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Recap Problem

Find the orthogonal projection of  onto the 
span of 

u
v

u =
1
3

−2
−1

v =
0
1

−1
0



Answer û =
0

5/2
−5/2

0



Objectives

1. Introduce the least squares problem as a 
method of approximating solutions to matrix 
equations 

2. Learn how to solve the least squares 
problems 

3. Connect least squares solutions to 
projections



Keywords

general least squares problem 

sum of squares error ( -error) 

least squares solutions 

orthogonal projections 

normal equations

ℓ2



Orthogonal Matrices



Orthonormal Matrices

Definition. A matrix is orthonormal if its 
columns form an orthonormal set 

The notes call a square orthonormal matrix an 
orthogonal matrix



Orthonormal Matrices

Definition. A matrix is orthonormal if its 
columns form an orthonormal set 

The notes call a square orthonormal matrix an 
orthogonal matrix

This is incredibly confusing, but we'll try to be 
consistent and clear



Inverses of Orthogonal Matrices

Theorem. If an  matrix  is orthogonal 
(square orthonormal) then it is invertible and 

n × n U

U−1 = UT



Orthonormal Matrices and Inner Products

Theorem. For a  orthonormal matrix , and 
any vectors  and  in  

 
Orthonormal matrices preserve inner products 

Verify:

m × n U
x y Rn

⟨Ux, Uy⟩ = ⟨x, y⟩



Length, Angle, Orthogonality Preservation

Since lengths and angles are defined in terms 
of inner products, they are also preserved by 
orthonormal matrices:



The Picture



Example
U =

1/ 2 2/3
1/ 2 −2/3

0 1/3
x = [ 2

3 ]



moving on...



Motivation



The story of an enterprising CS132 student



The story of an enterprising CS132 student

Problem. Solve the equation Ax = b
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Problem. Solve the equation Ax = b
Answer. Use np.linalg.solve(A, b)



The story of an enterprising CS132 student

Problem. Solve the equation Ax = b
Answer. Use np.linalg.solve(A, b)

>>> A = np.array([ 
...     [1., 0, 5], 
...     [1, -1, 4], 
...     [0, 2, 2]]) 
>>> b = np.array([-1, 2, 3]) 
>>> np.linalg.solve(A, b) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 409, in solve 
    r = gufunc(a, b, signature=signature, extobj=extobj) 
        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
  File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 112, in _raise_linalgerror_singular 
    raise LinAlgError("Singular matrix") 
numpy.linalg.LinAlgError: Singular matrix 



The story of an enterprising CS132 student

Problem. Solve the equation Ax = b
Answer. Use np.linalg.solve(A, b)

>>> A = np.array([ 
...     [1., 0, 5], 
...     [1, -1, 4], 
...     [0, 2, 2]]) 
>>> b = np.array([-1, 2, 3]) 
>>> np.linalg.solve(A, b) 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
  File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 409, in solve 
    r = gufunc(a, b, signature=signature, extobj=extobj) 
        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
  File "/opt/homebrew/lib/python3.11/site-packages/numpy/linalg/linalg.py", line 112, in _raise_linalgerror_singular 
    raise LinAlgError("Singular matrix") 
numpy.linalg.LinAlgError: Singular matrix 

This doesn't always work



Reads the docs...



Reads the docs...



Reads the docs...



Reads the docs...



np.linalg.lstsq
>>> np.linalg.lstsq(A, b) 
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` 
where M and N are the input matrix dimensions. 
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, 
explicitly pass `rcond=-1`. 
(array([-0.11111111,  0.77777778,  0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 
2.27845297e+00, 6.13801942e-17])) 
>>> x = np.array([-0.11111111,  0.77777778,  0.22222222]) 
>>> A @ x 
array([ 9.99999990e-01, -9.99999994e-09,  2.00000000e+00]) 
>>> 



np.linalg.lstsq
>>> np.linalg.lstsq(A, b) 
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` 
where M and N are the input matrix dimensions. 
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, 
explicitly pass `rcond=-1`. 
(array([-0.11111111,  0.77777778,  0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 
2.27845297e+00, 6.13801942e-17])) 
>>> x = np.array([-0.11111111,  0.77777778,  0.22222222]) 
>>> A @ x 
array([ 9.99999990e-01, -9.99999994e-09,  2.00000000e+00]) 
>>> 



