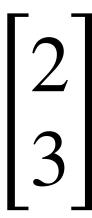
Orthogonal Sets **Geometric Algorithms** Lecture 22

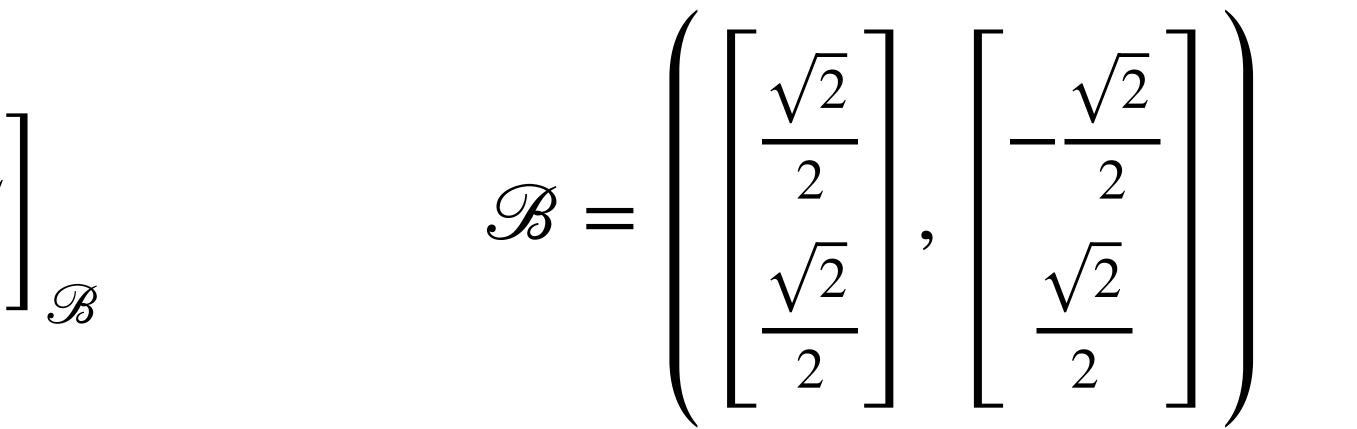
CAS CS 132

Practice Problem

Determine $\begin{vmatrix} 2 \\ 3 \end{vmatrix}$

 $\mathscr{B} = \left(\begin{bmatrix} \sqrt{2} \\ \frac{1}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \right)$





Objectives

- 1. Recap analytic geometry in R^n
- 2. Try to understand why it is useful to work with orthogonal vectors
- 3. Get a sense of how to compute orthogonal vectors
- 4. Start to connect orthogonality to matrices and linear transformations

Keywords

orthogonal orthogonal set orthogonal basis orthogonal projection orthogonal component orthonormal orthonormal set orthonormal basis orthonormal matrix orthogonal matrix

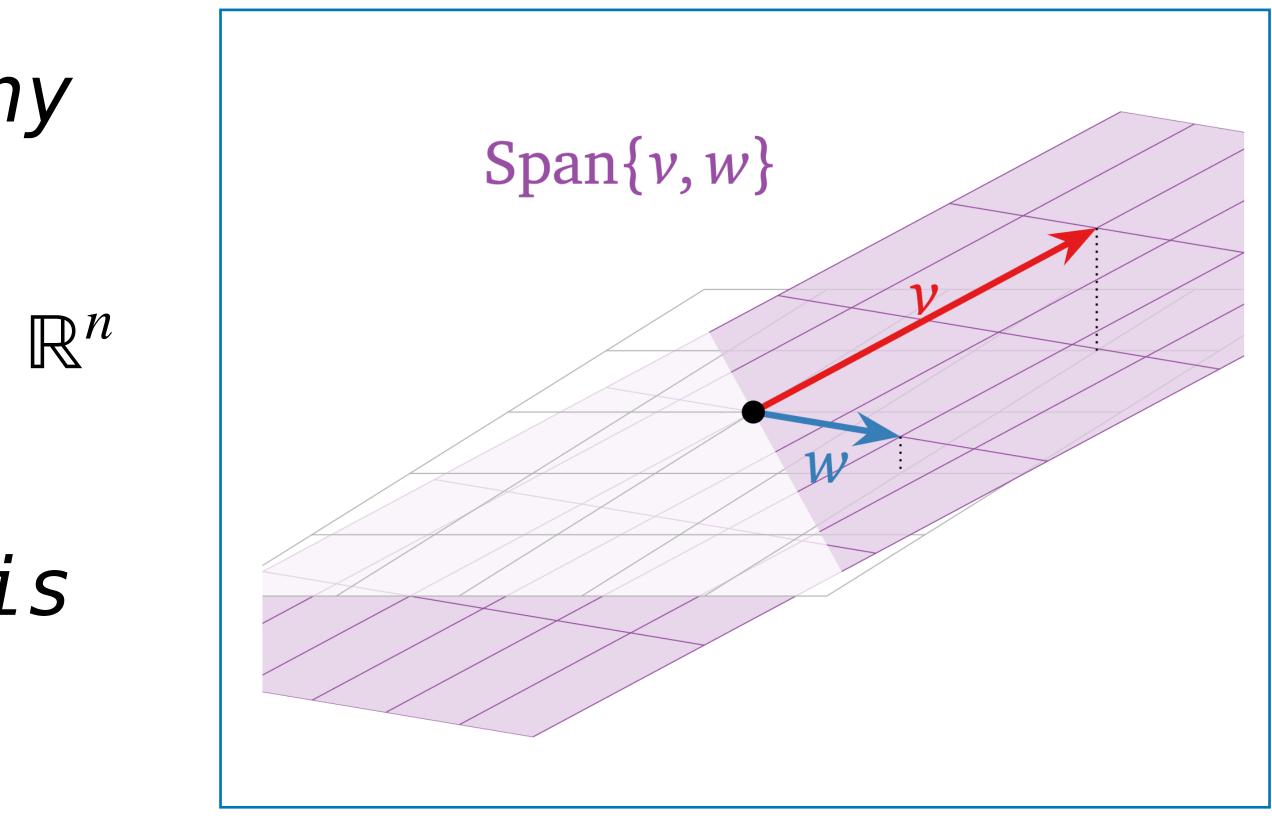
Recap: Analytic Geometry

Recall: The First Key Idea

Angles make sense in *any* dimension

Any pair of vectors in \mathbb{R}^n span a (2D) plane

(We could formalize this via change of bases)



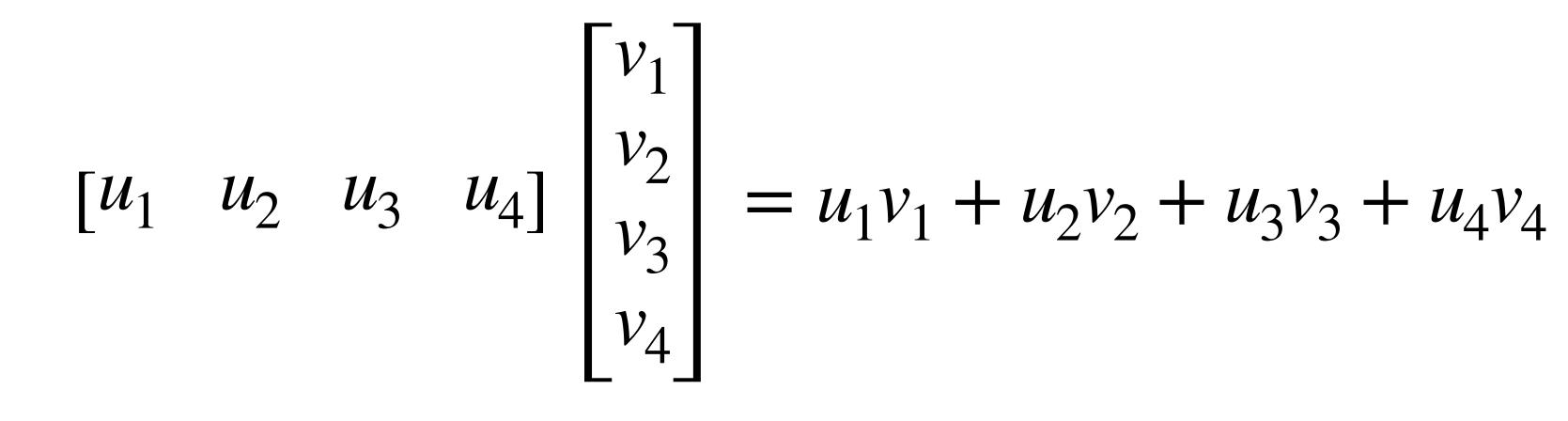
Recall: The Second Key Idea

can be defined in terms of inner products

Spaces with inner products (like \mathbb{R}^n) are places where you can do analytic geometry

All of the basic concepts of analytic geometry

Recall: Inner Products

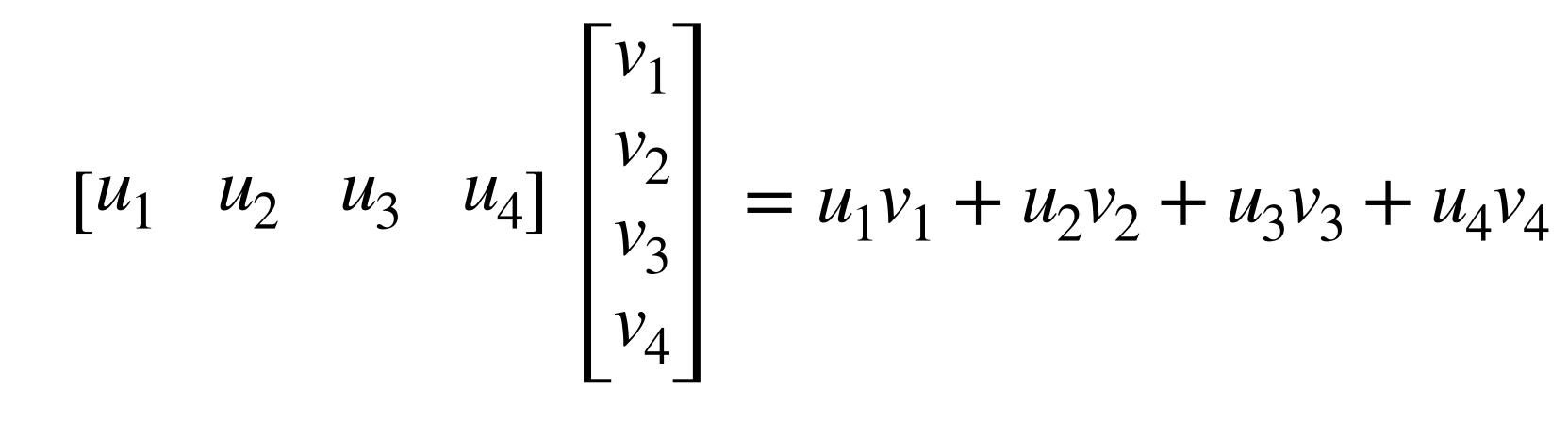


and v in \mathbb{R}^n is

Definition. The inner product of two vectors u

 $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$

Recall: Inner Products



Definition. The inner product of two vectors u and v in \mathbb{R}^n is a.k.a. dot product

 $\langle \mathbf{u}, \mathbf{v} \rangle =$

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}$$

Recall: Norms and Inner Products

The norm of a vector is the square root of the inner product with itself.

Definition. The ℓ^2 norm of a vector v in \mathbb{R}^n is $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$

Recall: Norms and Inner Products

Definition. The ℓ^2 **norm** of a vector \mathbf{v} in \mathbb{R}^n is $\|\mathbf{v}\| = \sqrt{\mathbf{v}\cdot\mathbf{v}}$

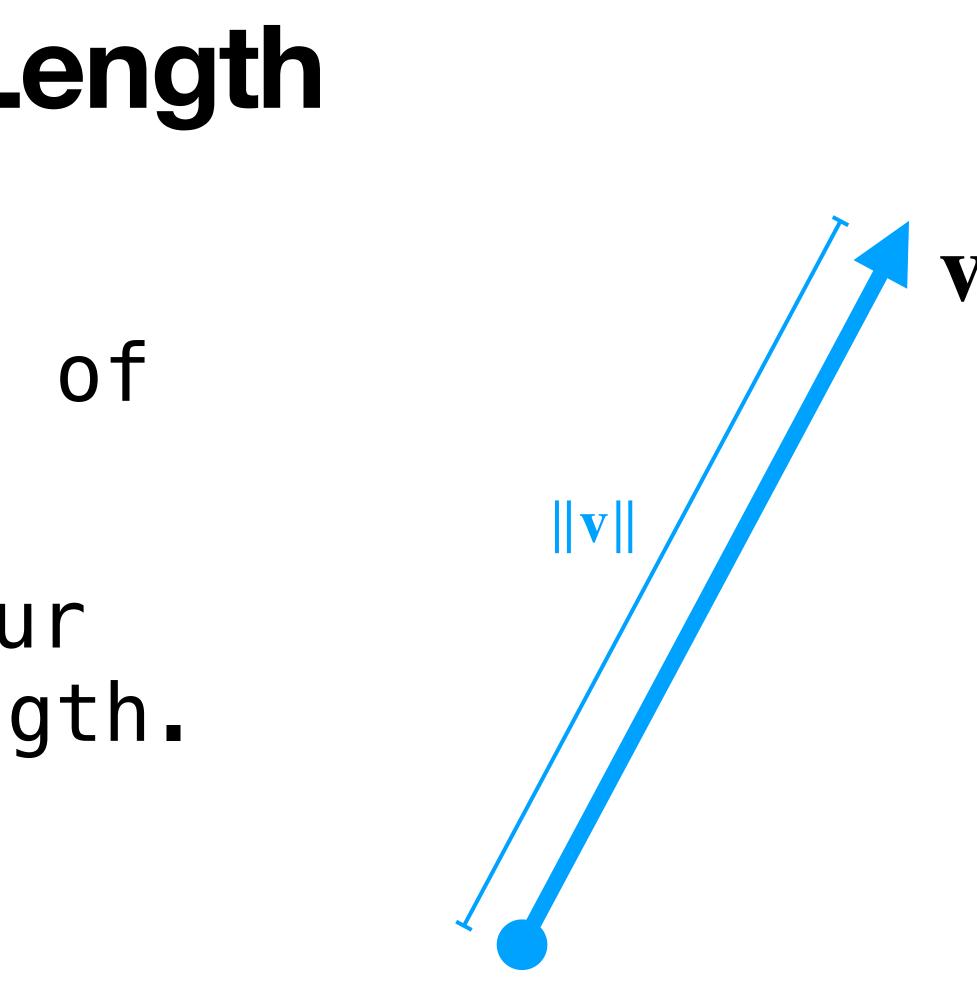
The norm of a vector is the square root of the inner product with itself.

It's important that $\mathbf{v}^T \mathbf{v}$ is nonnegative.

Recall: Norms and Length

Norms give us a notion of <u>length</u>.

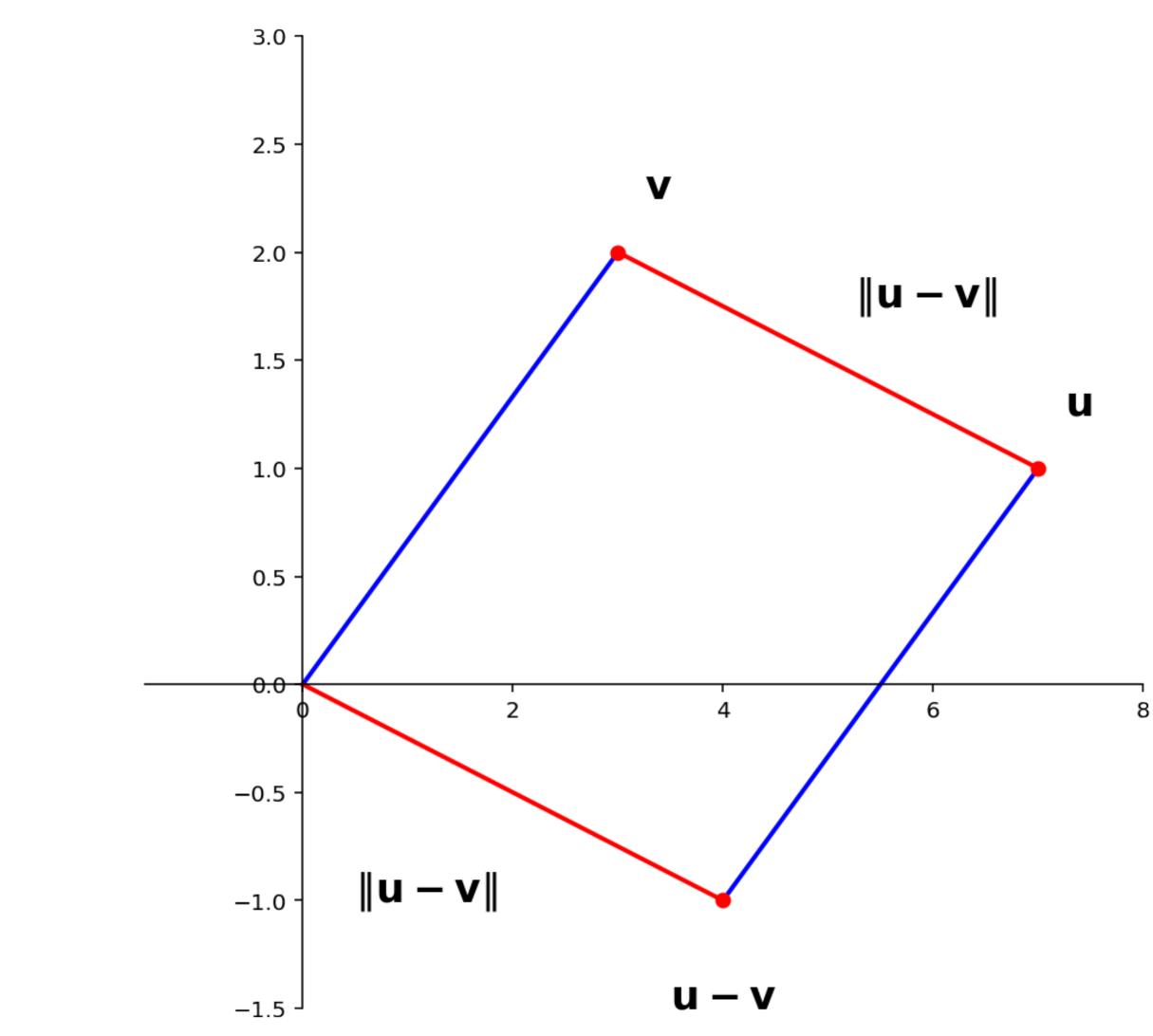
In \mathbb{R}^2 and \mathbb{R}^3 this is our existing notion of length.



