Least Squares

Geometric Algorithms Lecture 23

Recap Problem

$$\mathbf{u} = \begin{bmatrix} 1 \\ 3 \\ -2 \\ -1 \end{bmatrix} \qquad \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$

Find the orthogonal projection of \mathbf{u} onto the span of \mathbf{v}

Answer

$$\hat{\mathbf{u}} = \begin{bmatrix} 0 \\ 5/2 \\ -5/2 \\ 0 \end{bmatrix}$$

Objectives

- 1. Introduce the least squares problem as a method of approximating solutions to matrix equations
- 2. Learn how to solve the least squares problems
- 3. Connect least squares solutions to projections

Keywords

general least squares problem sum of squares error (\mathcal{C}_2 -error) least squares solutions orthogonal projections normal equations

Orthogonal Matrices

Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set

The notes call a square orthonormal matrix an orthogonal matrix

Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set

The notes call a square orthonormal matrix an orthogonal matrix

This is incredibly confusing, but we'll try to be consistent and clear

Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal (square orthonormal) then it is invertible and

$$U^{-1} = U^T$$

Orthonormal Matrices and Inner Products

Theorem. For a $m \times n$ orthonormal matrix U, and any vectors x and y in R^n

$$\langle Ux, Uy \rangle = \langle x, y \rangle$$

Orthonormal matrices preserve inner products

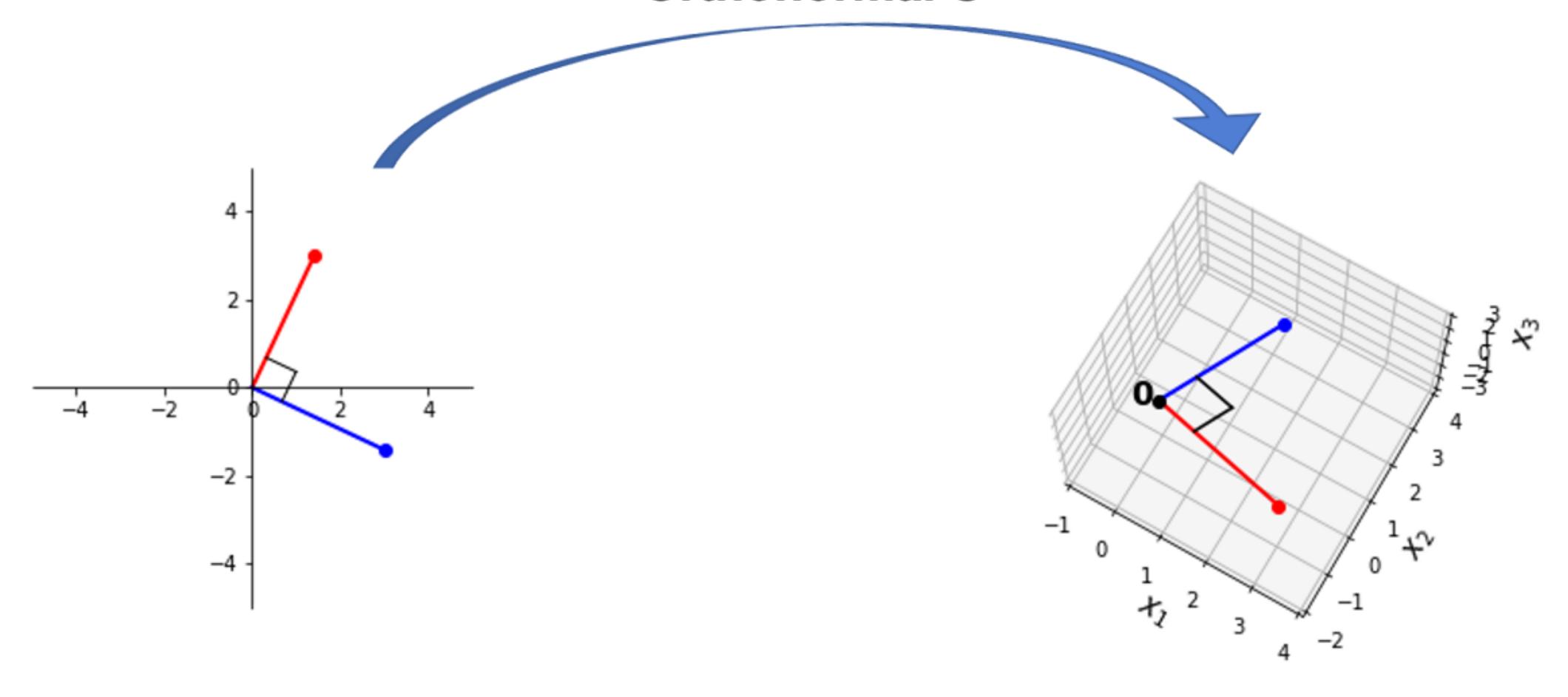
Verify:

Length, Angle, Orthogonality Preservation

Since <u>lengths</u> and <u>angles</u> are defined in terms of inner products, they are also preserved by orthonormal matrices:

The Picture

Orthonormal U



Example
$$U = \begin{bmatrix} 1/\sqrt{2} & 2/3 \\ 1/\sqrt{2} & -2/3 \\ 0 & 1/3 \end{bmatrix} \qquad x = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$$

$$x = \begin{bmatrix} \sqrt{2} \\ 3 \end{bmatrix}$$

moving on...

Motivation

Problem. Solve the equation Ax = b

Problem. Solve the equation Ax = b

Answer. Use np.linalg.solve(A, b)

Problem. Solve the equation Ax = b

Answer. Use np.linalg.solve(A, b)

Problem. Solve the equation Ax = b

Answer. Use np.linalg.solve(A, b)

This doesn't always work

Reads the docs...

numpy.linalg.solve

linalg.solve(a, b)
[source]

Solve a linear matrix equation, or system of linear scalar equations.

Computes the "exact" solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

Parameters: a : (..., M, M) array_like

Coefficient matrix.

b : {(..., M,), (..., M, K)}, array_like

Ordinate or "dependent variable" values.

Returns: x : {(..., M,), (..., M, K)} ndarray

Solution to the system a x = b. Returned shape is identical to b.

Raises: LinAlgError

If *a* is singular or not square.

See also

scipy.linalg.solve

Reads the docs...

numpy.linalg.solve

linalg.solve(a, b)
[source]

Solve a linear matrix equation, or system of linear scalar equations.

Computes the "exact" solution, x, of the well-determined, i.e., full rank, linear matrix equation ax = b.

Parameters: a : (..., M, M) array_like

Coefficient matrix.

b : {(..., M,), (..., M, K)}, array_like

Ordinate or "dependent variable" values.

Returns: x : {(..., M,), (..., M, K)} ndarray

Solution to the system a x = b. Returned shape is identical to b.

Raises: LinAlgError

If a is singular or not square.

See also
scipy.linalg.solve

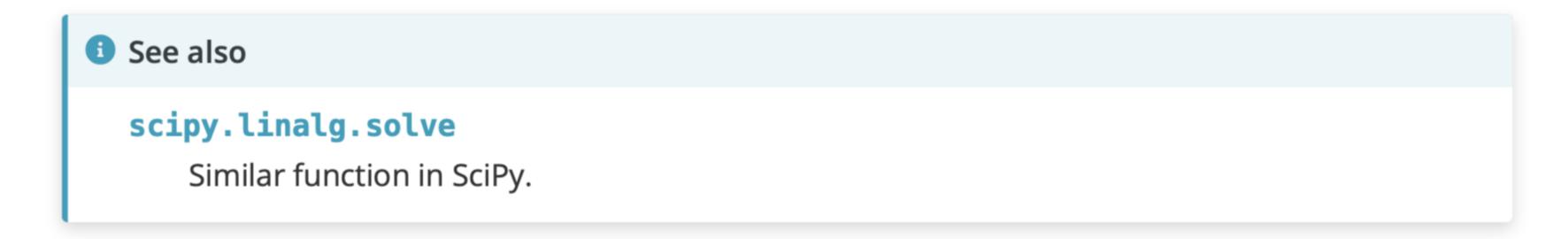
b . {(..., wi,), (..., wi, h), array_like

Ordinate or "dependent variable" values.