np.linalg.lstsq
>>> np.linalg.lstsq(A, b) 
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` 
where M and N are the input matrix dimensions. 
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, 
explicitly pass `rcond=-1`. 
(array([-0.11111111,  0.77777778,  0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 
2.27845297e+00, 6.13801942e-17])) 
>>> x = np.array([-0.11111111,  0.77777778,  0.22222222]) 
>>> A @ x 
array([ 9.99999990e-01, -9.99999994e-09,  2.00000000e+00]) 
>>> 



np.linalg.lstsq
>>> np.linalg.lstsq(A, b) 
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` 
where M and N are the input matrix dimensions. 
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, 
explicitly pass `rcond=-1`. 
(array([-0.11111111,  0.77777778,  0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 
2.27845297e+00, 6.13801942e-17])) 
>>> x = np.array([-0.11111111,  0.77777778,  0.22222222]) 
>>> A @ x 
array([ 9.99999990e-01, -9.99999994e-09,  2.00000000e+00]) 
>>> 



np.linalg.lstsq
>>> np.linalg.lstsq(A, b) 
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` 
where M and N are the input matrix dimensions. 
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, 
explicitly pass `rcond=-1`. 
(array([-0.11111111,  0.77777778,  0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 
2.27845297e+00, 6.13801942e-17])) 
>>> x = np.array([-0.11111111,  0.77777778,  0.22222222]) 
>>> A @ x 
array([ 9.99999990e-01, -9.99999994e-09,  2.00000000e+00]) 
>>> 



np.linalg.lstsq

uh...probably numerical errors... 

Answer: x =
−1/9
7/9
2/9

>>> np.linalg.lstsq(A, b) 
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` 
where M and N are the input matrix dimensions. 
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, 
explicitly pass `rcond=-1`. 
(array([-0.11111111,  0.77777778,  0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 
2.27845297e+00, 6.13801942e-17])) 
>>> x = np.array([-0.11111111,  0.77777778,  0.22222222]) 
>>> A @ x 
array([ 9.99999990e-01, -9.99999994e-09,  2.00000000e+00]) 
>>> 



np.linalg.lstsq

uh...probably numerical errors... 

Answer: x =
−1/9
7/9
2/9

>>> np.linalg.lstsq(A, b) 
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` 
where M and N are the input matrix dimensions. 
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, 
explicitly pass `rcond=-1`. 
(array([-0.11111111,  0.77777778,  0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00, 
2.27845297e+00, 6.13801942e-17])) 
>>> x = np.array([-0.11111111,  0.77777778,  0.22222222]) 
>>> A @ x 
array([ 9.99999990e-01, -9.99999994e-09,  2.00000000e+00]) 
>>> 

This is not correct



This System is Inconsistent

The "correct" answer: There is no solution

[
1 0 5 −1
1 −1 4 2
0 2 2 3 ] ∼

1 0 5 −1
0 −1 −1 3
0 2 2 3

∼
1 0 5 −1
0 −1 −1 3
0 0 0 9



This System is Inconsistent

The "correct" answer: There is no solution

[
1 0 5 −1
1 −1 4 2
0 2 2 3 ] ∼

1 0 5 −1
0 −1 −1 3
0 2 2 3

∼
1 0 5 −1
0 −1 −1 3
0 0 0 9

What's going on here?



Non-Linearity

https://textbooks.math.gatech.edu/ila/least-squares.html



Non-Linearity

Linear algebra is very 
powerful and very clean, but 
the world isn't linear. There 
are non-linear relationships 
and sources of noise

https://textbooks.math.gatech.edu/ila/least-squares.html
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Linear algebra is very 
powerful and very clean, but 
the world isn't linear. There 
are non-linear relationships 
and sources of noise
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be linear

https://textbooks.math.gatech.edu/ila/least-squares.html



Non-Linearity

Linear algebra is very 
powerful and very clean, but 
the world isn't linear. There 
are non-linear relationships 
and sources of noise

We can't force the world to 
be linear

But we can try...

https://textbooks.math.gatech.edu/ila/least-squares.html
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https://commons.wikimedia.org/wiki/File:Linear_regression.svg



The Idea

Least Squares is a method 
for finding approximate 
solutions to systems of 
linear equations

https://commons.wikimedia.org/wiki/File:Linear_regression.svg



The Idea

Least Squares is a method 
for finding approximate 
solutions to systems of 
linear equations