Recall: Distance

If we know how to calculate lengths of vectors, we know how to calculate distances.

Recall: Distance (Pictorially)



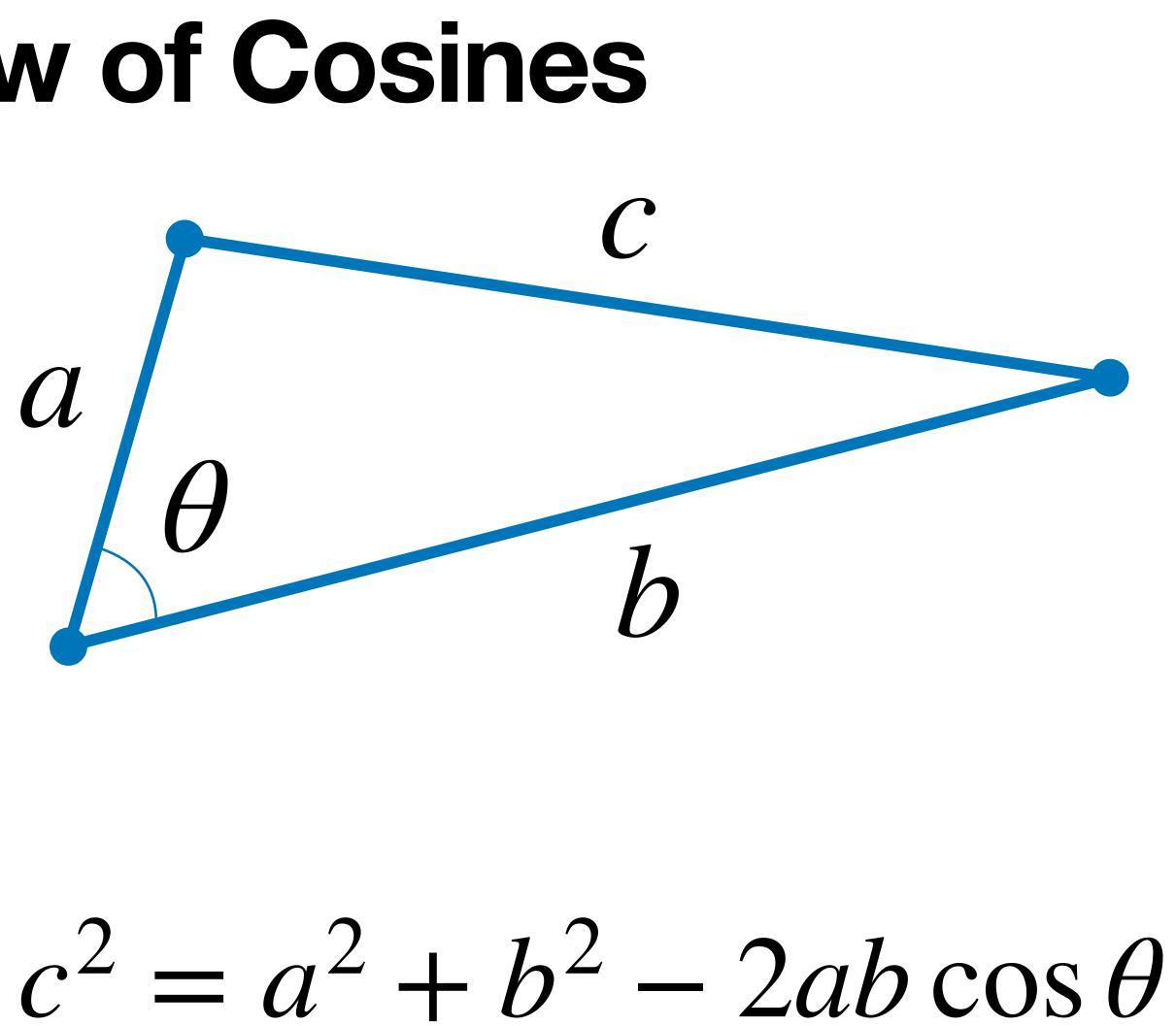
Recall: Distance (Algebraically)

Definition. The distance between two points **u** and v in \mathbb{R}^n is given by $dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$ e.g., $\mathbf{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

Recall: Law of Cosines

 \mathcal{A}

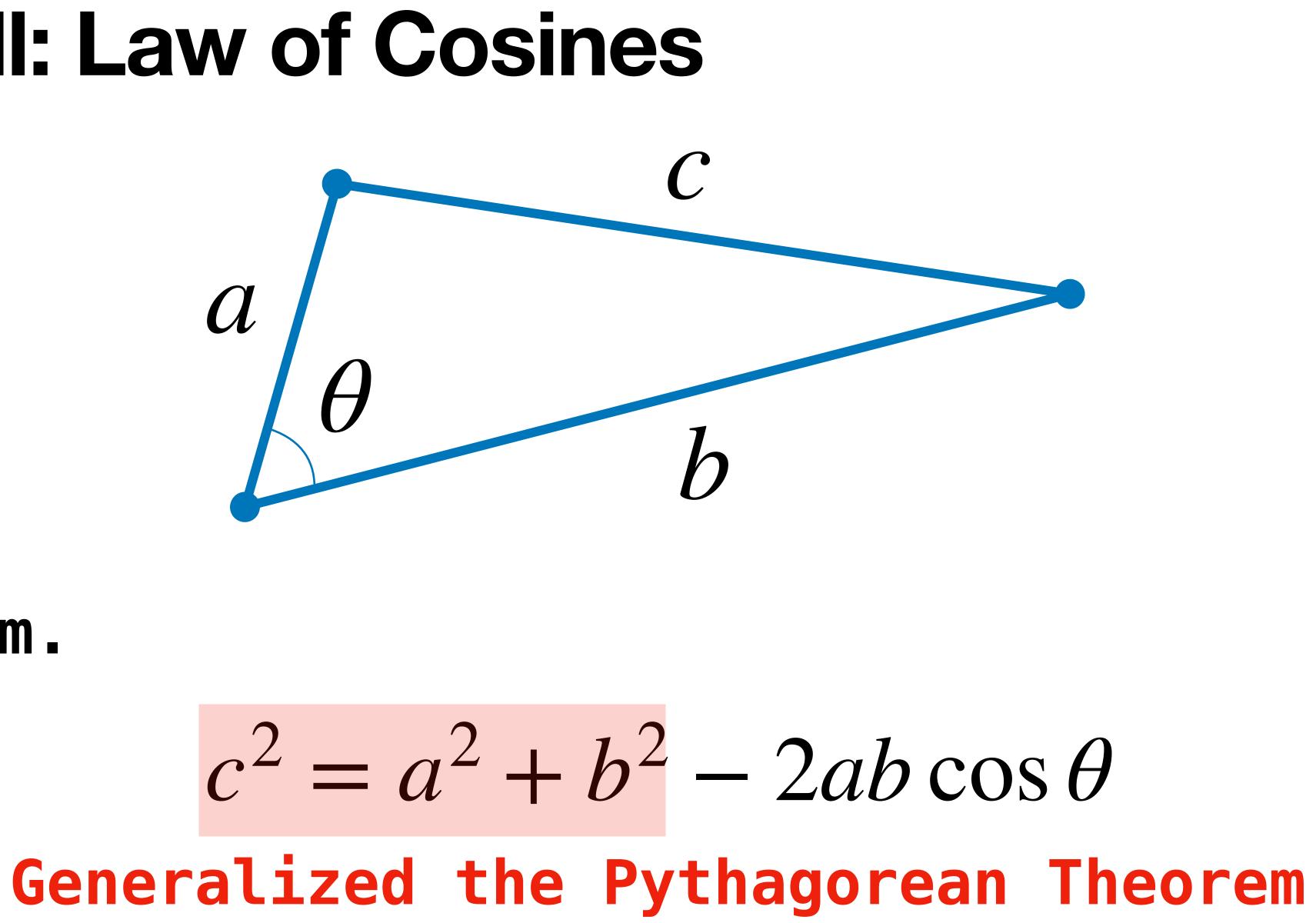
Theorem.



Recall: Law of Cosines

0

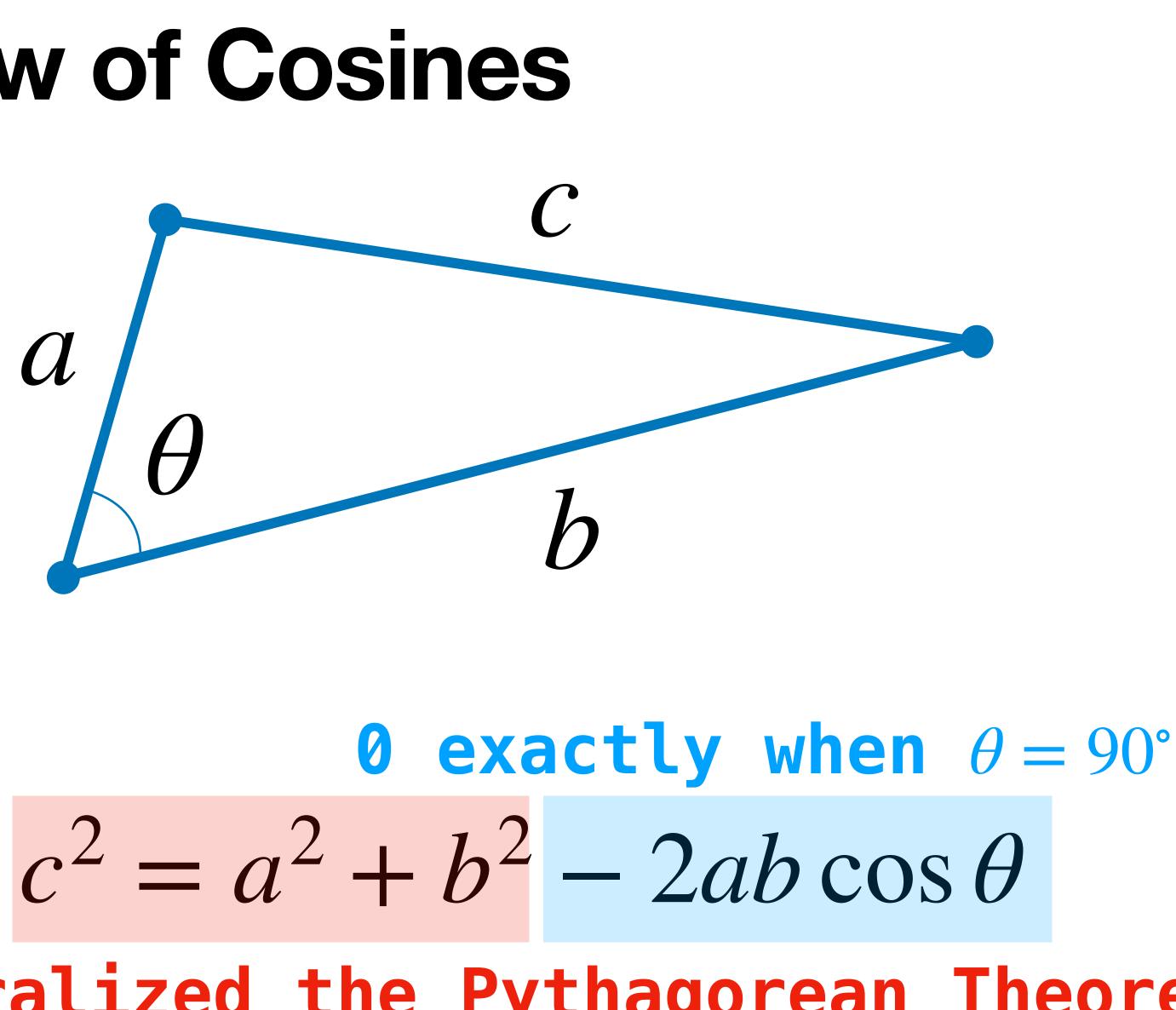
Theorem.



Recall: Law of Cosines

Theorem.

Generalized the Pythagorean Theorem



Recall: Cosines and Unit Vectors

θ between them,

The cosine of the angle between two vectors is the inner product of their ℓ^2 normalizations

Theorem. For vectors u and v in \mathbb{R}^n with an angle

$\cos \theta = \left\langle \frac{\mathbf{u}}{\|\mathbf{u}\|}, \frac{\mathbf{v}}{\|\mathbf{v}\|} \right\rangle$

Recall: Orthogonality

Definition. Vectors u and v are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

thing.

Orthogonal and perpendicular are the same

With inner product we can...

- Given a vector we can determine its <u>length</u>
- Given two points (vectors) we can determine the <u>distance</u> between them
- Given two vectors we can determine the <u>angle</u> between them

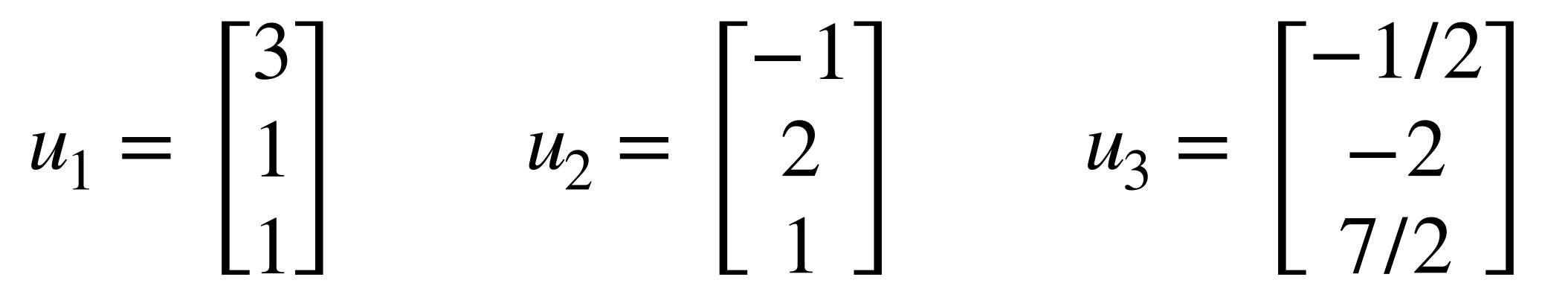
Orthogonal Sets

Orthogonal Sets

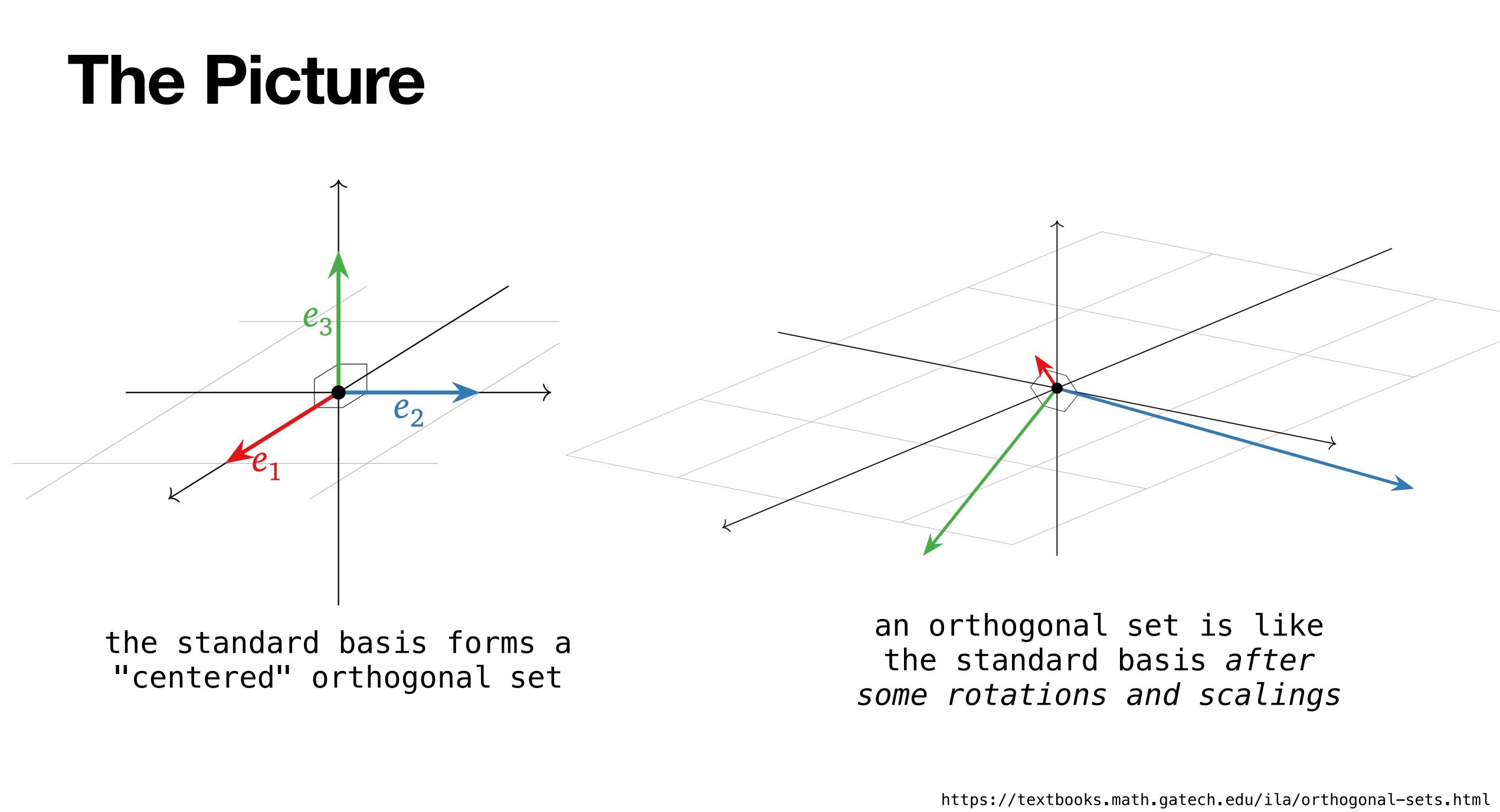
Definition. A set $\{u_1, u_2, ..., u_p\}$ of vectors from R^n is an orthogonal set if every pair of distinct vectors is orthogonal: if $i \neq j$ then $\langle \mathcal{U}_i,$ Each vector is pairwise/mutually perpendicular

$$u_j \rangle = 0$$

Verify:



What do orthogonal sets look like?