Returns: $x : \{(..., M,), (..., M, K)\}$ ndarray Returns: $x : \{(..., M,), (..., M, K)\}$ ndarray Colletes to the system a x = b. Returned shape is identical to b.

Raises: LinAlgError

If a is singular or not square.



Notes

New in version 1.8.0.

Broadcasting rules apply, see the **numpy.linalg** documentation for details.

The solutions are computed using LAPACK routine _gesv.

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use **lstsq** for the least-squares best "solution" of the system/equation.

b . {(..., w,), (..., w, K), array_nke

Ordinate or "dependent variable" values.

Returns: $x : \{(..., M,), (..., M, K)\}$ ndarray Returns: $x : \{(..., M,), (..., M, K)\}$ ndarray Colletes to the system a x = b. Returned shape is identical to b.

Raises: LinAlgError

If a is singular or not square.

See also

scipy.linalg.solve

Similar function in SciPy.

Notes

• New in version 1.8.0.

Broadcasting rules apply, see the **numpy.linalg** documentation for details.

The solutions are computed using LAPACK routine <u>gesv</u>.

a must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use **lstsq** for the least-squares best "solution" of the system/equation.

```
>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

```
>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

```
>>> np.linalg.lstsq(A, b)
<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.
To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

```
>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

uh...probably numerical errors...

Answer:
$$x = \begin{bmatrix} -1/9 \\ 7/9 \\ 2/9 \end{bmatrix}$$

```
>>> np.linalg.lstsq(A, b)

<stdin>:1: FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)``
where M and N are the input matrix dimensions.

To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old,
explicitly pass `rcond=-1`.
(array([-0.11111111, 0.77777778, 0.22222222]), array([], dtype=float64), 2, array([6.84168488e+00,
2.27845297e+00, 6.13801942e-17]))
>>> x = np.array([-0.11111111, 0.77777778, 0.22222222])
>>> A @ x
array([ 9.99999990e-01, -9.99999994e-09, 2.00000000e+00])
>>>
```

uh...probably numerical errors...

Answer:
$$\mathbf{x} = \begin{bmatrix} -1/9 \\ 7/9 \\ 2/9 \end{bmatrix}$$
 This is not correct

This System is Inconsistent

$$\begin{bmatrix} 1 & 0 & 5 & -1 \\ 1 & -1 & 4 & 2 \\ 0 & 2 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & -1 & -1 & 3 \\ 0 & 2 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & -1 & -1 & 3 \\ 0 & 0 & 0 & 9 \end{bmatrix}$$

The "correct" answer: There is no solution

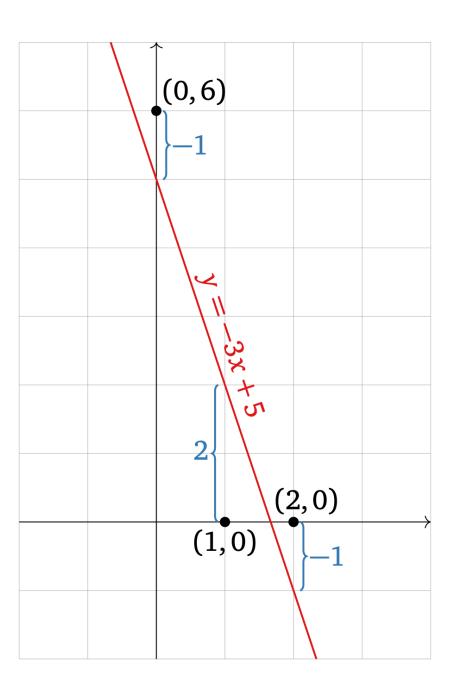
This System is Inconsistent

$$\begin{bmatrix} 1 & 0 & 5 & -1 \\ 1 & -1 & 4 & 2 \\ 0 & 2 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & -1 & -1 & 3 \\ 0 & 2 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & -1 & -1 & 3 \\ 0 & 0 & 0 & 9 \end{bmatrix}$$