This is a lot more useful 
in practice than exact 
solutions

https://commons.wikimedia.org/wiki/File:Linear_regression.svg



The Idea

Least Squares is a method 
for finding approximate 
solutions to systems of 
linear equations

This is a lot more useful 
in practice than exact 
solutions

It can be used to do linear 
regression from stats class

https://commons.wikimedia.org/wiki/File:Linear_regression.svg



General Least Squares Problem



The Picture



Recall: Orthogonal Projection
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Recall: Orthogonal Projection

Question. Given vectors 
 and  in , find 
vectors  and  such 
that

y u Rn

ŷ z

»  is orthogonal to  
(i.e., )

z u
z ⋅ u = 0

» ŷ ∈ span{u}

» y = ŷ + z



Recall: The Picture

The transformation  is 
linear and represents the 
projection onto 

y ↦ ŷ

span{u}



Theorem.  

 is the closest vector in 
 to  

"Proof" by inspection:

∥ŷ − y∥ = min
w∈span{u}

∥w − y∥

ŷ
span{u} y

Recall:  and Distanceŷ
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small as possible
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The Equational Perspective

We know the equation  may have no solutionxu = y
Question. Find a value  such that  is as 
close as possible to 

α αu
y

That is, the distance  is as 
small as possible

dist(y, αu) = ∥y − αu∥

We need to generalize this to arbitrary matrix 
equations



The General Least Squares Problem



The General Least Squares Problem

Problem. Given a  
matrix  and a vector  
from , find a vector 
 in  which minimizes

m × n
A b

ℝm

x ℝn

dist(Ax, b) = ∥Ax − b∥



The General Least Squares Problem

Problem. Given a  
matrix  and a vector  
from , find a vector 
 in  which minimizes

m × n
A b

ℝm

x ℝn

dist(Ax, b) = ∥Ax − b∥

Find a vector  which 
makes  as small 
as possible

x
∥Ax − b∥



The Picture

There is no 
solution to 

Ax = b

But there's a 
solution that's 
pretty close

b ∉ Col(A)



Sum of Squares

∥Ax − b∥2 =
n

∑
i=1

((Ax)i − bi)2



Sum of Squares

It is equivalent to minimize , which can 
be viewed as a sum of squares
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Sum of Squares

It is equivalent to minimize , which can 
be viewed as a sum of squares

∥Ax − b∥2

These things come up everywhere

∥Ax − b∥2 =
n

∑
i=1

((Ax)i − bi)2



Sum of Squares

It is equivalent to minimize , which can 
be viewed as a sum of squares

∥Ax − b∥2

These things come up everywhere

(Advanced.) This error is everywhere 
differentiable, whereas  is not

n

∑
i=1

| (Ax)i − bi |

∥Ax − b∥2 =
n

∑
i=1

((Ax)i − bi)2



Least Squares Solution

Definition. Given a  matrix  and a vector 
 in , a least squares solution of  is a 
vector  from  such that 

 

for any  in  

Again,  is as small as possible

m × n A
b ℝm Ax = b

x̂ ℝn

∥Ax̂ − b∥ ≤ ∥Ax − b∥

x ℝn

∥Ax̂ − b∥



The Picture (Again)

b ∉ Col(A)

this distance 
is minimized



Argmin
x̂ = arg min

x∈ℝn
∥Ax − b∥



Argmin

Another way of framing this is via arg min

x̂ = arg min
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Argmin

Another way of framing this is via arg min

Defintion. arg min
x∈X

f(x) = ̂x where f( ̂x) = min
x∈X

f(x)

 is the argument that minimizes ̂x f

This is now an optimization problem

x̂ = arg min
x∈ℝn

∥Ax − b∥



Solving the General Least 
Squares Problems



Recall: The Picture (Again)

The transformation  is 
linear and represents the 
projection onto 

y ↦ ŷ

span{u}



Projects onto other Spans

a1

a2

b̂ = α1a1 + α2a2

b

The transformation 
 is the 

projection of  
onto 

b ↦ b̂
b

./01{a1, a2}



The High Level Approach.

Question. Find a least squares solutions to 
 

Solution. 