Orthogonal Sets and Independence

nonzero vectors from R^n , then it is <u>linearly</u> <u>independent</u>

Verify:

Theorem. If $\{u_1, u_2, \dots, u_k\}$ is an orthogonal set of

The Takeaway

If $\{u_1, u_2, \dots, u_k\}$ is an orthogonal set, then it is a **basis** for $span\{u_1, u_2, \ldots, u_k\}$

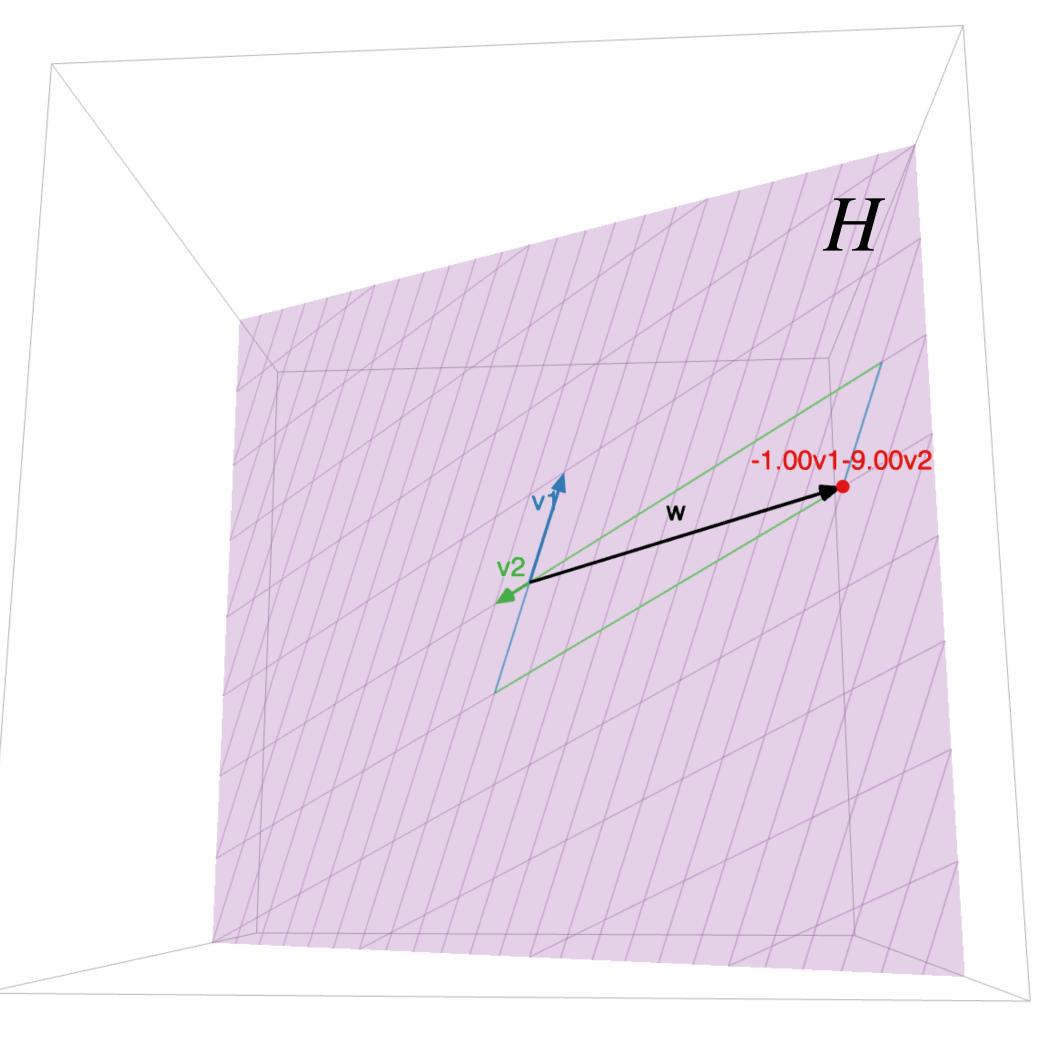
Orthogonal Basis

Definition. An orthogonal basis for a subspace W of Rⁿ is a basis for W which is also an orthogonal set.

https://textbooks.math.gatech.edu/ila/spans.html

Orthogonal Basis

Definition. An orthogonal basis for a subspace W of Rⁿ is a basis for W which is also an orthogonal set.

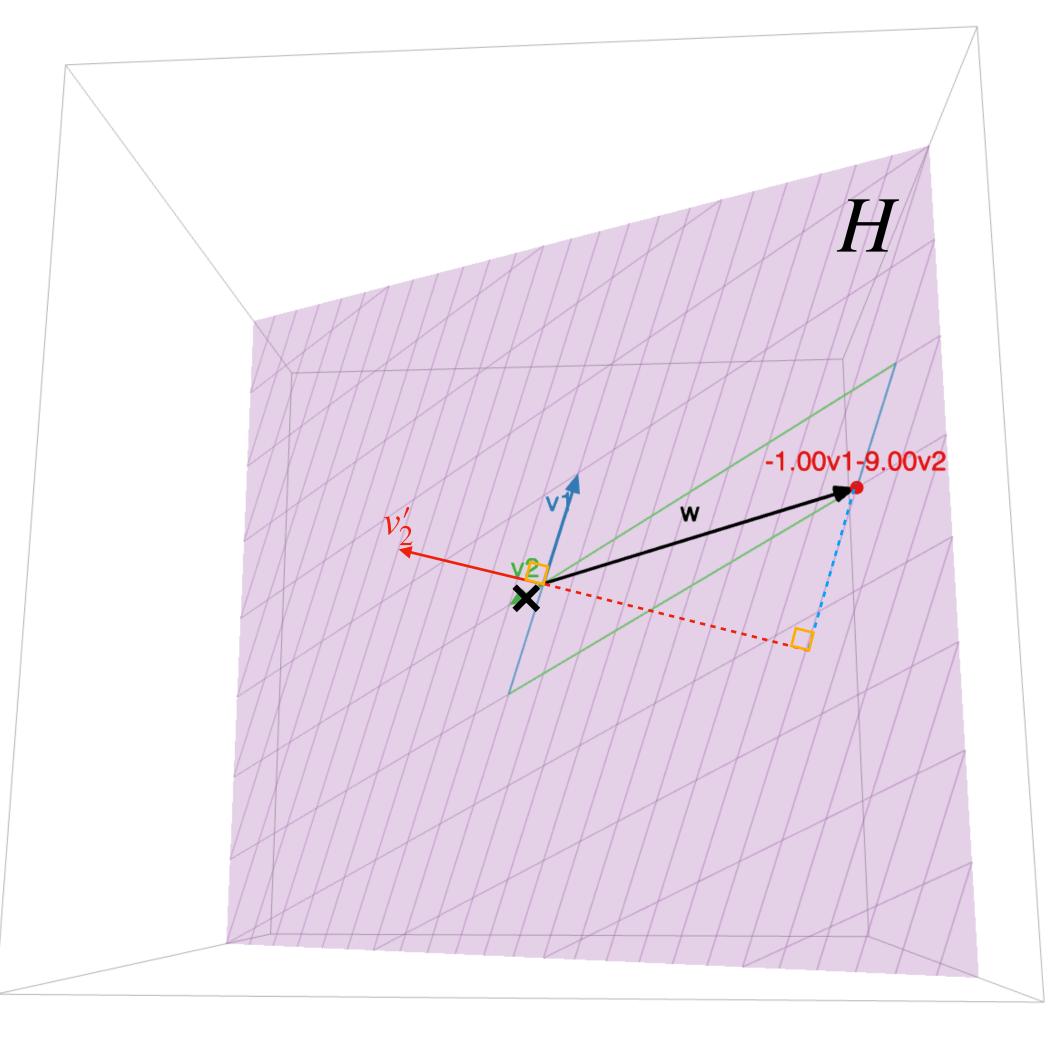


v_1 and v_2 form a basis of H

https://textbooks.math.gatech.edu/ila/spans.html

Orthogonal Basis

Definition. An orthogonal basis for a subspace W of Rⁿ is a basis for W which is also an orthogonal set.



v_1 and v_2 form a basis of H v_1 and v_2' form an **orthogonal** basis of H

https://textbooks.math.gatech.edu/ila/spans.html

What's nice about an orthogonal basis?

Recall: How To: Bases

Recall: How To: Bases

 $\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots c_p \mathbf{u}_p$

Question. Given a basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace W of R^n and a vector w in W, weights $c_1, c_2, ..., c_p$ such that

Recall: How To: Bases

- **Question.** Given a basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace Wof R^n and a vector \mathbf{w} in W, weights $c_1, c_2, ..., c_p$ such that $\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + ... c_p \mathbf{u}_p$ **Solution.** Solve the vector equation $x_1 \mathbf{u}_1 + x_2 \mathbf{u}_2 + ... x_p \mathbf{u}_p = \mathbf{w}$
- by Gaussian elimination, matrix inversion, etc.

Recall: How To: Bases

- **Question.** Given a basis $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_p\}$ for a subspace Wof R^n and a vector \mathbf{w} in W, weights $c_1, c_2, ..., c_p$ such that $\mathbf{w} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + ... c_p \mathbf{u}_p$ Solution. Solve the vector equation
 - $x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + \dots x_p\mathbf{u}_p = \mathbf{w}$
- by Gaussian elimination, matrix inversion, etc. This takes work

Orthogonal Bases and Linear Combinations

 $y = c_1 u_1 + ... + c_p u_p$ then for j = 1,...,p

Verity:

- **Theorem.** For an orthogonal set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$, if
 - $C_j = \frac{\mathbf{y}^T \mathbf{u}_j}{\mathbf{u}_j^T \mathbf{u}_j}$

for a subspace W of \mathbb{R}^n and a vector w in W, weights c_1, c_2, \ldots, c_p such that

 $\mathbf{W} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots c_p \mathbf{u}_p$

Question. Given an orthogonal basis $\{u_1, u_2, ..., u_p\}$

for a subspace W of R^n and a vector w in W, weights c_1, c_2, \ldots, c_p such that

 $\mathbf{W} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots c_p \mathbf{u}_p$

Solution. $c_j = \frac{\mathbf{W} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$

Question. Given an orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$

for a subspace W of R^n and a vector w in W, weights c_1, c_2, \ldots, c_p such that

 $\mathbf{W} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots c_p \mathbf{u}_p$

Solution. $c_j = \frac{\mathbf{W} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$

Question. Given an orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$

Much easier to compute.

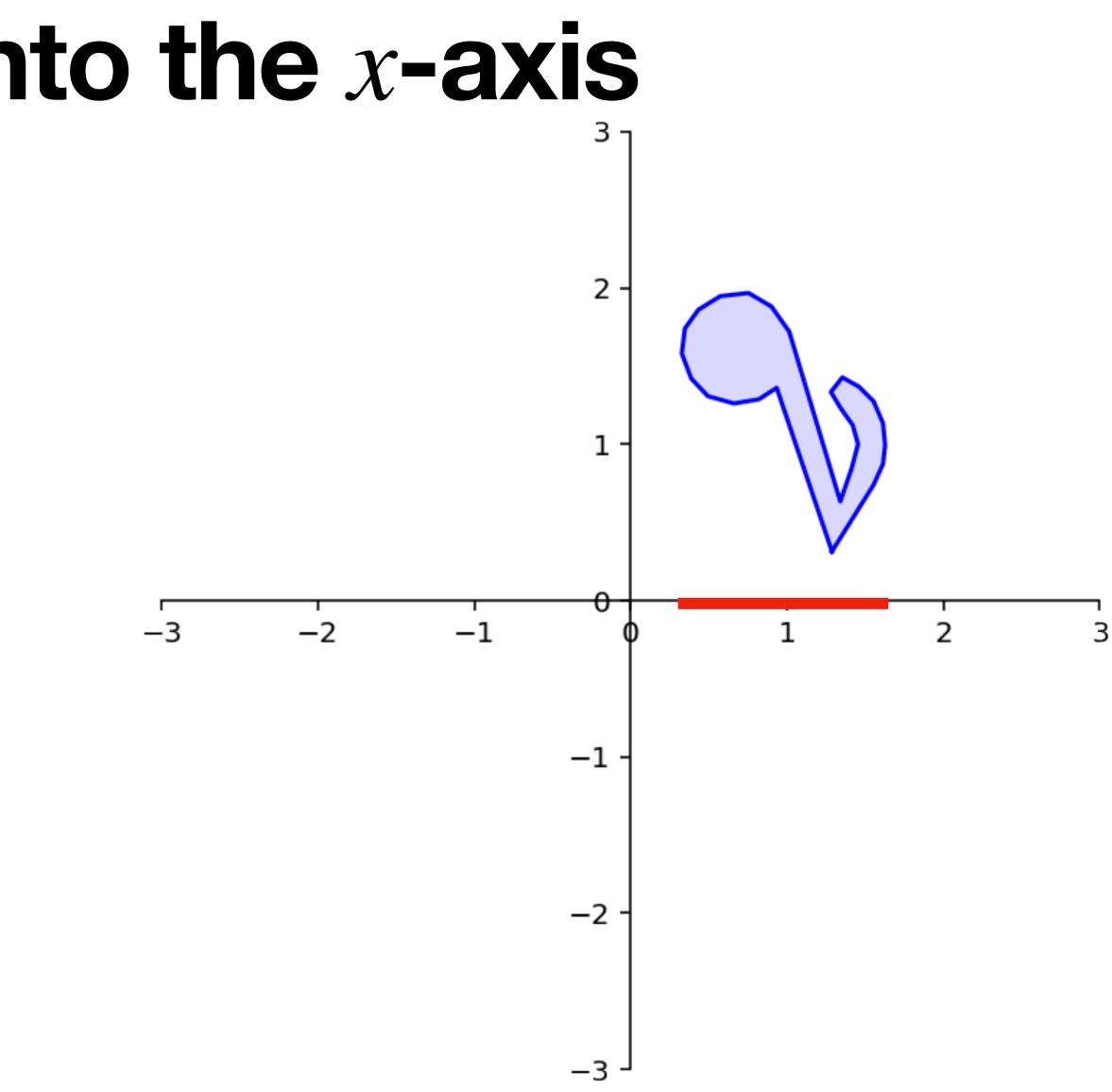
Question

Express $[6 \ 1 \ (-8)]^T$ as a linear combination of vectors in $\{u_1, u_2, u_3\}$ where $u_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} \qquad \begin{array}{c} u_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$

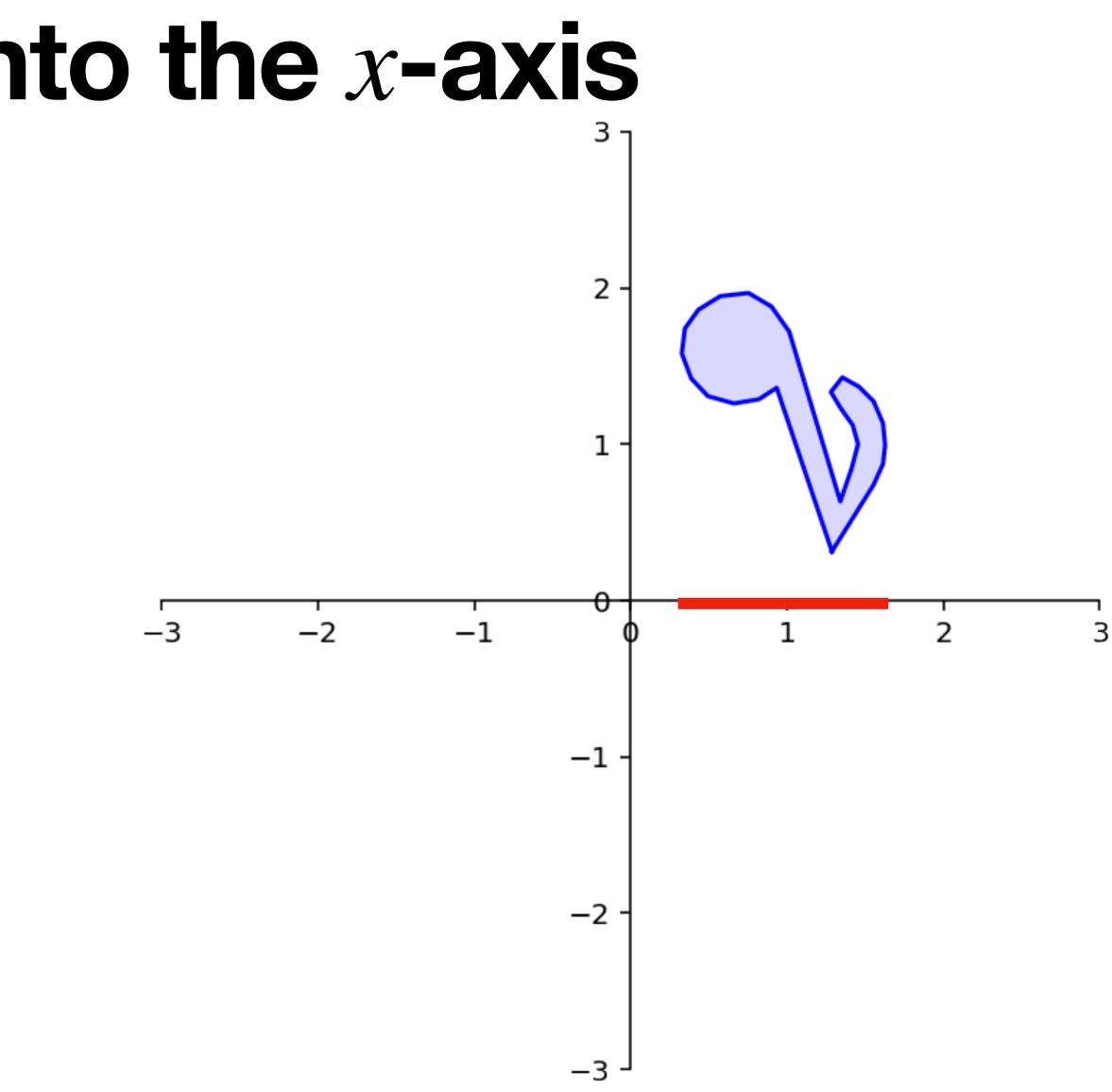
$$u_3 = \begin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$

Answer: $u_1 - 2u_2 - 2u_3$

Why does that formula in the last example work?

