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Objectives

1. Recap analytic geometry in 


2. Try to understand why it is useful to work 
with orthogonal vectors


3. Get a sense of how to compute orthogonal 
vectors


4. Start to connect orthogonality to matrices 
and linear transformations

Rn
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Recap: Analytic Geometry



Recall: The First Key Idea

Angles make sense in any 
dimension


Any pair of vectors in 
span a (2D) plane


(We could formalize this 
via change of bases)


ℝn



Recall: The Second Key Idea

All of the basic concepts of analytic geometry 
can be defined in terms of inner products


Spaces with inner products (like ) are places 
where you can do analytic geometry

ℝn



Recall: Inner Products




Definition. The inner product of two vectors  
and  in  is


[u1 u2 u3 u4]

v1
v2
v3
v4

= u1v1 + u2v2 + u3v3 + u4v4

u
v ℝn

⟨u, v⟩ = u ⋅ v = uTv



Recall: Inner Products




Definition. The inner product of two vectors  
and  in  is


[u1 u2 u3 u4]

v1
v2
v3
v4

= u1v1 + u2v2 + u3v3 + u4v4

u
v ℝn

⟨u, v⟩ = u ⋅ v = uTv

a.k.a. dot product



Recall: Norms and Inner Products

Definition. The  norm of a vector  in  is




The norm of a vector is the square root of the 
inner product with itself.

ℓ2 v ℝn

∥v∥ = v ⋅ v



Recall: Norms and Inner Products

Definition. The  norm of a vector  in  is




The norm of a vector is the square root of the 
inner product with itself.

ℓ2 v ℝn

∥v∥ = v ⋅ v

It's important that  is nonnegative.vTv



Recall: Norms and Length

Norms give us a notion of 
length.


In  and  this is our 
existing notion of length.

ℝ2 ℝ3

v

∥v∥



Recall: Distance

If we know how to calculate 
lengths of vectors, we know how 

to calculate distances.



Recall: Distance (Pictorially)



Recall: Distance (Algebraically)

Definition. The distance between two points  
and  in  is given by





e.g.,  and 

u
v ℝn

𝖽𝗂𝗌𝗍(u, v) = ∥u − v∥

u = [7
1] v = [3

2]



Recall: Law of Cosines

Theorem.


c2 = a2 + b2 − 2ab cos θ

a
b

c

θ



Recall: Law of Cosines

Theorem.


c2 = a2 + b2 − 2ab cos θ

a
b

c

θ

Generalized the Pythagorean Theorem



Recall: Law of Cosines

Theorem.


c2 = a2 + b2 − 2ab cos θ

a
b

c

θ

Generalized the Pythagorean Theorem

0 exactly when θ = 90∘



Recall: Cosines and Unit Vectors

Theorem. For vectors  and  in  with an angle 
 between them,





The cosine of the angle between two vectors is 
the inner product of their  normalizations

u v ℝn

θ

cos θ = ⟨ u
∥u∥

,
v

∥v∥ ⟩
ℓ2



Recall: Orthogonality

Definition. Vectors  and  are orthogonal if 



Orthogonal and perpendicular are the same 
thing.

u v
⟨u, v⟩ = 0



With inner product we can...

• Given a vector we can determine its length


• Given two points (vectors) we can determine 
the distance between them


• Given two vectors we can determine the angle 
between them



Orthogonal Sets



Orthogonal Sets

Definition. A set  of vectors from  
is an orthogonal set if every pair of distinct 
vectors is orthogonal: if  then




Each vector is pairwise/mutually perpendicular

{u1, u2, …, up} Rn

i ≠ j

⟨ui, uj⟩ = 0



Example

Verify:

u1 = [
3
1
1] u2 = [

−1
2
1 ] u3 = [

−1/2
−2
7/2 ]



What do orthogonal sets 
look like?