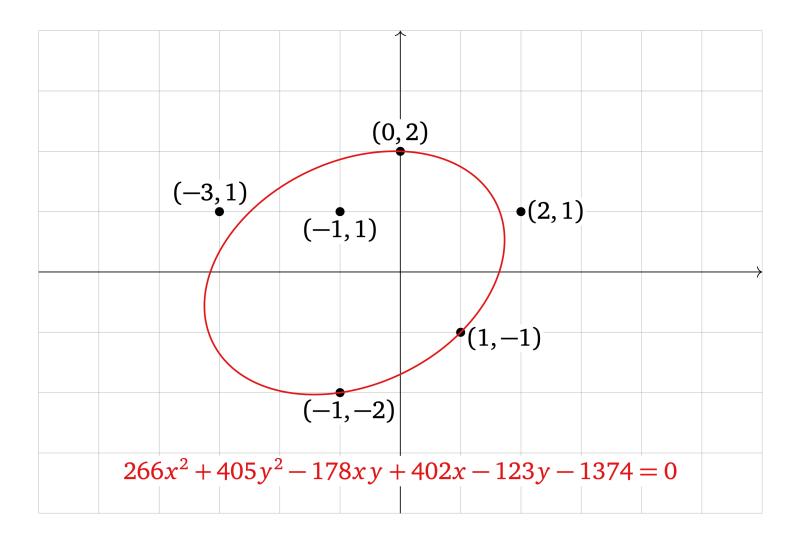
The "correct" answer: There is no solution

What's going on here?

Non-Linearity

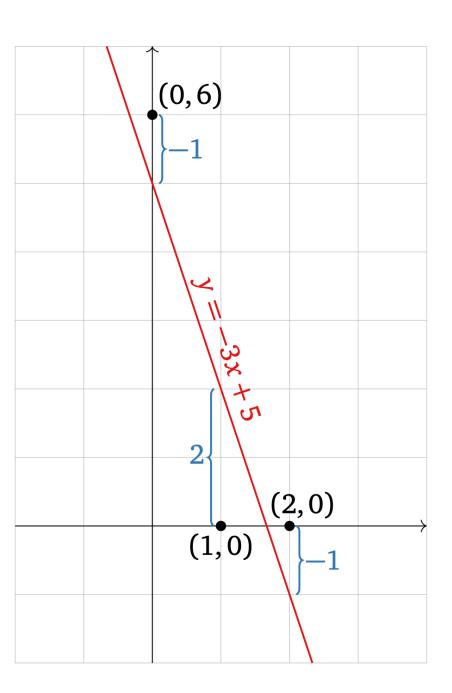


$$b - A\widehat{x} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - A \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$

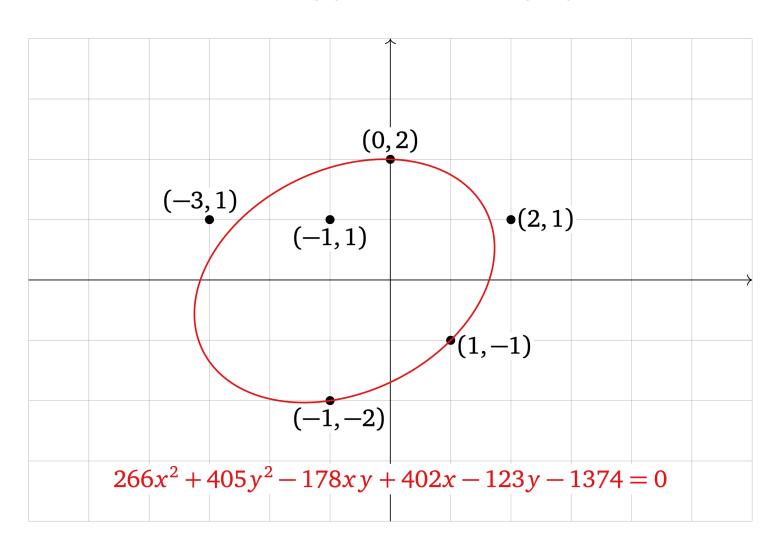


Non-Linearity

Linear algebra is very powerful and very clean, but **the world isn't linear.** There are non-linear relationships and sources of *noise*