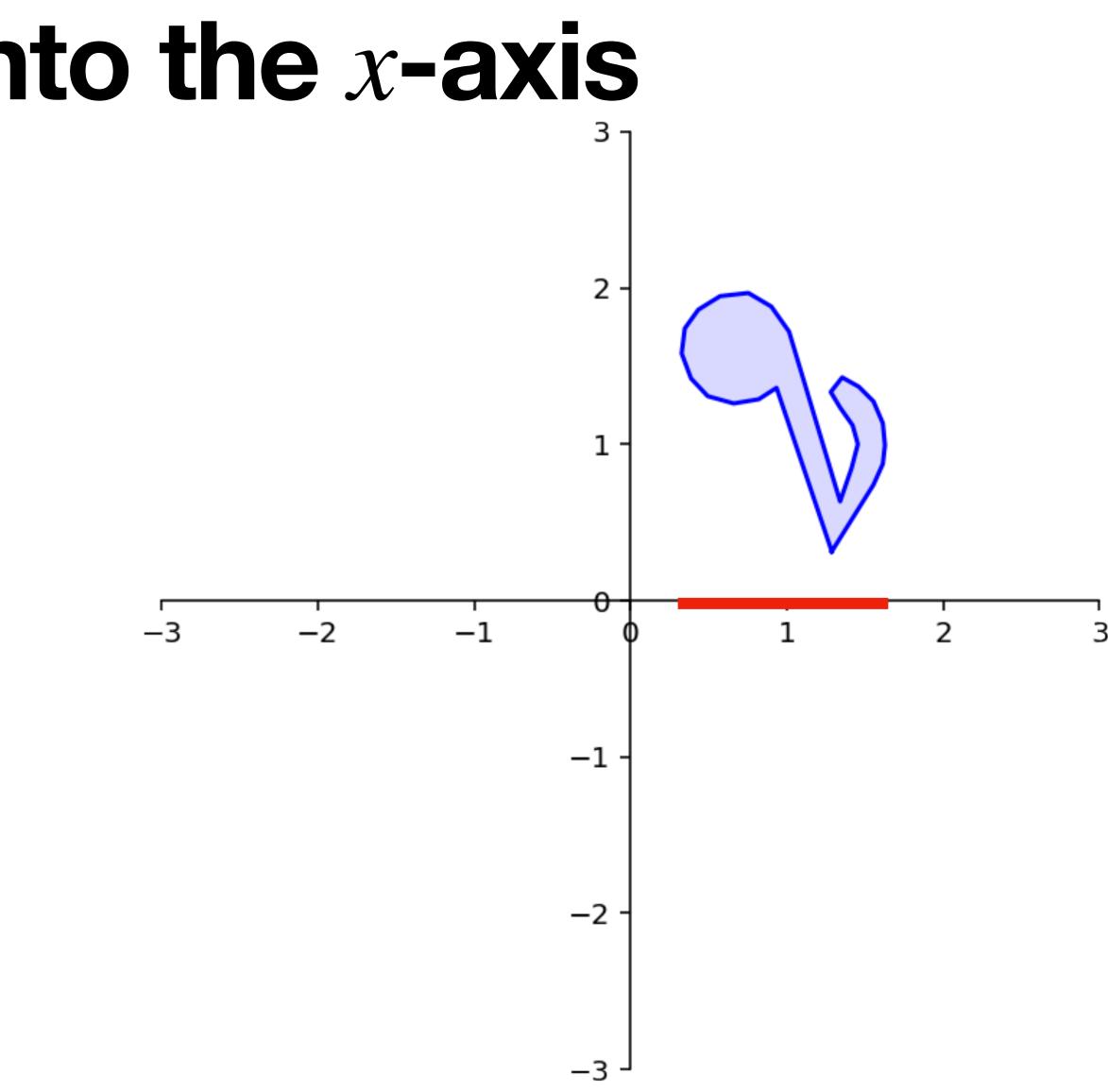


We've seen simple projections in R^2



We've seen simple projections in R^2

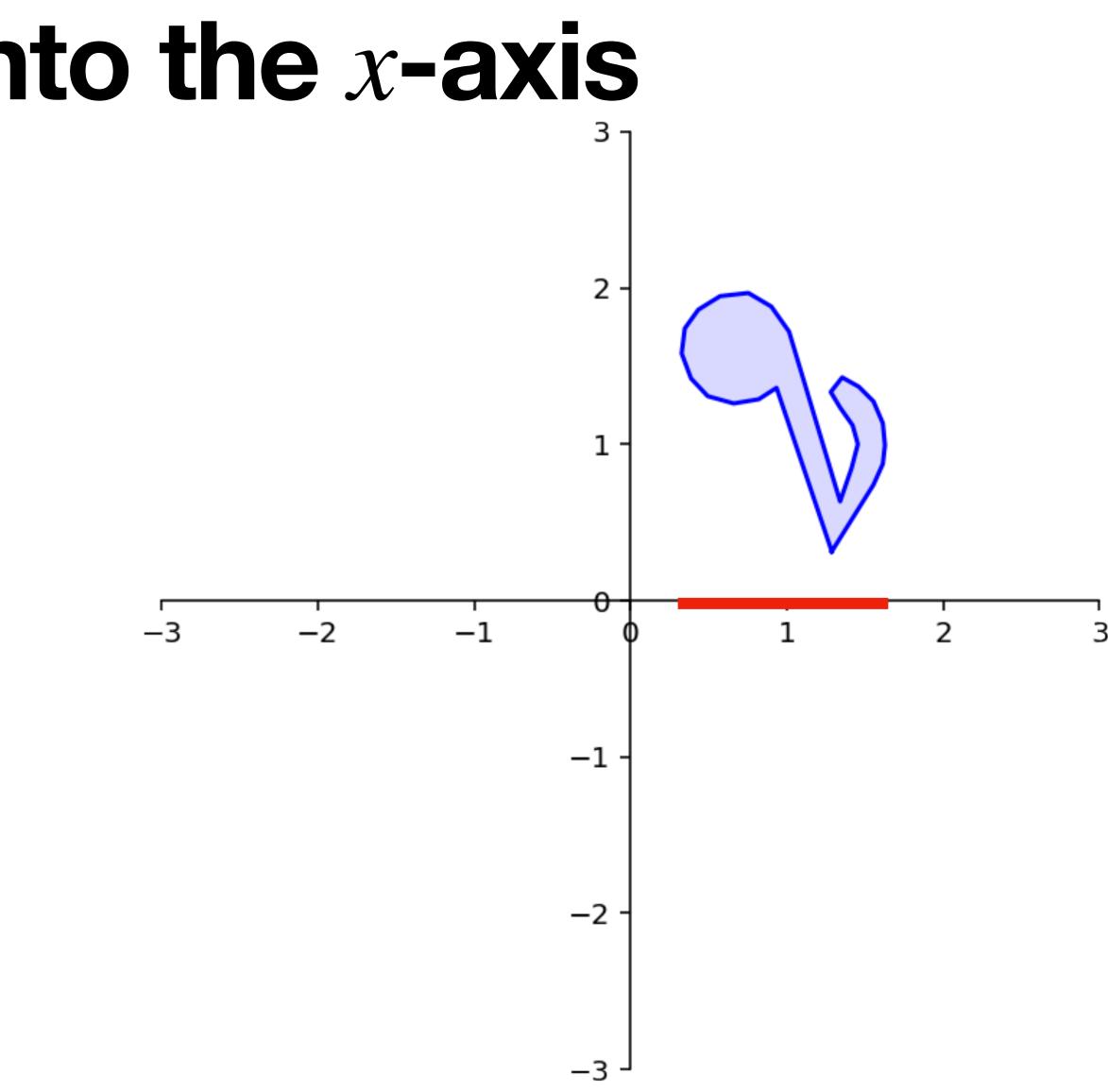
We're going to generalize this idea

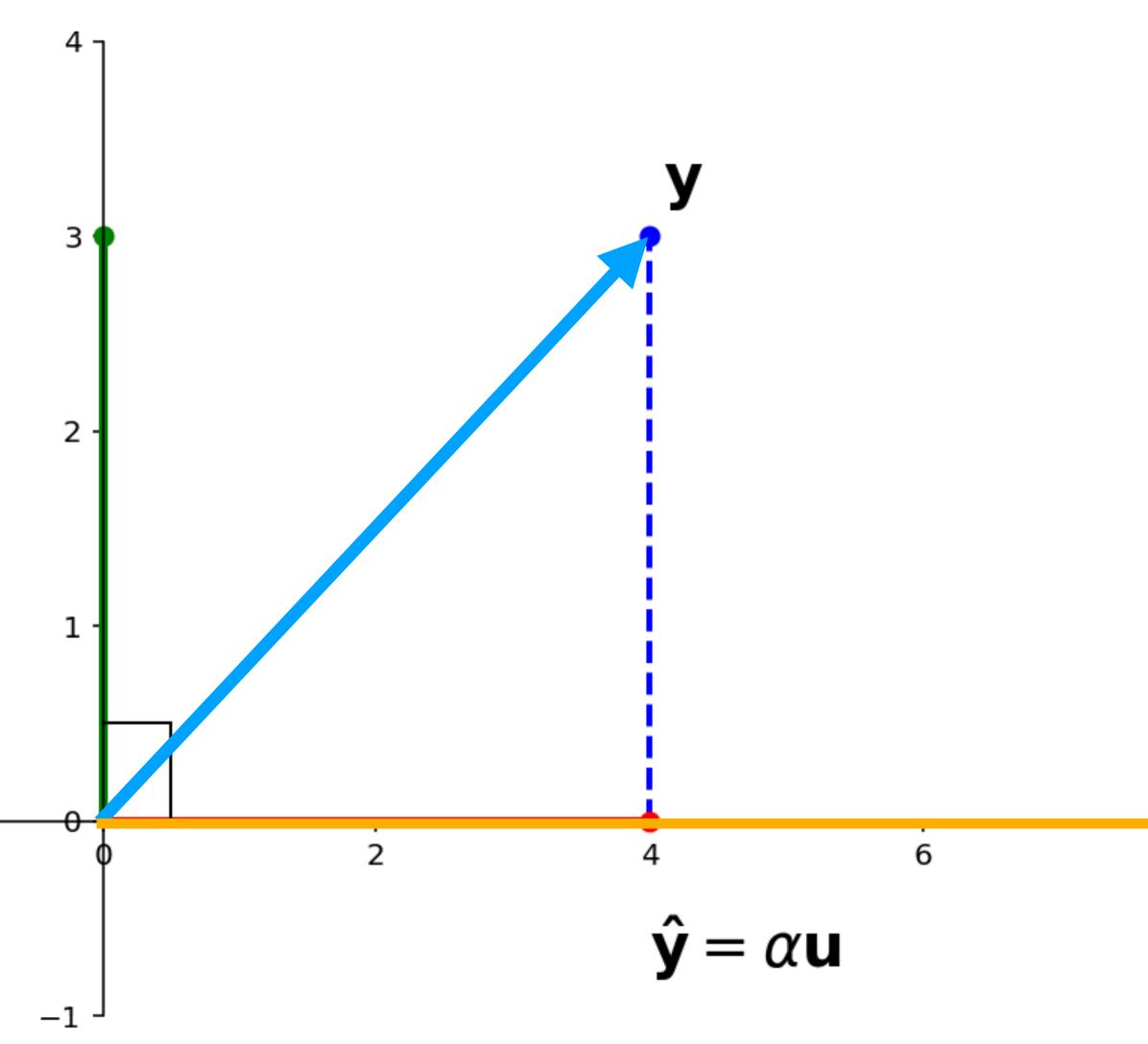


We've seen simple projections in R^2

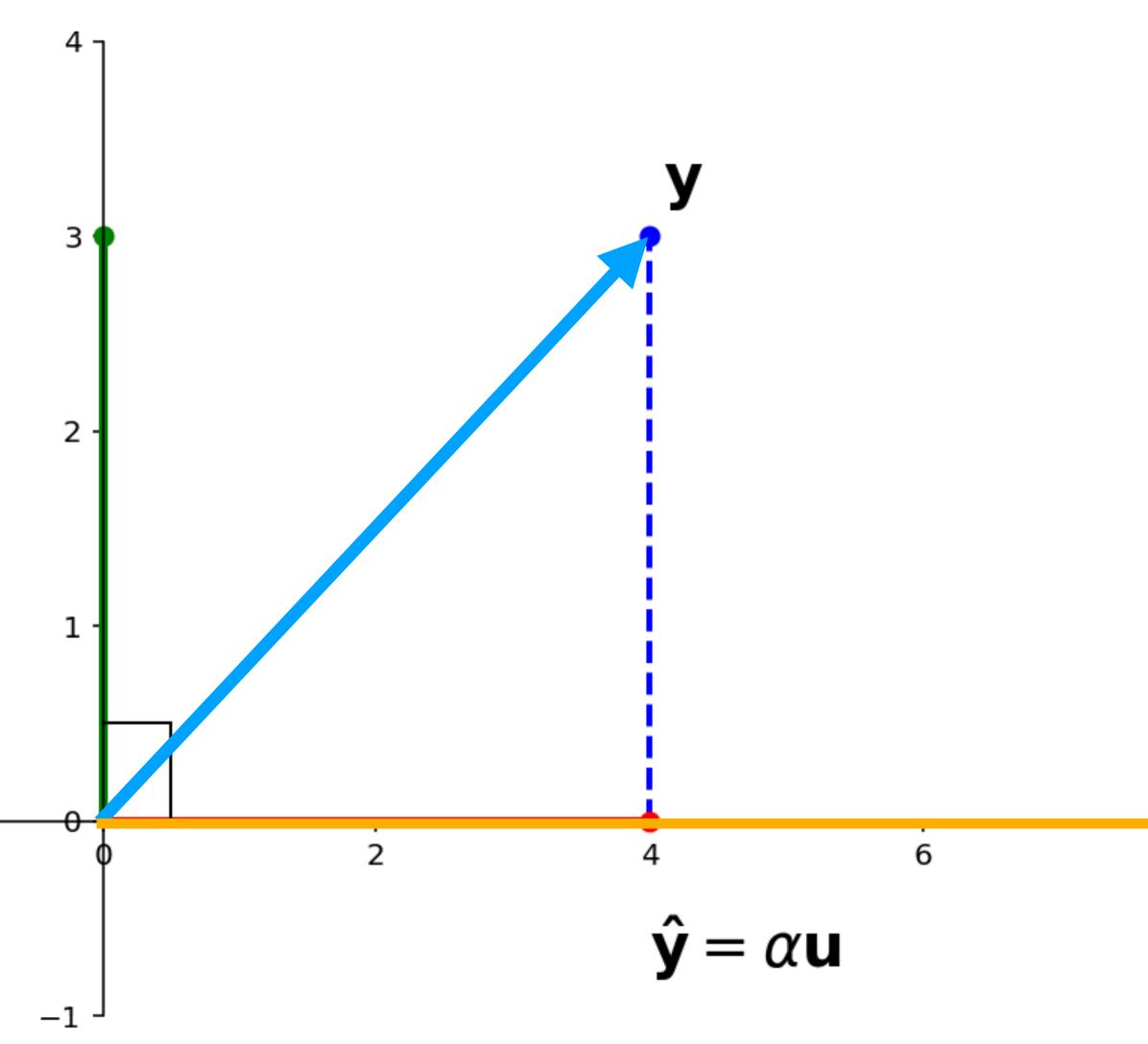
We're going to generalize this idea

What we really did was a kind of projection onto the basis vectors



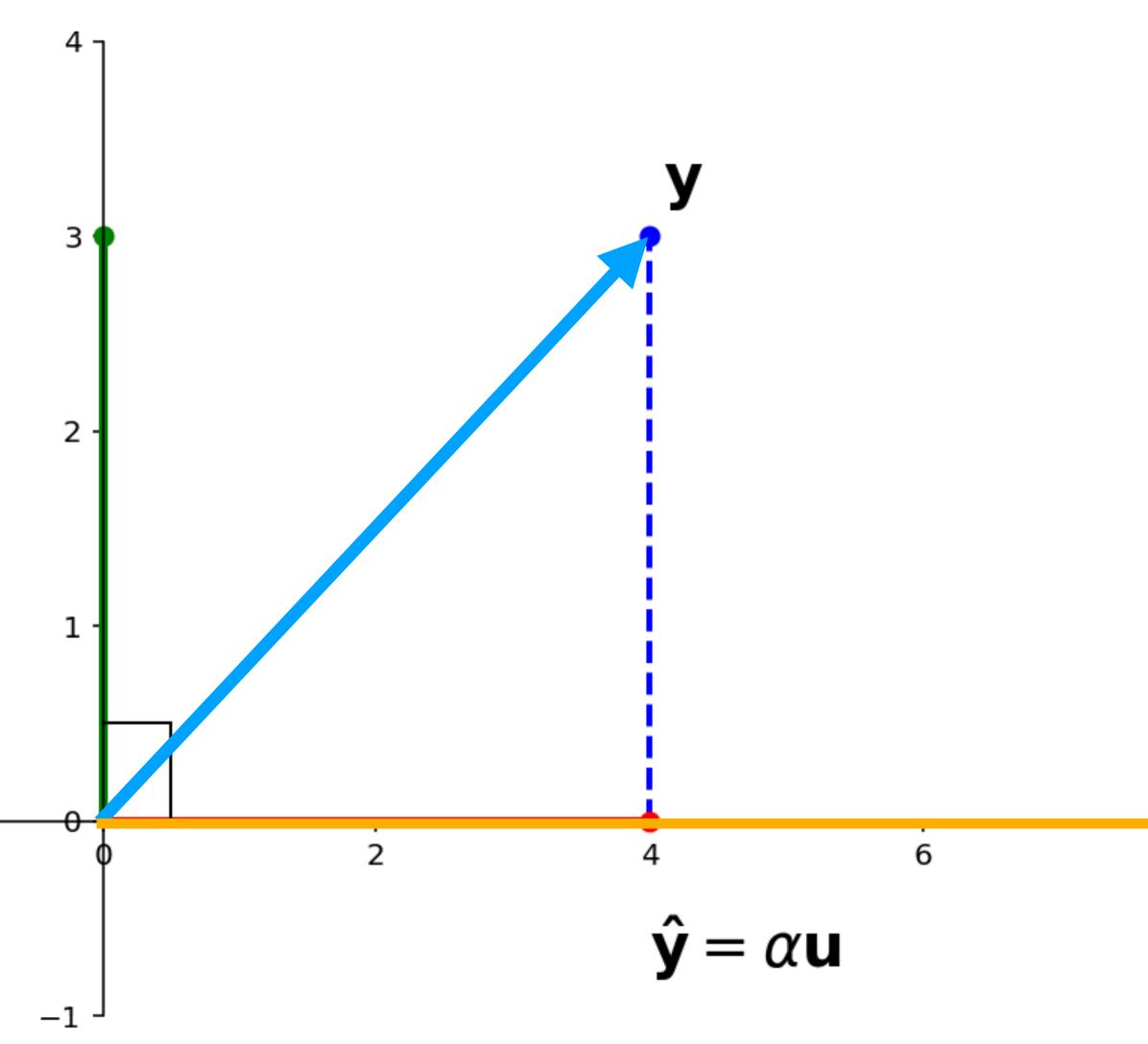


