given by e.g., $u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $dist(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$ 7 $\begin{bmatrix} 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \end{bmatrix}$ 3 2]

Recall: Law of Cosines

Theorem.

a

θ

Recall: Law of Cosines

Theorem.

a

θ

Recall: Law of Cosines

Theorem.

a

θ

Generalized the Pythagorean Theorem

Recall: Cosines and Unit Vectors

The cosine of the angle between two vectors is the inner product of their e^2 normalizations

between them, *θ*

 $\cos \theta = \left\langle \right\rangle$

Orthogonality (Perpendicularity)

A Simpler Fundamental Question

How do we determine if angle between any two vectors is 90°?

Recall: Cosines and Unit Vectors

The cosine of the angle between two vectors is the inner product of their e^2 normalizations.

Theorem. For vectors u and v in \mathbb{R}^n with an angle between them, *θ*

 $\cos \theta = \bigg\langle \frac{\partial^2 \theta}{\partial x^2} \bigg\rangle$

u ∥**u**∥ , **v** ∥**v**∥⟩

Orthogonality

Example.

Definition. Vectors **u** and **v** are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

to determine orthogonality.

Derivation by Picture

Derivation by Picture

$$
\vec{v} + \vec{u} - \vec{v} = \vec{w}
$$

Derivation by Picture

Derivation by Algebra

u and **v** are orthogonal exactly when Let's simplify this a bit:
 $\langle u, u \rangle + \langle v, \overline{v} \rangle = \langle u - v, u - v \rangle$ $2 < u, r$ = 0 = > $\langle u, v \rangle$ = 0

$\|u\|^2 + \|v\|^2 = \|u - v\|^2$ $=$ $\langle u-v,u\rangle - \langle u-v,v\rangle$ = $\langle u, u \rangle - \langle v, u \rangle - \langle u, v \rangle + \langle v, v \rangle$

Application: Cosine Similarity

Data points are very big vectors. Similar vectors "point in nearly the same direction."

https://medium.com/@milana.shxanukova15/cosine-distance-and-cosine-similarity-a5da0e4d9ded

Example: Netflix Users

A Netflix user might be represented as a vectors whose *i*th entry is the number of movies they've watched in a particular genre.

Who are more likely to share similar interests in movies?

Cosine Similarity

Definition. The **cosine similarity** of two vectors is the cosine of the angle between them.

If its close to 0, then two Netflix users watch very different movies.

If its close to 1, then two Netflix users watch very similar movies.

Example: Netflix Users user₁ 2 10 1 3 user₂ $\mathsf{sim}(\mathsf{user}_1, \mathsf{user}_2) \approx 0.92$

Other Examples

• Similar documents should use similar words

- *• Document similarity*
	- Documents \mapsto word count vectors
	-
- *• Word2Vec*
	- Words → vector *somehow*
	- *•* This underlies modern natural language processing (NLP)

Recall: Orthogonality

Definition. Vectors **u** and **v** are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

Orthogonal and perpendicular are the same

thing.

With inner product we can...

- Given a vector we can determine its <u>length</u>
- Given two points (vectors) we can determine the distance between them
- Given two vectors we can determine the angle between them

Orthogonal Sets
Orthogonal Sets

$\textbf{Definition. A set} \ \{u_1, u_2, ..., u_p\} \textbf{ of vectors from } R^n$ is an **orthogonal set** if every pair of distinct vectors is orthogonal: if $i \neq j$ then *Each vector is pairwise/mutually perpendicular* $\langle u_i, u_j \rangle$ $\rangle = 0$

$$
u_j\rangle=0
$$

What do orthogonal sets look like?

Orthogonal Sets and Independence

independent

Verify: $\vec{r} = \alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2 + \cdots + \alpha_k \vec{u}_k = \vec{0}$
 $\langle \vec{r}, \vec{u}, \rangle = \langle \sum_{i=1}^k \alpha_i \vec{u}_i, \vec{u}, \rangle = \sum_{i=1}^k \alpha_i \langle \vec{u}_i, \vec{u}, \rangle = \alpha_1 ||u||^2$ then $\alpha_i = 0$, $\langle \vec{u}_i, \vec{u}_i \rangle = \begin{cases} 0 & i \neq 1 \\ \|\vec{u}_i\|^2 & \text{on.} \end{cases}$ this generalizes to any α_1

$\textsf{Theorem.}$ If $\{u_1, u_2, ..., u_k\}$ is an orthogonal set of *nonzero* vectors from R^n , then it is linearly

The Takeaway

If $\{u_1, u_2, ..., u_k\}$ is an orthogonal set, then it is a **basis** for $span\{u_1, u_2, ..., u_k\}$

Orthogonal Basis

Definition. An **orthogonal basis** for a subspace W of R^n is a basis for *W* which is also an orthogonal set.

https://textbooks.math.gatech.edu/ila/spans.html

v_1 and v_2 form a basis of H

Orthogonal Basis

Definition. An **orthogonal basis** for a subspace W of R^n is a basis for *W* which is also an orthogonal set.

https://textbooks.math.gatech.edu/ila/spans.html

Orthogonal Basis

v_1 and v_2 form a basis of *H* v_1 and v_2' form an orthogonal basis of H

Definition. An **orthogonal basis** for a subspace W of R^n is a basis for *W* which is also an orthogonal set.

https://textbooks.math.gatech.edu/ila/spans.html

What's nice about an orthogonal basis?