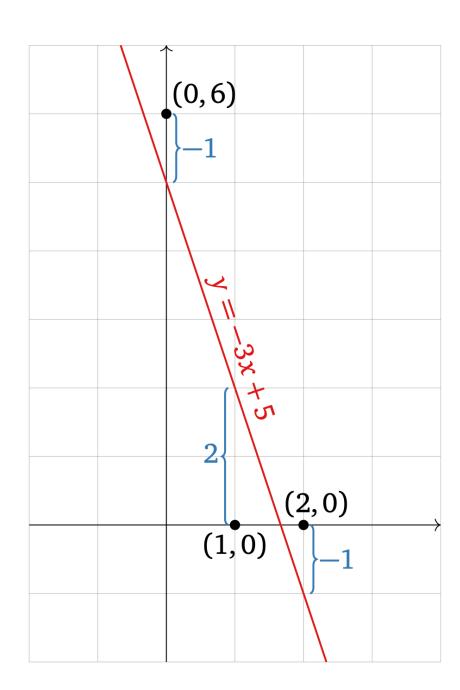
$$b - A\widehat{x} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - A \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$



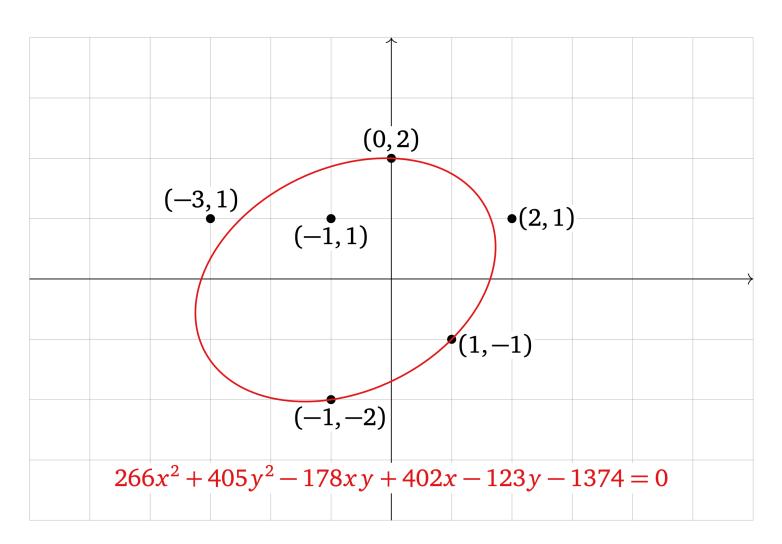
Non-Linearity

Linear algebra is very powerful and very clean, but **the world isn't linear.** There are non-linear relationships and sources of *noise*

We can't force the world to be linear



$$b - A\widehat{x} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - A \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$