Question. Given vectors y and u in R^n , find vectors $\hat{\mathbf{y}}$ and \mathbf{z} such that



Question. Given vectors y and u in R^n , find vectors $\hat{\mathbf{y}}$ and \mathbf{z} such that

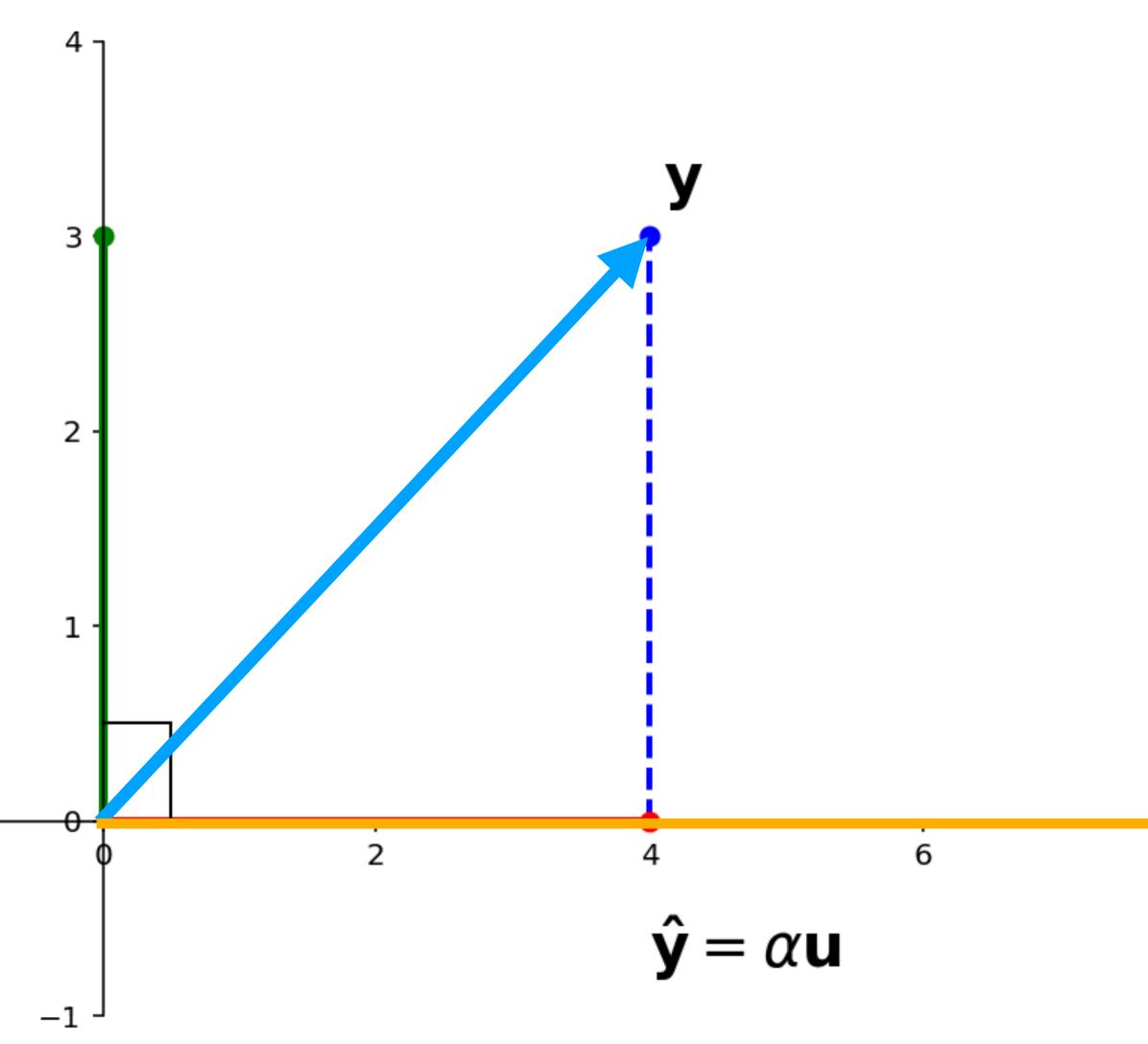
» z is orthogonal to u $(i.e., z \cdot u = 0)$



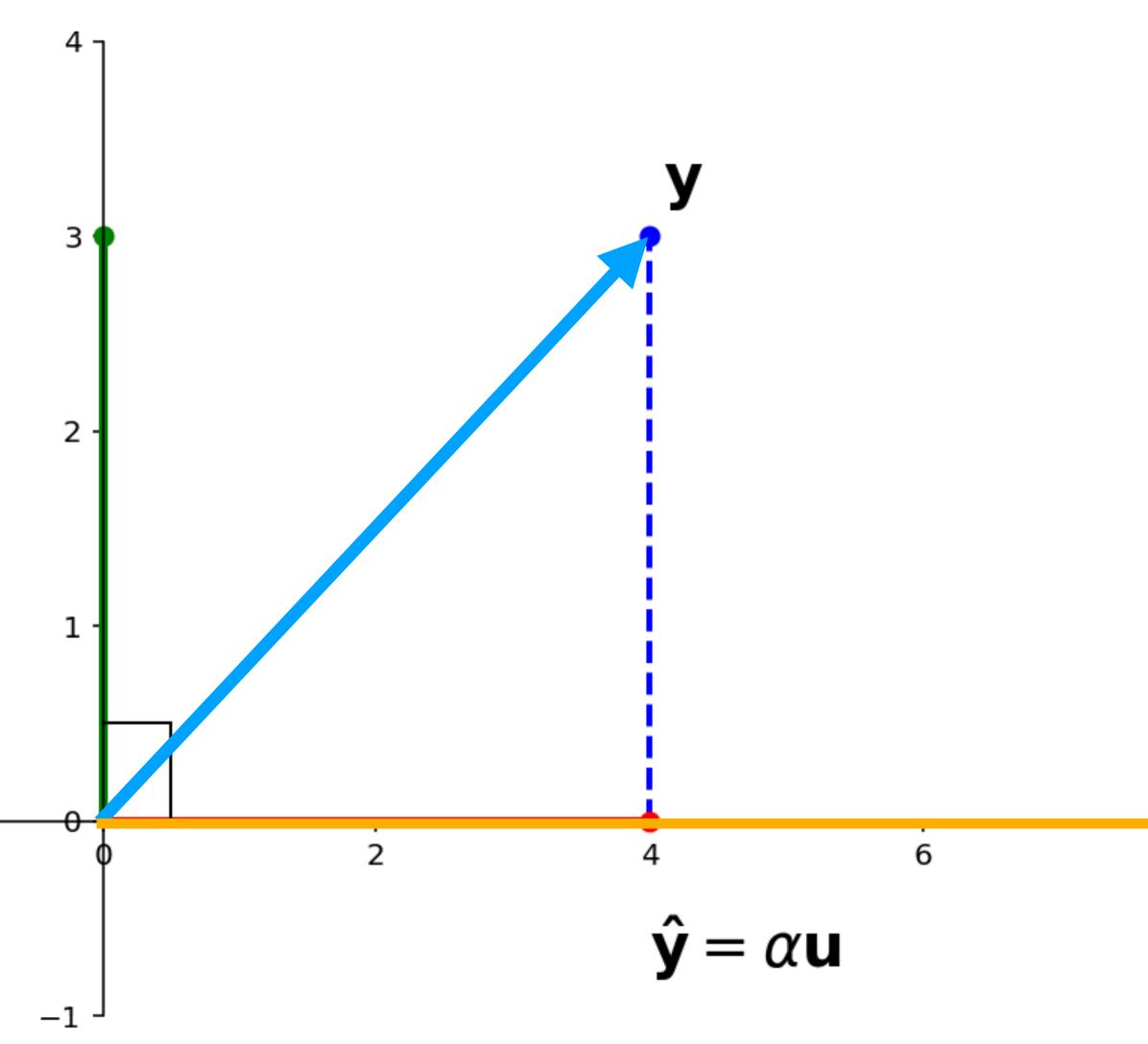
Question. Given vectors y and u in R^n , find vectors $\hat{\mathbf{y}}$ and \mathbf{z} such that

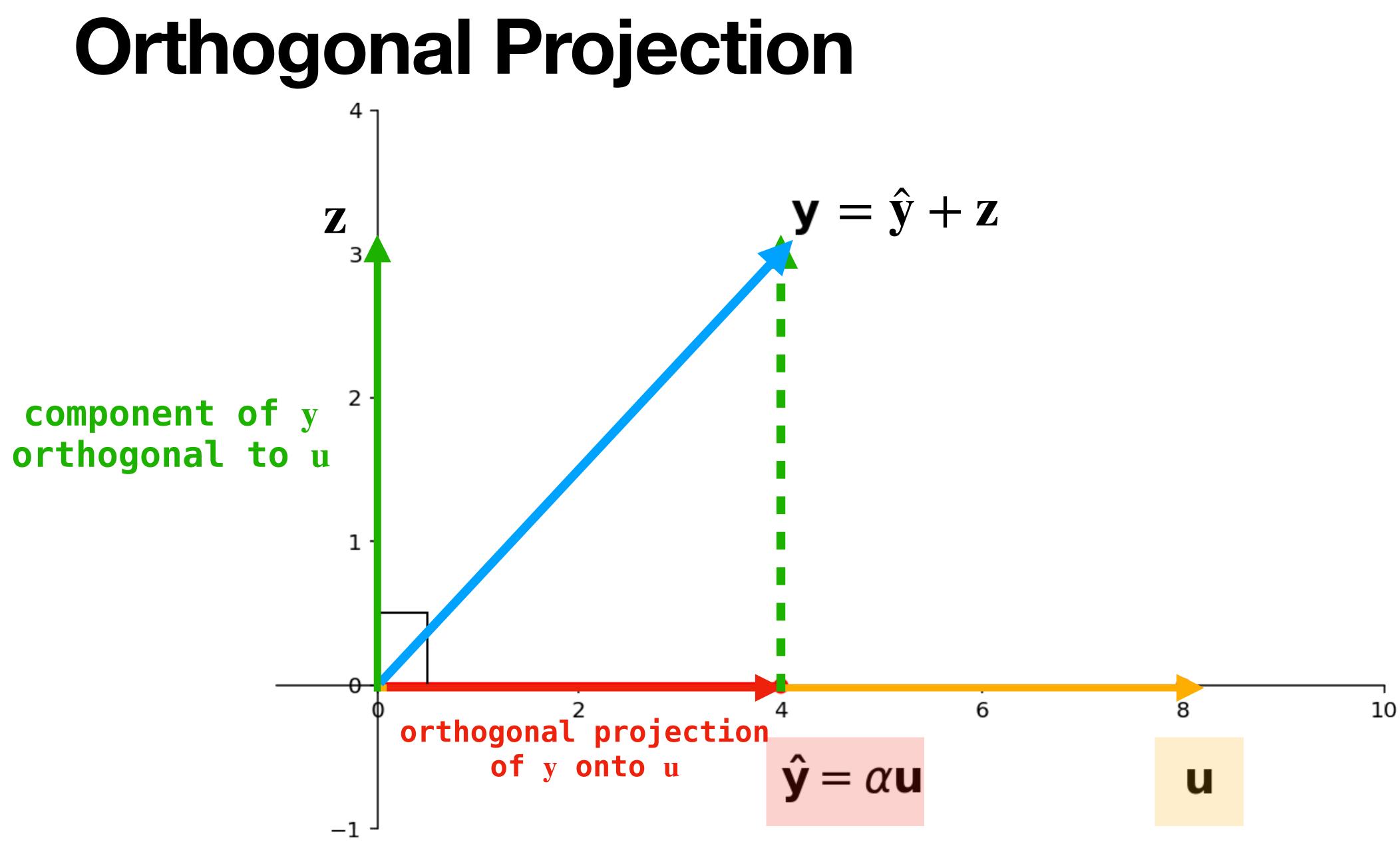
» z is orthogonal to u $(i.e., z \cdot u = 0)$