 $\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$

$\mathbf{Question.}$ Given a basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace W of R^n and a vector w in W , weights $c_1, c_2, ..., c_p$ such that

- $\mathbf{Question.}$ Given a basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace W of R^n and a vector w in W , weights $c_1, c_2, ..., c_p$ such that $\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$ **Solution.** Solve the vector equation x_1 **u**₁ + x_2 **u**₂ + … x_p **u**_p = **w**
- by Gaussian elimination, matrix inversion, etc.

- $\mathbf{Question.}$ Given a basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace W of R^n and a vector w in W , weights $c_1, c_2, ..., c_p$ such that $\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p$
- **Solution.** Solve the vector equation
	- x_1 **u**₁ + x_2 **u**₂ + … x_p **u**_p = **w**
- by Gaussian elimination, matrix inversion, etc. **This takes work**

Orthogonal Bases and Linear Combinations

 $\mathbf{y} = c_1 \mathbf{u}_1 + \ldots + c_p \mathbf{u}_p$ then for $j = 1, \ldots, p$

Verify: $C_j = \frac{\langle \gamma, u_j \rangle}{\langle u_j, u_j \rangle}$ 50

 $\textsf{Theorem.}$ For an orthogonal set $\{\textbf{u}_1, \textbf{u}_2, ..., \textbf{u}_p\}$, if

weights $c_1, c_2, ..., c_p$ such that

 $w = c_1 u_1 + c_2 u_2 + ... + c_p u_p$

$\mathbf{Question.}$ Given an $\mathbf{orthogonal}$ basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace W of R^n and a vector w in W ,

weights $c_1, c_2, ..., c_p$ such that

 $w = c_1 u_1 + c_2 u_2 + ... + c_p u_p$

 $$ **w** ⋅ **u***^j* **u***^j* ⋅ **u***^j*

$\mathbf{Question.}$ Given an $\mathbf{orthogonal}$ basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace W of R^n and a vector w in W ,

weights $c_1, c_2, ..., c_p$ such that

 $w = c_1 u_1 + c_2 u_2 + ... + c_p u_p$

 $$ **w** ⋅ **u***^j* **u***^j* ⋅ **u***^j*

$\mathbf{Question.}$ Given an $\mathbf{orthogonal}$ basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace W of R^n and a vector w in W ,

Much easier to compute.

Question

$Express \ [6 \ 1 \ (-8)]^T$ as a linear combination of \forall *vectors* in $\{u_1, u_2, u_3\}$ where *T* $u_1 =$ 3 1 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $u_2 =$ −1 2 $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $u_3 =$ $-1/2$ -2

$$
u_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}
$$

Why does that formula in the last example work?

We've seen simple projections in *R*2

We've seen simple projections in *R*²

We're going to generalize this idea

We've seen simple projections in *R*²

We're going to generalize this idea

What we really did was a kind of projection onto the basis vectors

Question. Given vectors \mathbf{y} and \mathbf{u} in R^n , find vectors \hat{y} and z such that

Question. Given vectors
v and u in R^n find ? \mathbf{y} and \mathbf{u} in R^n , find vectors \hat{y} and z such that

» is orthogonal to **z u** (i.e.,) **z** ⋅ **u** = 0

» is orthogonal to **z u** $(i.e., z \cdot u = 0)$

Question. Given vectors \mathbf{y} and \mathbf{u} in R^n , find vectors \hat{y} and z such that

» **y** ∈ *span*{**u**}

- **Question.** Given vectors \mathbf{y} and \mathbf{u} in R^n , find vectors \hat{y} and z such that
- » is orthogonal to **z u** $(i.e., z \cdot u = 0)$
- » **y** ∈ *span*{**u**}
- $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$

How do we find the orthogonal projection and orthogonal component?

What we know

-
-
-
-
-
- - -
• $\hat{y} = \alpha \mathbf{u}$ for some scalar α (since $\hat{y} \in span\{\mathbf{u}\}\)$

̂

• $\hat{y} = \alpha \mathbf{u}$ for some scalar α (since $\hat{y} \in span\{\mathbf{u}\}\)$ • $z = y - \hat{y} = y - \alpha u$ (since $y = \hat{y} + z$) • $\langle z, u \rangle = 0$ (since z is orthogonal with u)

- ̂
-

• $\hat{y} = \alpha \mathbf{u}$ for some scalar α (since $\hat{y} \in span\{\mathbf{u}\}\)$ • $z = y - \hat{y} = y - \alpha u$ (since $y = \hat{y} + z$) • $\langle z, u \rangle = 0$ (since z is orthogonal with u) *Therefore:*