The Picture

the standard basis forms a 
"centered" orthogonal set

an orthogonal set is like 
the standard basis after 

some rotations and scalings

https://textbooks.math.gatech.edu/ila/orthogonal-sets.html



Orthogonal Sets and Independence

Theorem. If  is an orthogonal set of 
nonzero vectors from , then it is linearly 
independent


Verify:

{u1, u2, …, uk}
Rn



If  is an orthogonal set, 
then it is a basis for 

{u1, u2, …, uk}
span{u1, u2, …, uk}

The Takeaway



Orthogonal Basis

Definition. An 
orthogonal basis for 
a subspace  of  
is a basis for  
which is also an 
orthogonal set.

W Rn

W

https://textbooks.math.gatech.edu/ila/spans.html



H

 and  form a basis of v1 v2 H

Orthogonal Basis

Definition. An 
orthogonal basis for 
a subspace  of  
is a basis for  
which is also an 
orthogonal set.

W Rn

W

https://textbooks.math.gatech.edu/ila/spans.html



H

 and  form a basis of v1 v2 H

Orthogonal Basis

Definition. An 
orthogonal basis for 
a subspace  of  
is a basis for  
which is also an 
orthogonal set.

W Rn

W

v′￼2

 and  form an orthogonal basis of v1 v′￼2 H

https://textbooks.math.gatech.edu/ila/spans.html



What's nice about an 
orthogonal basis?



Recall: How To: Bases



Recall: How To: Bases

Question. Given a basis  for a subspace  
of  and a vector  in , weights  such that

{u1, u2, …, up} W
Rn w W c1, c2, …, cp

w = c1u1 + c2u2 + …cpup



Recall: How To: Bases

Question. Given a basis  for a subspace  
of  and a vector  in , weights  such that

{u1, u2, …, up} W
Rn w W c1, c2, …, cp

w = c1u1 + c2u2 + …cpup

Solution. Solve the vector equation

x1u1 + x2u2 + …xpup = w

by Gaussian elimination, matrix inversion, etc.



Recall: How To: Bases

Question. Given a basis  for a subspace  
of  and a vector  in , weights  such that

{u1, u2, …, up} W
Rn w W c1, c2, …, cp

w = c1u1 + c2u2 + …cpup

Solution. Solve the vector equation

x1u1 + x2u2 + …xpup = w

by Gaussian elimination, matrix inversion, etc.
This takes work



Orthogonal Bases and Linear Combinations

Theorem. For an orthogonal set , if 
 then for 





Verify:

{u1, u2, …, up}
y = c1u1 + … + cpup j = 1,…, p

cj =
yTuj

uT
j uj



How To: Orthogonal Bases



How To: Orthogonal Bases

Question. Given an orthogonal basis  
for a subspace  of  and a vector  in , 
weights  such that

{u1, u2, …, up}
W Rn w W

c1, c2, …, cp

w = c1u1 + c2u2 + …cpup



How To: Orthogonal Bases

Question. Given an orthogonal basis  
for a subspace  of  and a vector  in , 
weights  such that

{u1, u2, …, up}
W Rn w W

c1, c2, …, cp

w = c1u1 + c2u2 + …cpup

Solution. cj =
w ⋅ uj

uj ⋅ uj



How To: Orthogonal Bases

Question. Given an orthogonal basis  
for a subspace  of  and a vector  in , 
weights  such that

{u1, u2, …, up}
W Rn w W

c1, c2, …, cp

w = c1u1 + c2u2 + …cpup

Solution. cj =
w ⋅ uj

uj ⋅ uj

Much easier to compute.



Question

Express  as a linear combination of 
vectors in  where


[6 1 (−8)]T

{u1, u2, u3}

u1 = [
3
1
1] u2 = [

−1
2
1 ] u3 = [

−1/2
−2
7/2 ]



Answer: u1 − 2u2 − 2u3



Orthogonal Projection



Why does that formula in 
the last example work?