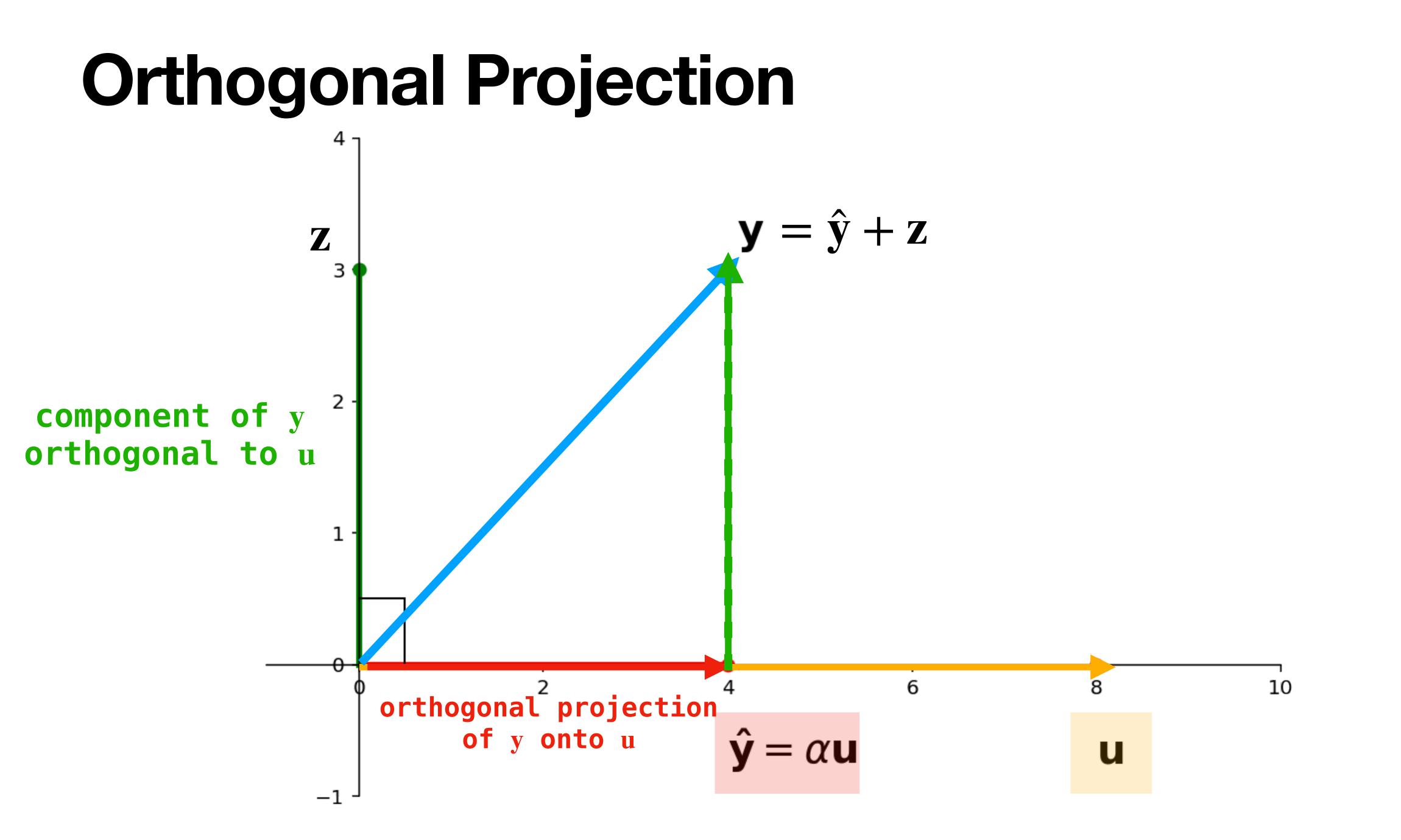
 $\hat{\mathbf{y}} \in span\{\mathbf{u}\}$



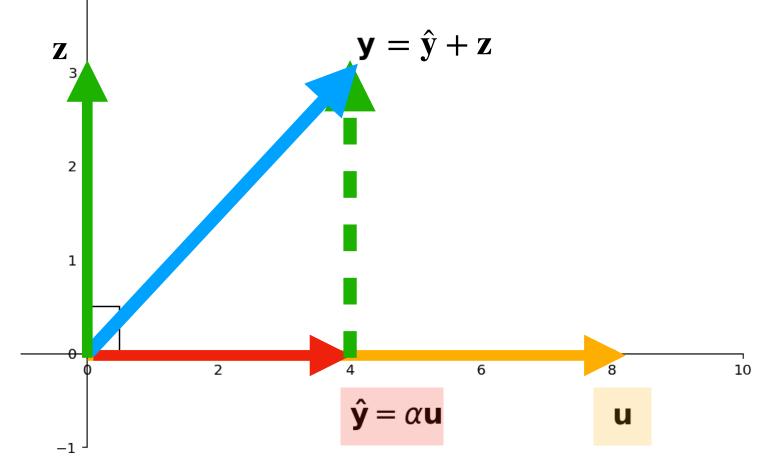
- Question. Given vectors y and u in R^n , find vectors $\hat{\boldsymbol{y}}$ and \boldsymbol{z} such that
- » z is orthogonal to u $(i.e., z \cdot u = 0)$
- $\hat{\mathbf{y}} \in span\{\mathbf{u}\}$
- $y = \hat{y} + z$





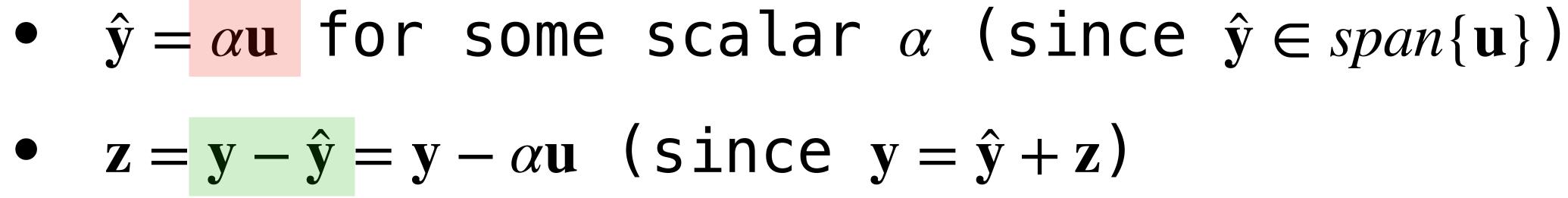


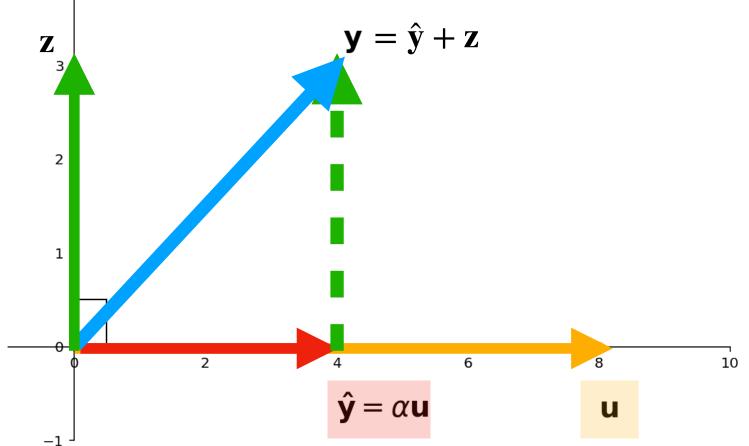
How do we find the orthogonal projection and orthogonal component?



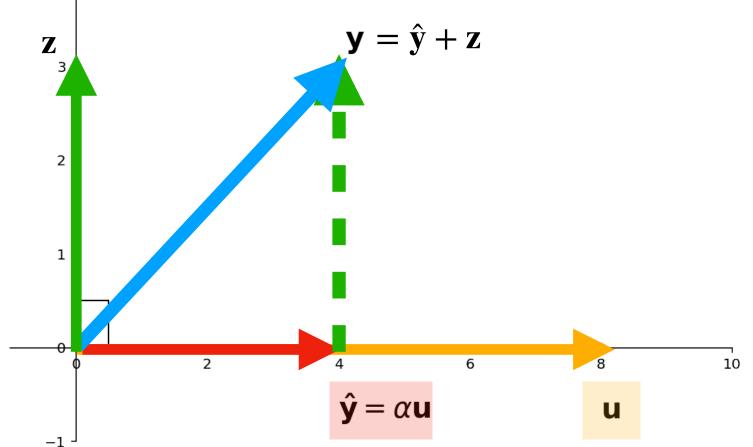
• $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α (since $\hat{\mathbf{y}} \in span{\mathbf{u}})$)





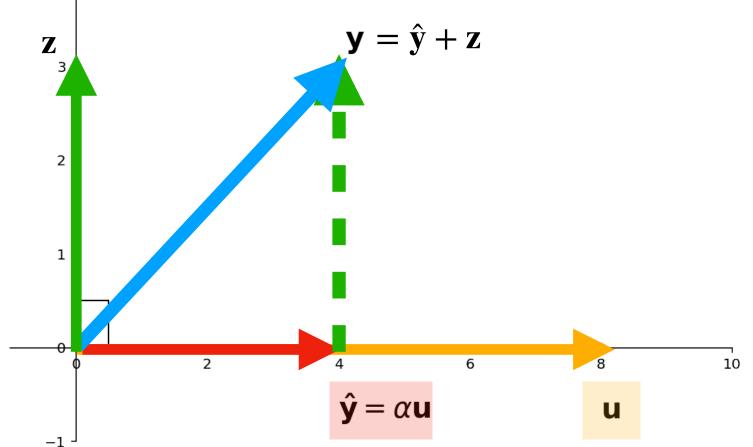


• $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α (since $\hat{\mathbf{y}} \in span{\mathbf{u}})$ • $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \alpha \mathbf{u}$ (since $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$) • $\langle \mathbf{z}, \mathbf{u} \rangle = 0$ (since z is orthogonal with u)



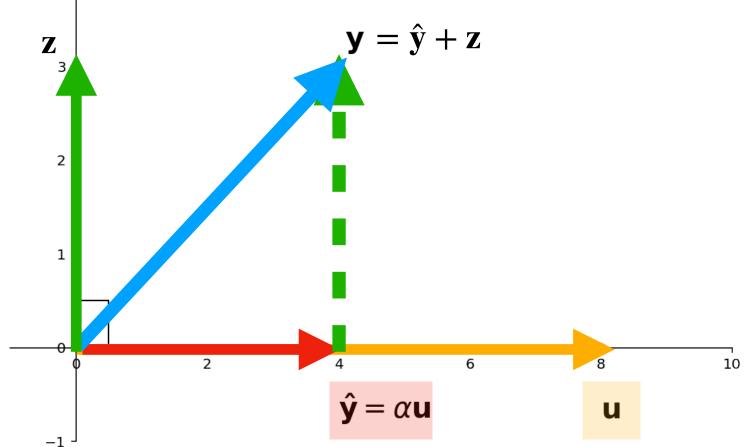
• $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α (since $\hat{\mathbf{y}} \in span{\mathbf{u}})$ • $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \alpha \mathbf{u}$ (since $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$) • $\langle \mathbf{z}, \mathbf{u} \rangle = 0$ (since z is orthogonal with u) Therefore:

 \mathbf{V}



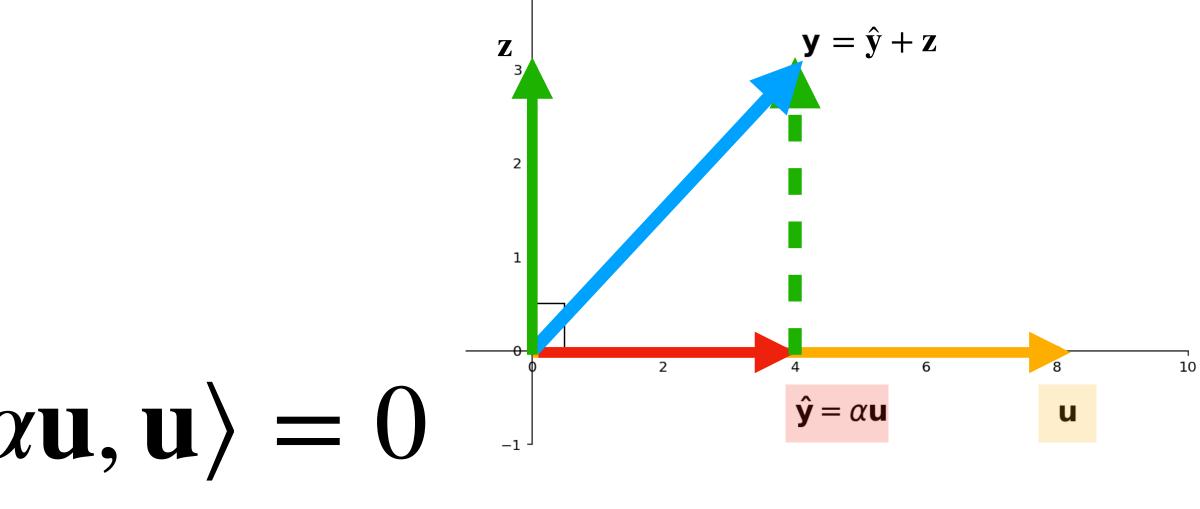
$\langle \mathbf{y} - \alpha \mathbf{u}, \mathbf{u} \rangle = 0$

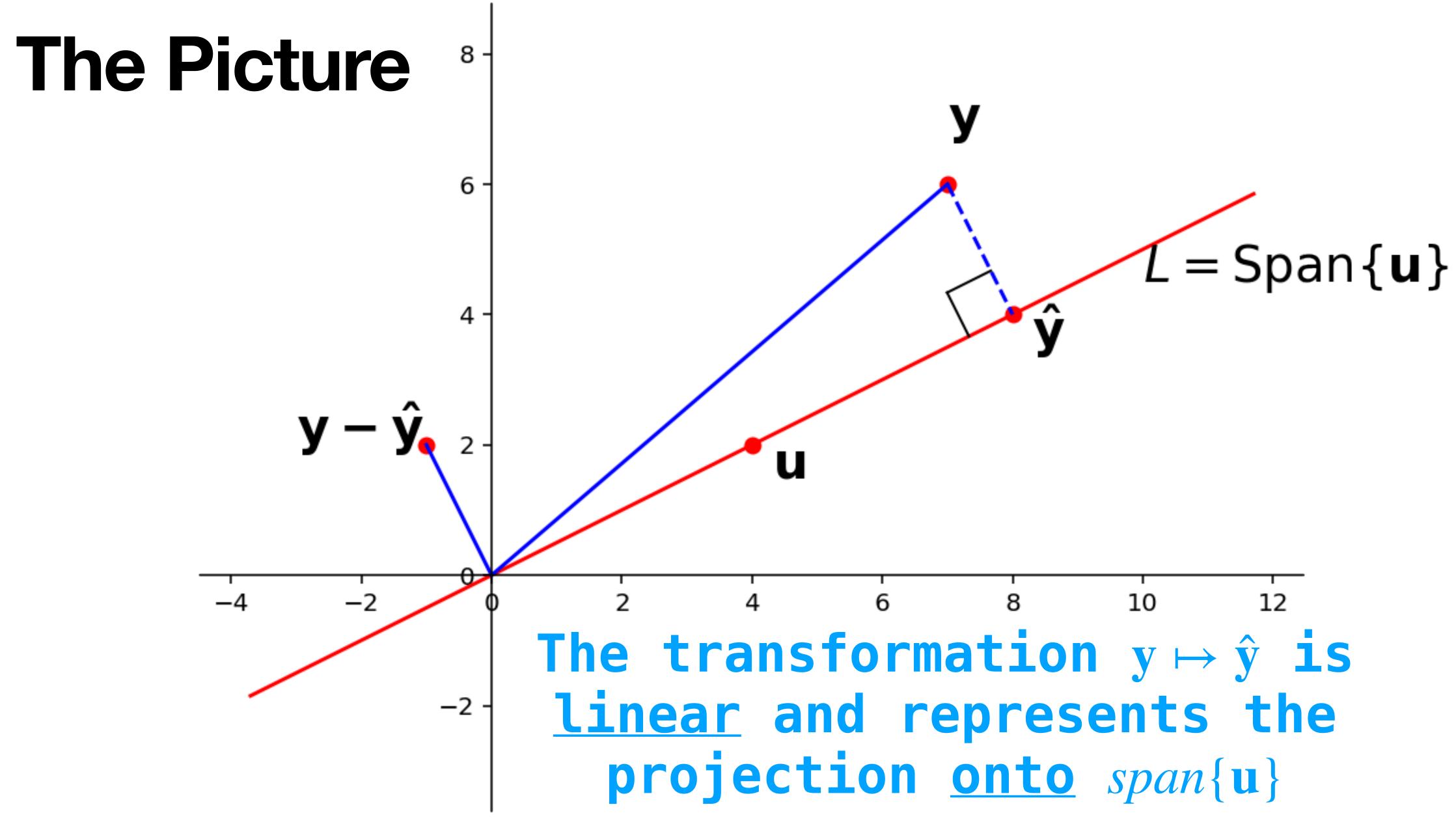
• $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α (since $\hat{\mathbf{y}} \in span{\mathbf{u}})$ • $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \mathbf{y} - \alpha \mathbf{u}$ (since $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$) • $\langle \mathbf{z}, \mathbf{u} \rangle = 0$ (since z is orthogonal with u) Therefore:



 $\langle \mathbf{y} - \alpha \mathbf{u}, \mathbf{u} \rangle = 0$ Once we have α , we can compute both \hat{y} and z

Step 1: Finding α $\langle \mathbf{y} - \alpha \mathbf{u}, \mathbf{u} \rangle = 0$ Let's solve for α , $\hat{\mathbf{y}}$ and z:



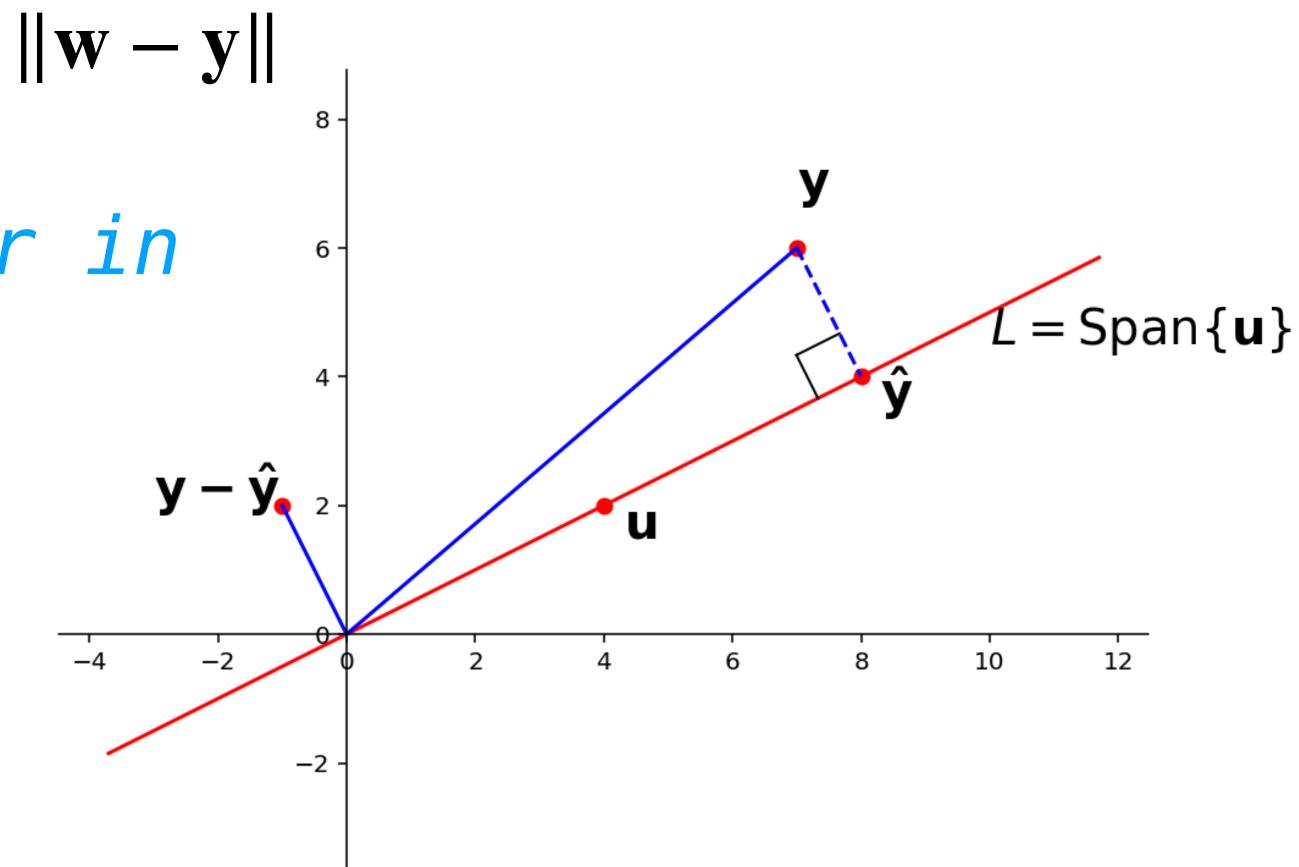


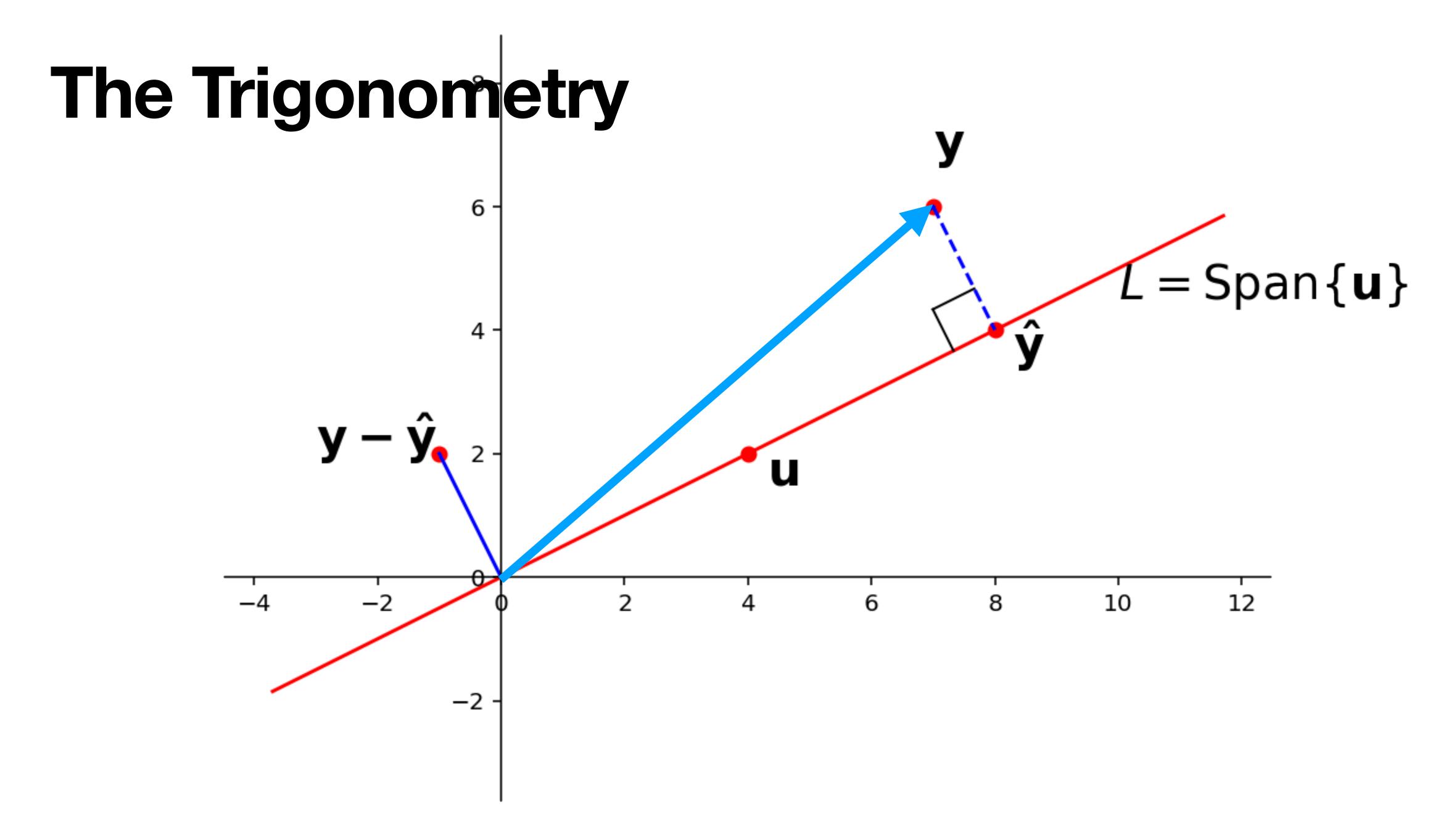
ŷ and **Distance**

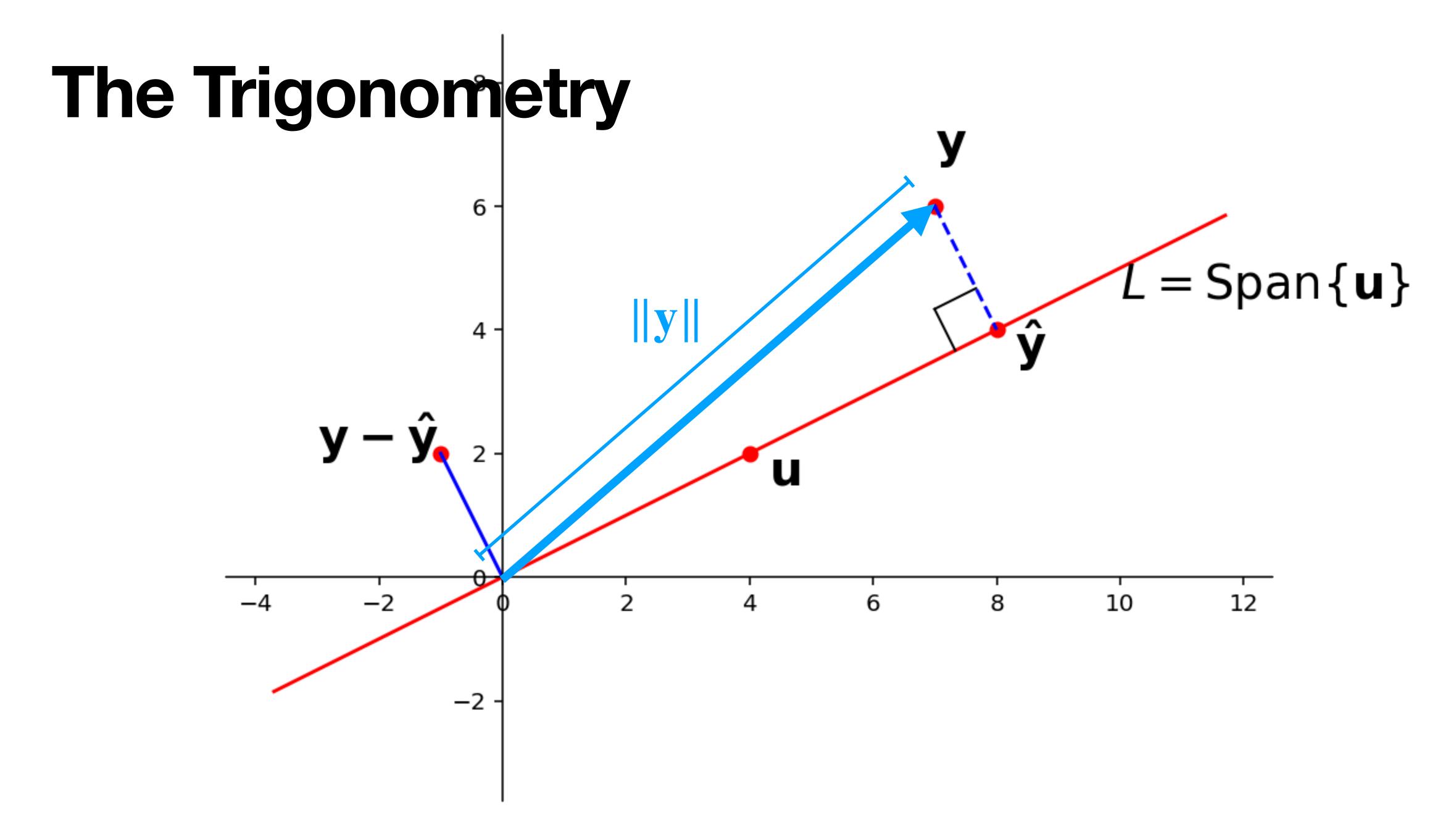
Theorem. $\|\hat{\mathbf{y}} - \mathbf{y}\| = \min_{\mathbf{w} \in span\{\mathbf{u}\}} \|\mathbf{w} - \mathbf{y}\|$

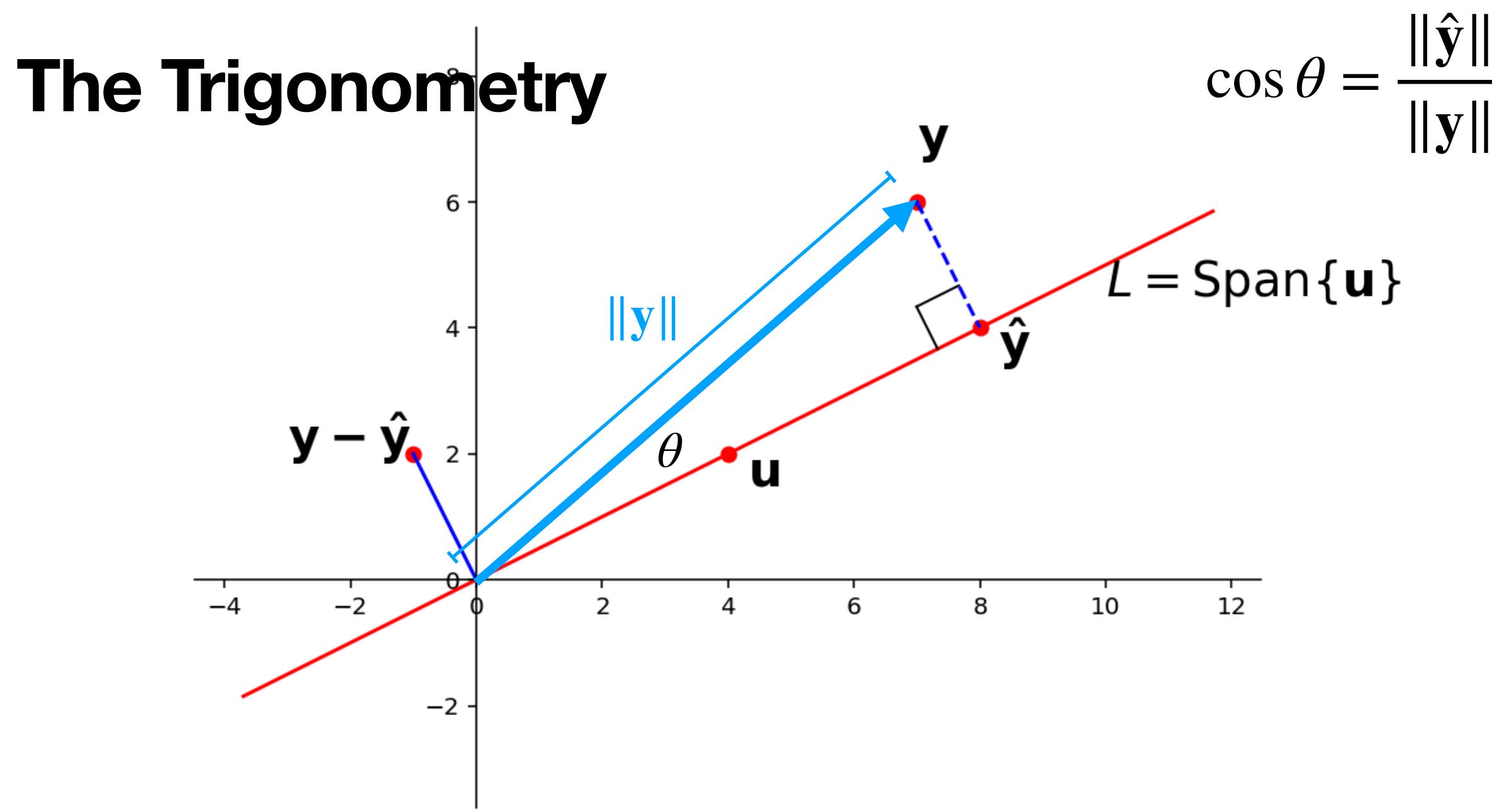
ŷ is the <u>closest</u> vector in $span\{u\}$ to y.

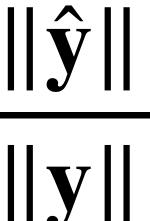
"Proof" by inspection:

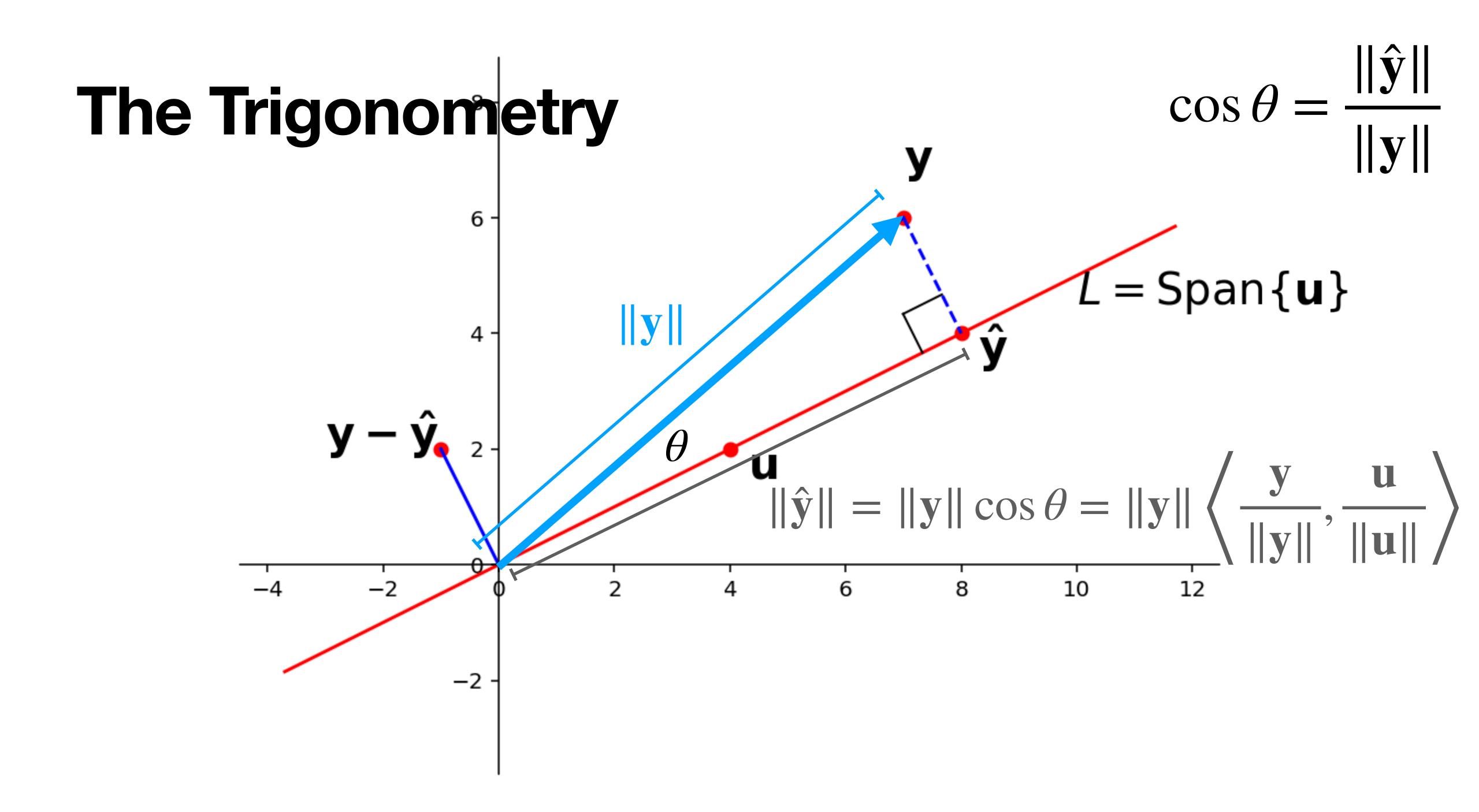


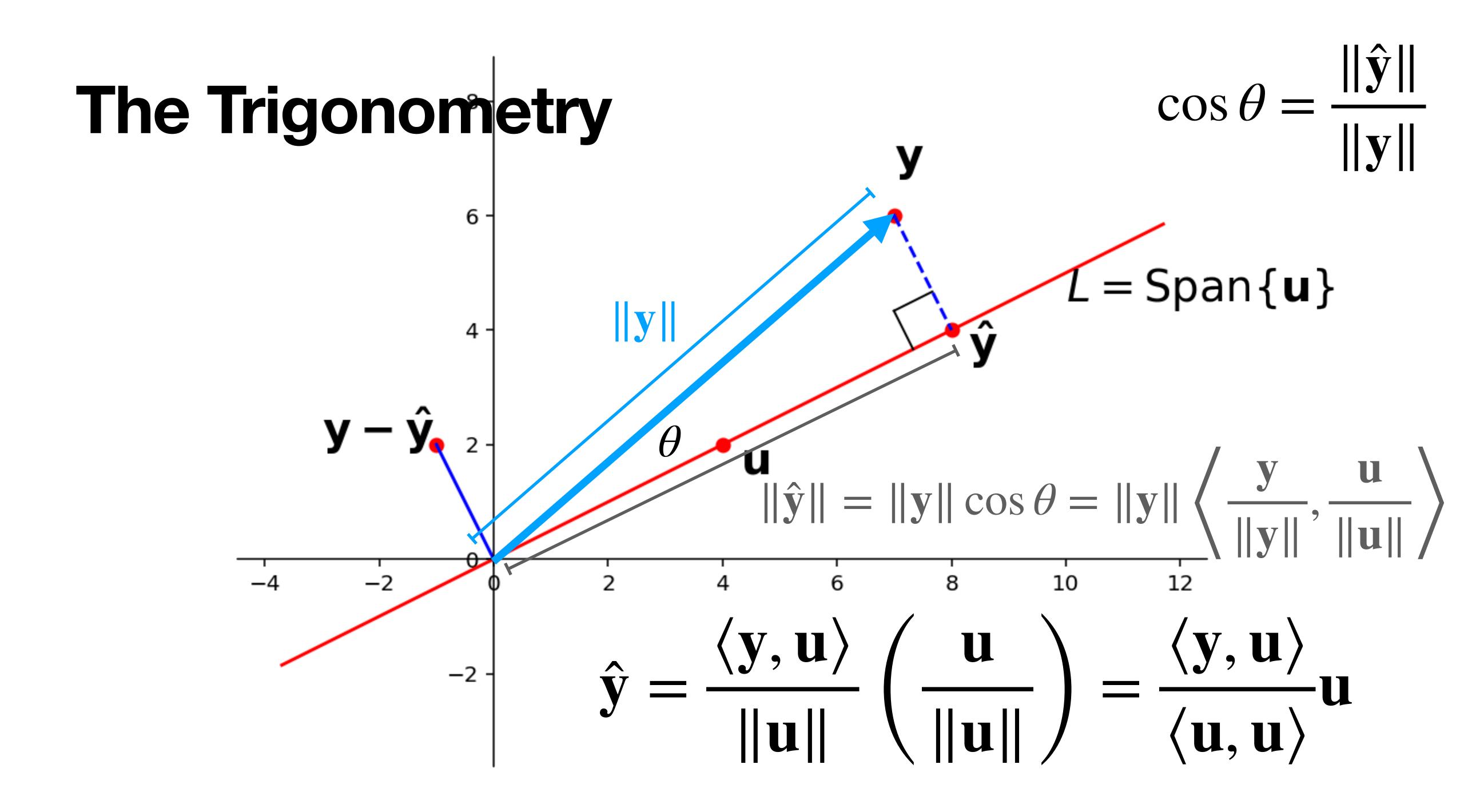




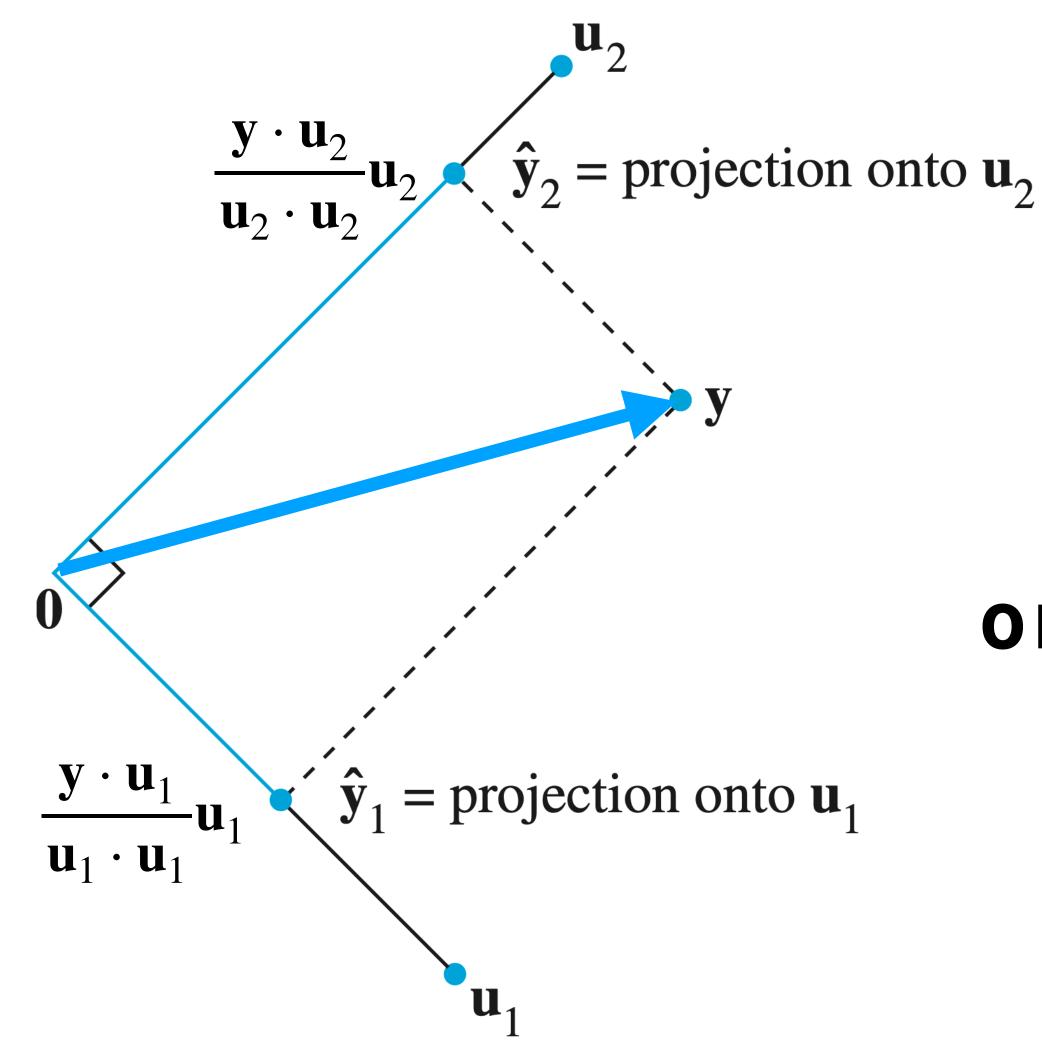








Orthogonal Projections and Orthogonal Bases



Each <u>component</u> of y written in terms of an *orthogonal* basis is an **orthogonal projection onto to a basis vector**

Linear Algebra and its Applications, Lay, Lay, McDonald

How To:

Question. Find the projection of \mathbf{y} onto the span of \mathbf{u}

Solution. Calculate $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$, then the solution

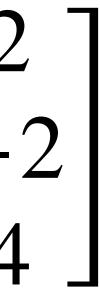
is $\alpha \mathbf{u}$

Question

Find the matrix which implements orthogonal projection onto the span of $\begin{bmatrix} 1\\-1\\2 \end{bmatrix}$

 $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$

$\frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4 \end{bmatrix}$



Orthonormal Sets

Orthogonal sets would be easier to work with if every vector was a unit vector

Definition. A set $\{u_1, u_2, ..., u_p\}$ is an **orthonormal** set if of it an orthogonal set of <u>unit</u> vectors

Definition. A set $\{u_1, u_2, ..., u_p\}$ is an **orthonormal** set if of it an orthogonal set of <u>unit</u> vectors Definition. An orthonormal basis of the

subspace W is a basis of W which is an orthonormal set

Definition. A set $\{u_1, u_2, ..., u_p\}$ is an **orthonormal** set if of it an orthogonal set of <u>unit</u> vectors

Definition. An **orthonormal basis** of the subspace *W* is a basis of *W* which is an orthonormal set

ortho.normal

Definition. An orthonormal basis of the subspace W is a basis of W which is an orthonormal set

ortho.normal

orthogonal/perpendicular

Definition. A set $\{u_1, u_2, ..., u_p\}$ is an **orthonormal** set if of it an orthogonal set of <u>unit</u> vectors

Definition. An orthonormal basis of the subspace W is a basis of W which is an orthonormal set

orthogonal/perpendicular

Definition. A set $\{u_1, u_2, ..., u_p\}$ is an **orthonormal** set if of it an orthogonal set of <u>unit</u> vectors

ortho.normal

normalized/made unit vectors

Orthonormal Matrices

Definition. A matrix is orthonormal if its columns form an orthonormal set

orthogonal matrix.

The notes call a square orthonormal matrix an

Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set

orthogonal matrix.

The notes call a square orthonormal matrix an

This is incredibly confusing, but we'll try to be consistent and clear

Orthonormal Matrices and Transposition

Theorem. For an $m \times n$ orthonormal matrix U

Verify:

$U^T U = I_n$

Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal

Verify:

- (square orthonormal) then it is invertible and
 - $U^{-1} = U^T$

Orthonormal Matrices and Inner Products

any vectors x and y in R^n $\langle Ux, U^{2}\rangle$

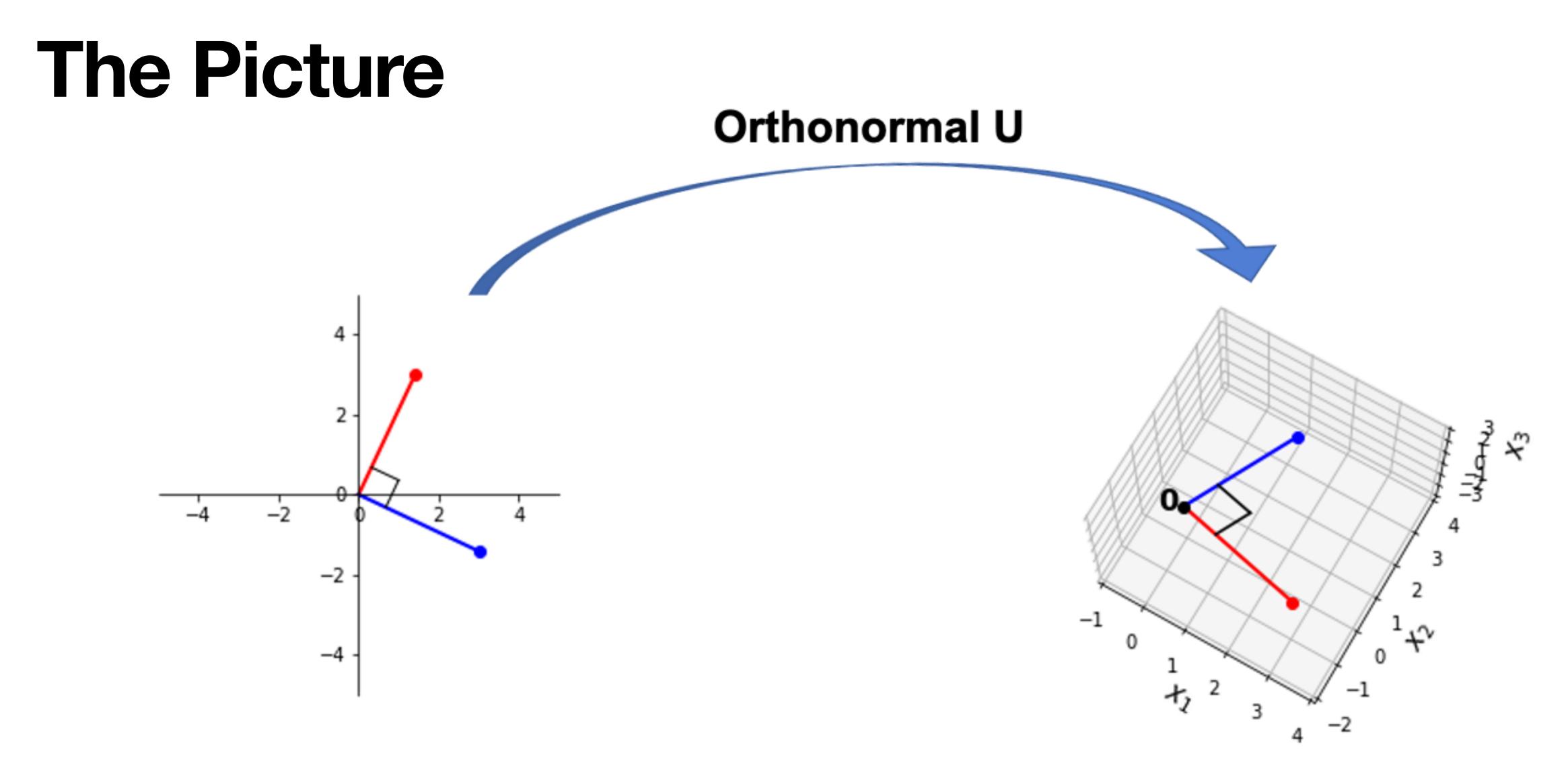
Orthonormal matrices preserve inner products Verify:

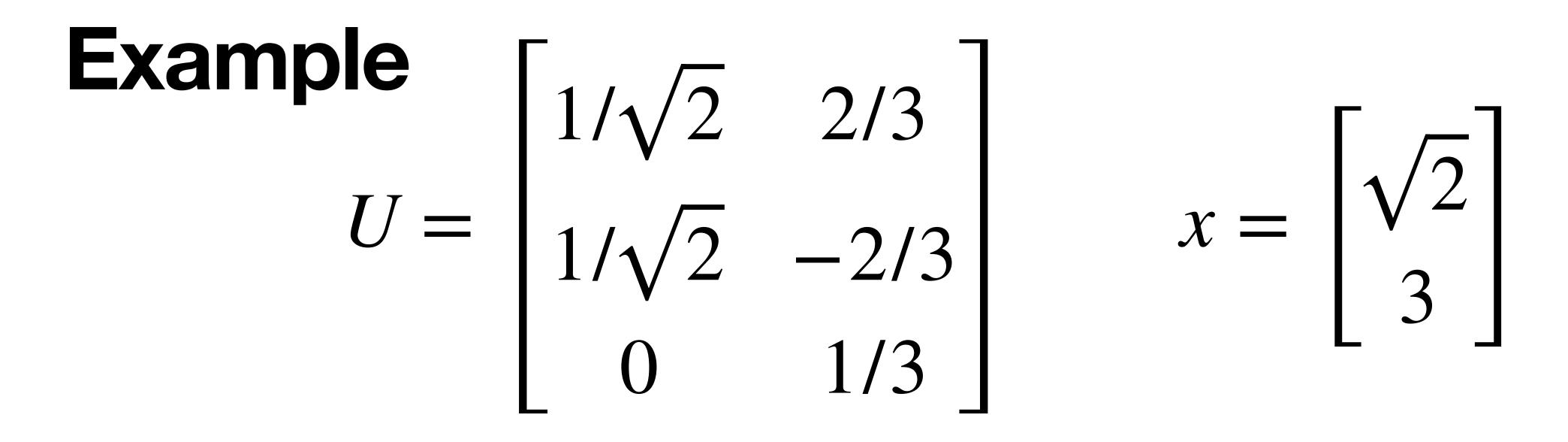
Theorem. For a $m \times n$ orthonormal matrix U, and

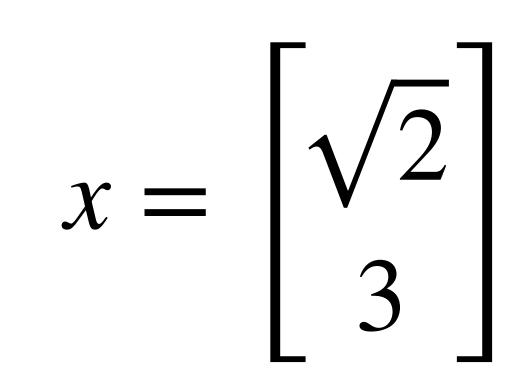
$$\left| y \right\rangle = \left\langle x, y \right\rangle$$

Length, Angle, Orthogonality Preservation

Since <u>lengths</u> and <u>angles</u> are defined in terms of inner products, they are also preserved by orthonormal matrices:







Question (Conceptual)

Suppose A is an $m \times n$ matrix with orthogonal but **not** orthonormal columns. What is $A^{T}A$?

If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$ then $A^T A$ is a diagonal matrix D where

 $D_{ii} = \|\mathbf{a}_i\|^2$

Summary

of coordinates

Finding these coordinates is a really about find the orthogonal projections onto each vector in the orthogonal set

We can apply these ideas to matrices and describe a class of very well behaved transformations via <u>orthonormal matrices</u>

Orthogonal sets allow for <u>simpler calculations</u>