- ̂
-
- or Hoport corporent
	- ⟨**y** − *α***u**, **u**⟩ = 0

- ̂
-

• $\hat{y} = \alpha \mathbf{u}$ for some scalar α (since $\hat{y} \in span\{\mathbf{u}\}\)$ • $z = y - \hat{y} = y - \alpha u$ (since $y = \hat{y} + z$) • $\langle z, u \rangle = 0$ (since z is orthogonal with u) *Therefore:*

 $\langle y - \alpha u, u \rangle = 0$ **Once we have** *α***, we can compute both y and z**̂

Step 1: Finding *α* $\langle y - \alpha u, u \rangle = 0$ $\hat{\mathbf{y}} = \alpha \mathbf{u}$ Let's solve for α , \hat{y} and z : ̂ $(y - \alpha u, u) = (y, u) - (\alpha u, u)$ $=$ $\langle 4, u \rangle - \alpha \langle u, u \rangle = 0$ Ly,u> the ν the egrition for caffint $\langle u, u \rangle$ in par. slide

 Theorem. $\|\hat{\textbf{y}} - \textbf{y}\| = \min$ **w**∈*span*{**u**}

"Proof" by inspection:

 is the closest vector in **y** *to . span*{**u**} **y** ̂

y ̂ **and Distance**

Orthogonal Projections and Orthogonal Bases

Linear Algebra and its Applications, Lay, Lay, McDonald

Each component of **y** written in terms of an *orthogonal* basis is an **orthogonal projection onto to a basis vector**

How To:

Question. Find the projection of y onto the span of **u**

Solution. Calculate $\alpha = \frac{3}{2}$, then the solution **y** ⋅ **u u** ⋅ **u**

is *α***u**

Question

Find the matrix which implements orthogonal projection onto the span of [1 −1 $\begin{array}{c} 2 \end{array}$

 $\alpha =$ **y** ⋅ **u u** ⋅ **u**

$\frac{1}{\sqrt{5}}\begin{bmatrix}1 & -1 & 2\\ -1 & 1 & -2\\ 2 & -2 & 4\end{bmatrix}$

Orthonormal Sets

Orthogonal sets would be easier to work with if every vector was a unit vector

 $\textsf{Definition. A set } \{u_1, u_2, ..., u_p\}$ is an $\textsf{orthonormal}$ set if of it an orthogonal set of unit vectors

 $\textsf{Definition. A set } \{u_1, u_2, ..., u_p\}$ is an $\textsf{orthonormal}$ **set** if of it an orthogonal set of unit vectors **Definition.** An **orthonormal basis** of the

subspace W is a basis of W which is an orthonormal set

 $\textsf{Definition. A set } \{u_1, u_2, ..., u_p\}$ is an $\textsf{orthonormal}$ **set** if of it an orthogonal set of unit vectors

Definition. An **orthonormal basis** of the subspace W is a basis of W which is an orthonormal set

ortho⋅normal

$\textsf{Definition. A set } \{u_1, u_2, ..., u_p\}$ is an $\textsf{orthonormal}$ **set** if of it an orthogonal set of unit vectors

Definition. An **orthonormal basis** of the subspace W is a basis of W which is an orthonormal set

ortho⋅normal

orthogonal/perpendicular

$\textsf{Definition. A set } \{u_1, u_2, ..., u_p\}$ is an $\textsf{orthonormal}$ **set** if of it an orthogonal set of unit vectors

Definition. An **orthonormal basis** of the subspace W is a basis of W which is an orthonormal set

ortho⋅normal

orthogonal/perpendicular normalized/made unit vectors

Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set

The notes call a square orthonormal matrix an

orthogonal matrix.

Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set

The notes call a square orthonormal matrix an **orthogonal** matrix.

This is incredibly confusing, but we'll try to be consistent and clear

Orthonormal Matrices and Transposition

Theorem. For an $m \times n$ orthonormal matrix U $U^T U = I_n$

Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal

- (square orthonormal) then it is invertible and
	- $U^{-1} = U^T$

Verify:

Orthonormal Matrices and Inner Products

any vectors x and y in R^n

Orthonormal matrices preserve inner products Verify:

Theorem. For a $m \times n$ orthonormal matrix U , and

 $\langle Ux, Uy \rangle = \langle x, y \rangle$

Length, Angle, Orthogonality Preservation

Since lengths and angles are defined in terms of inner products, they are also preserved by orthonormal matrices:

Question (Conceptual)

Suppose A is an $m \times n$ *matrix with orthogonal but* not orthonormal columns. What is A^TA ?

If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ then $A^T A$ is a diagonal matrix D where

 $D_{ii} = ||a_i||^2$

Summary

of coordinates

Finding these coordinates is a really about find the orthogonal projections onto each vector in the orthogonal set

We can apply these ideas to matrices and describe a class of very well behaved transformations via orthonormal matrices

Orthogonal sets allow for simpler calculations