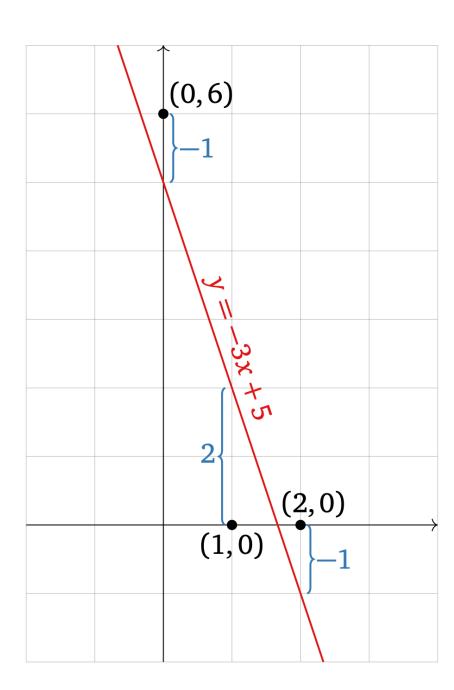


Non-Linearity

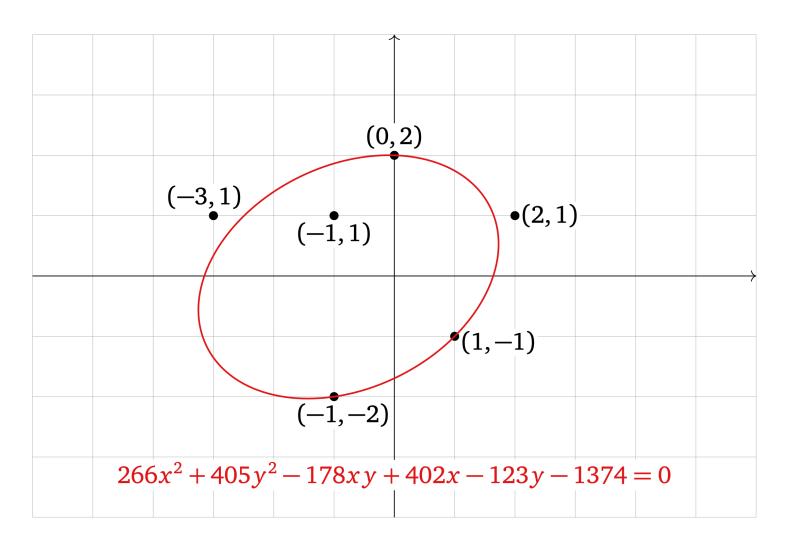
Linear algebra is very powerful and very clean, but **the world isn't linear.** There are non-linear relationships and sources of *noise*