Recall: Projection onto the -axisx



Recall: Projection onto the -axisx

We've seen simple 
projections in R2



Recall: Projection onto the -axisx

We've seen simple 
projections in R2

We're going to 
generalize this idea



Recall: Projection onto the -axisx

We've seen simple 
projections in R2

We're going to 
generalize this idea

What we really did was 
a kind of projection 
onto the basis vectors



Orthogonal Projection



Orthogonal Projection

Question. Given vectors 
 and  in , find 
vectors  and  such 
that

y u Rn

ŷ z



Orthogonal Projection

Question. Given vectors 
 and  in , find 
vectors  and  such 
that

y u Rn

ŷ z

»  is orthogonal to  
(i.e., )

z u
z ⋅ u = 0



Orthogonal Projection

Question. Given vectors 
 and  in , find 
vectors  and  such 
that

y u Rn

ŷ z

»  is orthogonal to  
(i.e., )

z u
z ⋅ u = 0

» ŷ ∈ span{u}



Orthogonal Projection

Question. Given vectors 
 and  in , find 
vectors  and  such 
that

y u Rn

ŷ z

»  is orthogonal to  
(i.e., )

z u
z ⋅ u = 0

» ŷ ∈ span{u}

» y = ŷ + z



Orthogonal Projection

= ŷ + zz

component of  
orthogonal to 

y
u

orthogonal projection 
of  onto y u



Orthogonal Projection

= ŷ + zz

component of  
orthogonal to 

y
u

orthogonal projection 
of  onto y u



How do we find the orthogonal 
projection and orthogonal component?



= ŷ + zz

What we know



= ŷ + zz

What we know

•  for some scalar  (since )ŷ = αu α ŷ ∈ span{u}



= ŷ + zz

What we know

•  for some scalar  (since )ŷ = αu α ŷ ∈ span{u}

•  (since )z = y − ŷ = y − αu y = ŷ + z



= ŷ + zz

What we know

•  for some scalar  (since )ŷ = αu α ŷ ∈ span{u}

•  (since )z = y − ŷ = y − αu y = ŷ + z

•  (since  is orthogonal with )⟨z, u⟩ = 0 z u



= ŷ + zz

What we know

•  for some scalar  (since )ŷ = αu α ŷ ∈ span{u}

•  (since )z = y − ŷ = y − αu y = ŷ + z

•  (since  is orthogonal with )⟨z, u⟩ = 0 z u

Therefore:

 ⟨y − αu, u⟩ = 0



= ŷ + zz

What we know

•  for some scalar  (since )ŷ = αu α ŷ ∈ span{u}

•  (since )z = y − ŷ = y − αu y = ŷ + z

•  (since  is orthogonal with )⟨z, u⟩ = 0 z u

Therefore:

 ⟨y − αu, u⟩ = 0
Once we have , we can compute both  and α ŷ z



Step 1: Finding α

Let's solve for ,  and :α ŷ z

⟨y − αu, u⟩ = 0

= ŷ + zz



The Picture

The transformation  is 
linear and represents the 
projection onto 

y ↦ ŷ

span{u}



Theorem. 


 is the closest vector in 
 to .


"Proof" by inspection:

∥ŷ − y∥ = min
w∈span{u}

∥w − y∥

ŷ
span{u} y

 and Distanceŷ



The Trigonometry



The Trigonometry

∥y∥



The Trigonometry

∥y∥

θ

cos θ =
∥ŷ∥
∥y∥



The Trigonometry

∥y∥

θ

cos θ =
∥ŷ∥
∥y∥

∥ŷ∥ = ∥y∥ cos θ = ∥y∥ ⟨ y
∥y∥

,
u

∥u∥ ⟩



The Trigonometry

∥y∥

θ

cos θ =
∥ŷ∥
∥y∥

∥ŷ∥ = ∥y∥ cos θ = ∥y∥ ⟨ y
∥y∥

,
u

∥u∥ ⟩
ŷ =

⟨y, u⟩
∥u∥ ( u

∥u∥ ) =
⟨y, u⟩
⟨u, u⟩

u



Orthogonal Projections and Orthogonal Bases

Linear Algebra and its Applications, Lay, Lay, McDonald

Each component of  
written in terms of an 
orthogonal basis is an 

orthogonal projection onto 
to a basis vector

y

y ⋅ u1

u1 ⋅ u1
u1

y ⋅ u2

u2 ⋅ u2
u2



How To:

Question. Find the projection of  onto the 
span of 


Solution. Calculate , then the solution 
is 

y
u

α =
y ⋅ u
u ⋅ u

αu



Question

Find the matrix which implements orthogonal 

projection onto the span of [
1

−1
2 ]

α =
y ⋅ u
u ⋅ u



Answer 1

5 [
1 −1 2

−1 1 −2
2 −2 4 ]



Orthonormal Sets



Orthogonal sets would be easier to 
work with if every vector was a 

unit vector



Orthonormality



Orthonormality

Definition. A set  is an orthonormal 
set if of it an orthogonal set of unit vectors

{u1, u2, …, up}



Orthonormality

Definition. A set  is an orthonormal 
set if of it an orthogonal set of unit vectors

{u1, u2, …, up}

Definition. An orthonormal basis of the 
subspace  is a basis of  which is an 
orthonormal set

W W



Orthonormality

Definition. A set  is an orthonormal 
set if of it an orthogonal set of unit vectors

{u1, u2, …, up}

Definition. An orthonormal basis of the 
subspace  is a basis of  which is an 
orthonormal set

W W

ortho normal⋅



Orthonormality

Definition. A set  is an orthonormal 
set if of it an orthogonal set of unit vectors

{u1, u2, …, up}

Definition. An orthonormal basis of the 
subspace  is a basis of  which is an 
orthonormal set

W W

ortho normal⋅
orthogonal/perpendicular



Orthonormality

Definition. A set  is an orthonormal 
set if of it an orthogonal set of unit vectors

{u1, u2, …, up}

Definition. An orthonormal basis of the 
subspace  is a basis of  which is an 
orthonormal set

W W

ortho normal⋅
orthogonal/perpendicular normalized/made unit vectors



Orthonormal Matrices

Definition. A matrix is orthonormal if its 
columns form an orthonormal set


The notes call a square orthonormal matrix an 
orthogonal matrix.



Orthonormal Matrices

Definition. A matrix is orthonormal if its 
columns form an orthonormal set


The notes call a square orthonormal matrix an 
orthogonal matrix.

This is incredibly confusing, but we'll try to be 
consistent and clear



Orthonormal Matrices and Transposition

Theorem. For an  orthonormal matrix 




Verify:

m × n U

UTU = In



Inverses of Orthogonal Matrices

Theorem. If an  matrix  is orthogonal 
(square orthonormal) then it is invertible and




Verify:

n × n U

U−1 = UT



Orthonormal Matrices and Inner Products

Theorem. For a  orthonormal matrix , and 
any vectors  and  in 




Orthonormal matrices preserve inner products


Verify:

m × n U
x y Rn

⟨Ux, Uy⟩ = ⟨x, y⟩



Length, Angle, Orthogonality Preservation

Since lengths and angles are defined in terms 
of inner products, they are also preserved by 
orthonormal matrices:



The Picture



Example

U =
1/ 2 2/3

1/ 2 −2/3
0 1/3

x = [ 2
3 ]



Question (Conceptual)

Suppose  is an  matrix with orthogonal but 
not orthonormal columns. What is ?

A m × n
AT A



Answer

If  then  is a diagonal matrix 
 where


A = [a1 a2 … an] AT A
D

Dii = ∥ai∥2



Summary

Orthogonal sets allow for simpler calculations 
of coordinates


Finding these coordinates is a really about find 
the orthogonal projections onto each vector in 
the orthogonal set


We can apply these ideas to matrices and 
describe a class of very well behaved 
transformations via orthonormal matrices