1. Find the closest point  in  to  

2. Solve the equation  instead

A = b

b̂ Col(A) b
Ax = b̂



Orthogonal Decomposition Theorem

Theorem. Let  be a 
subspace of . Every 
vector  in  can be 
written uniquely as 

 

where  and  is 
orthogonal to every 
vector in  

W
ℝn

y ℝn

y = ŷ + z
ŷ ∈ W z

W

Linear Algebra and its Applications, Lay, Lay, McDonald



Projection via Orthogonal Bases

Linear Algebra and its Applications, Lay, Lay, McDonald

We can determine  by 
projecting onto an 
orthogonal basis 

Every subspace has an 
orthogonal basis (we 
won't prove this)

ŷ



The Best-Approximation Theorem

Theorem. Let  be a 
subspace of , and let  
be the orthogonal 
projection of  onto  
Then 

 

for any vector  in  
 is the closest point in  to 

W
ℝn ŷ

y W

∥y − ŷ∥ ≤ ∥y − w∥

w W

ŷ W y

Linear Algebra and its Applications, Lay, Lay, McDonald



Proof by Inspection



Proof by Algebra

Verify:



The Point

a1

a2

b̂ = α1a1 + α2a2

b



The Point
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has a solution
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The Point
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b̂ Col(A) Ax = b̂

At this point, we could 
call it a day:

Question. Find a least 
squares solution to Ax = b a1
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b



The Point

 is in  so  
has a solution
b̂ Col(A) Ax = b̂

At this point, we could 
call it a day:

Question. Find a least 
squares solution to Ax = b
Solution. Find , then 
solve 

b̂
Ax = b̂

a1

a2

b̂ = α1a1 + α2a2

b



Example

Let's determine the least squares solution for the above system:

[
1 2

−1 3
0 0] x = [

4
1
4]



The Normal Equations



A Couple Observations
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A Couple Observations
Suppose that  is a least 
squares solution to , so 

x̂
A Ax̂ = b̂

•  is orthogonal to  b̂ − b Col(A)
•  is orthogonal to Ax̂ − b Col(A)

• If  then  
is orthogonal to each 

A = [a1 a2 … an] Ax̂ − b

a1, a2, …, an

• aT
i (Ax̂ − b) = 0

• AT(Ax̂ − b) = 0



A bit more magic

Let's simplify :AT(Ax̂ − b)



The Normal Equations



The Normal Equations

Theorem. The set of least-squares solutions of 
 is the same as the set of solutions toAx = b

AT Ax = ATb
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 is the same as the set of solutions toAx = b

AT Ax = ATb
In particular, this set of solutions is nonempty



The Normal Equations

Theorem. The set of least-squares solutions of 
 is the same as the set of solutions toAx = b

AT Ax = ATb
In particular, this set of solutions is nonempty

(We just showed that if  is a least squares 
solution then )

x̂
AT Ax̂ = ATb



Example

Let's find the normal equations for :Ax = b

A = [
4 0
0 2
1 1] b = [

2
0
11]



Example

Let's solve the normal equations for :Ax = b

[17 1
1 5] [x1

x2] = [19
11]



Example

Let's do it again...

[
1 2

−1 3
0 0] x = [

4
1
4]



Unique Least Squares Solutions



Question (Conceptual)

Is a least squares solution unique?



Answer: No

Remember that if  then  and then 
we're asking if  has a unique solution for 
any choice of 

b ∈ Col(A) b̂ = b
Ax = b

A



When is there a unique solution?

The least squares method gives us to find an 
approximate solution when there is no exact 
solution 

But it doesn't help us choose a solution in the 
case that there are many



Practically Speaking



Practically Speaking

NumPy chooses the shortest vector



Practically Speaking

NumPy chooses the shortest vector
(why?...)



Unique Least Squares Solutions

Theorem. For a  matrix  the following are 
equivalent: 

»  has a unique least squares solution for 
any choice of  

» The columns of  are linearly independent 

»  is invertible

m × n A

Ax = b
b

A

AT A



Unique Least Squares Solutions 

If  has linearly independent columns, then its 
unique least squares solution is defined as 
above:

A

x̂ = (AT A)−1ATb



Projecting onto a subspace

If the columns of  are linearly independent, 
then they form a basis 

Said another way: if  is a basis, then we can 
construct a matrix  whose columns are the 
vectors in  

This means we can find arbitrary projections

A

ℬ
A

ℬ

b̂ = Ax̂ = A(AT A)−1ATb