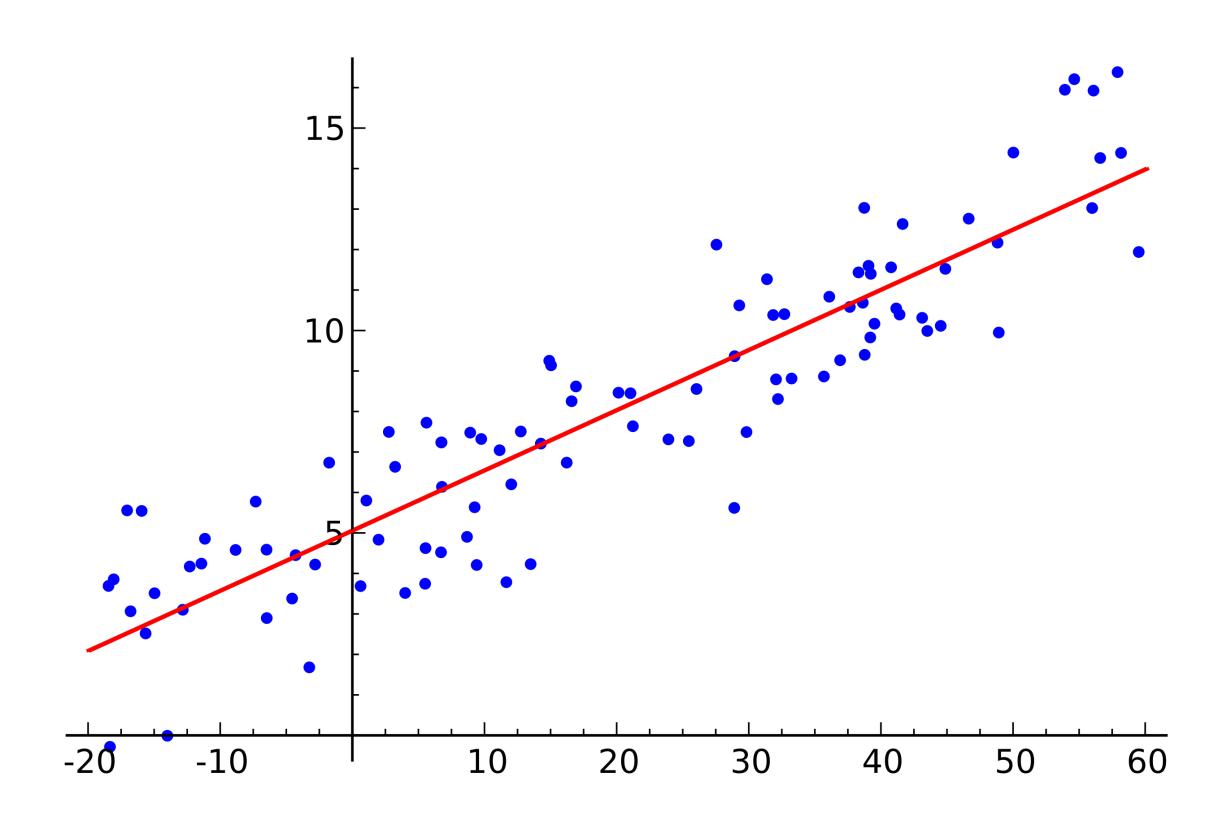
We can't force the world to be linear

But we can try...

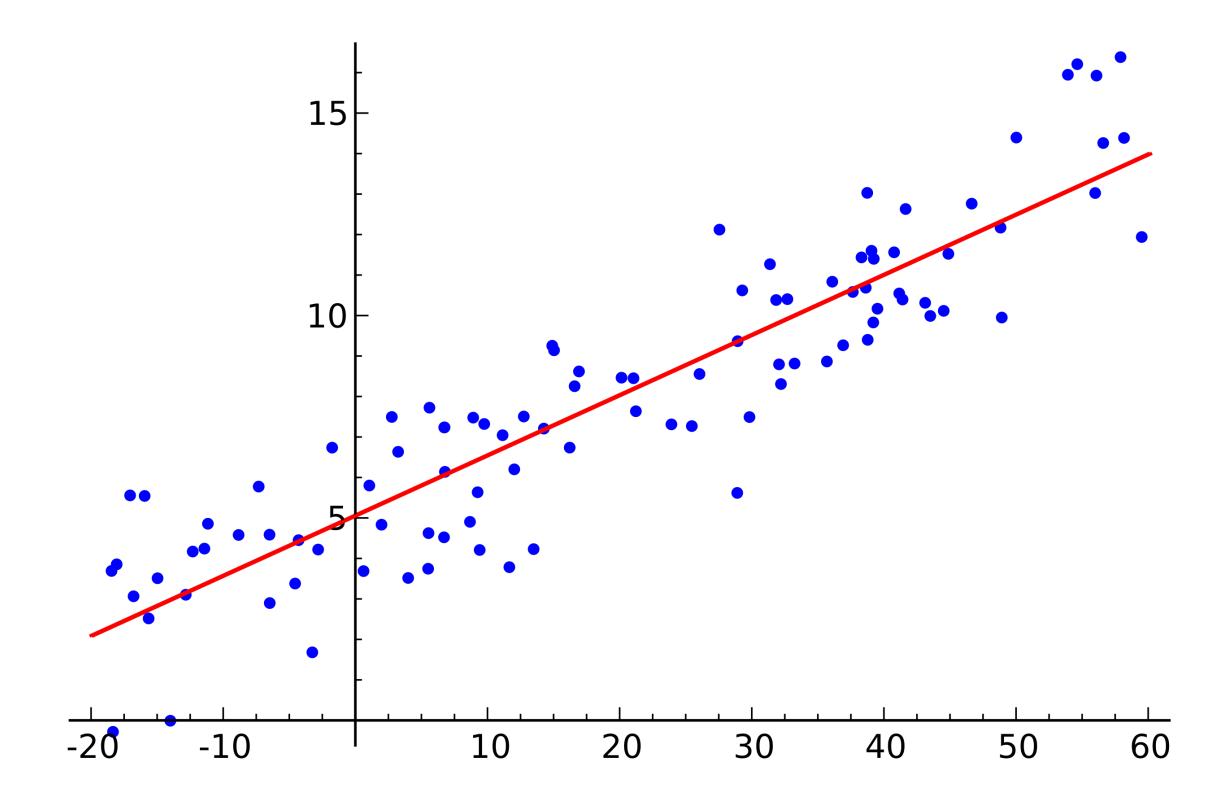


$$b - A\widehat{x} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} - A \begin{pmatrix} -3 \\ 5 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$$



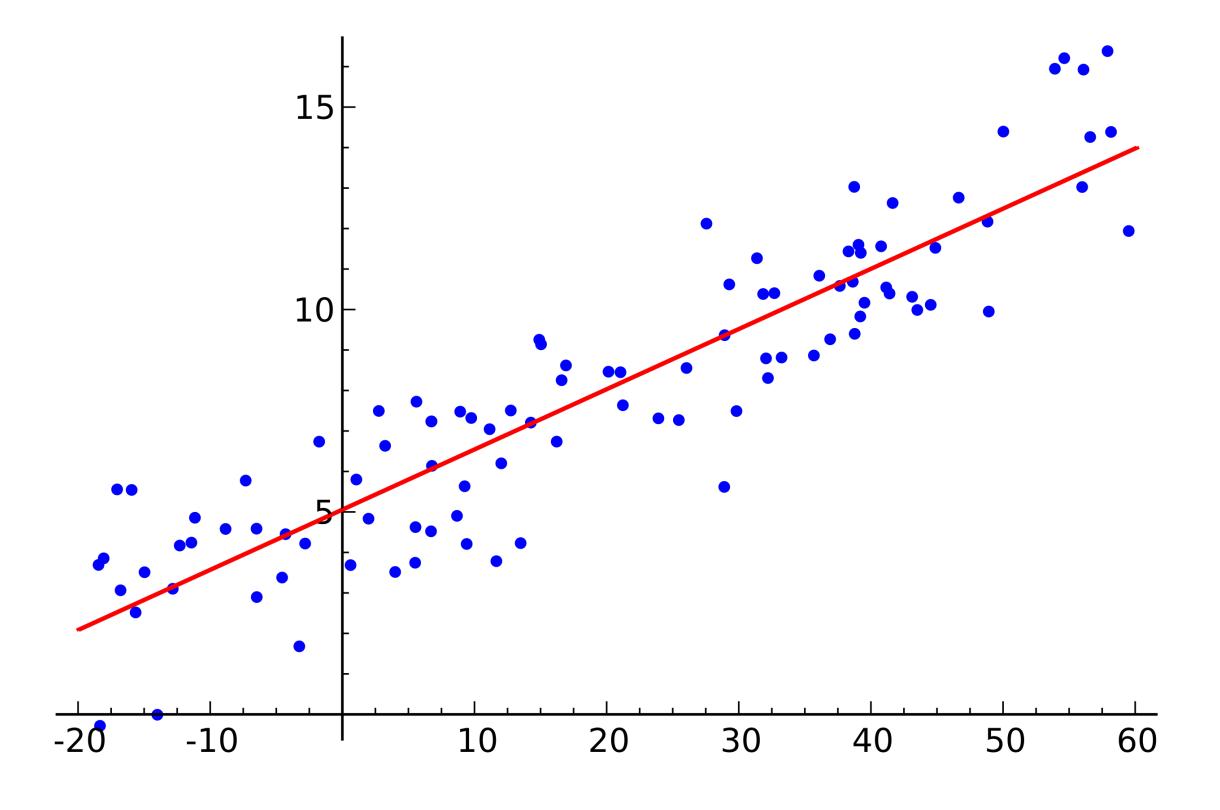


Least Squares is a method for finding approximate solutions to systems of linear equations



Least Squares is a method for finding approximate solutions to systems of linear equations

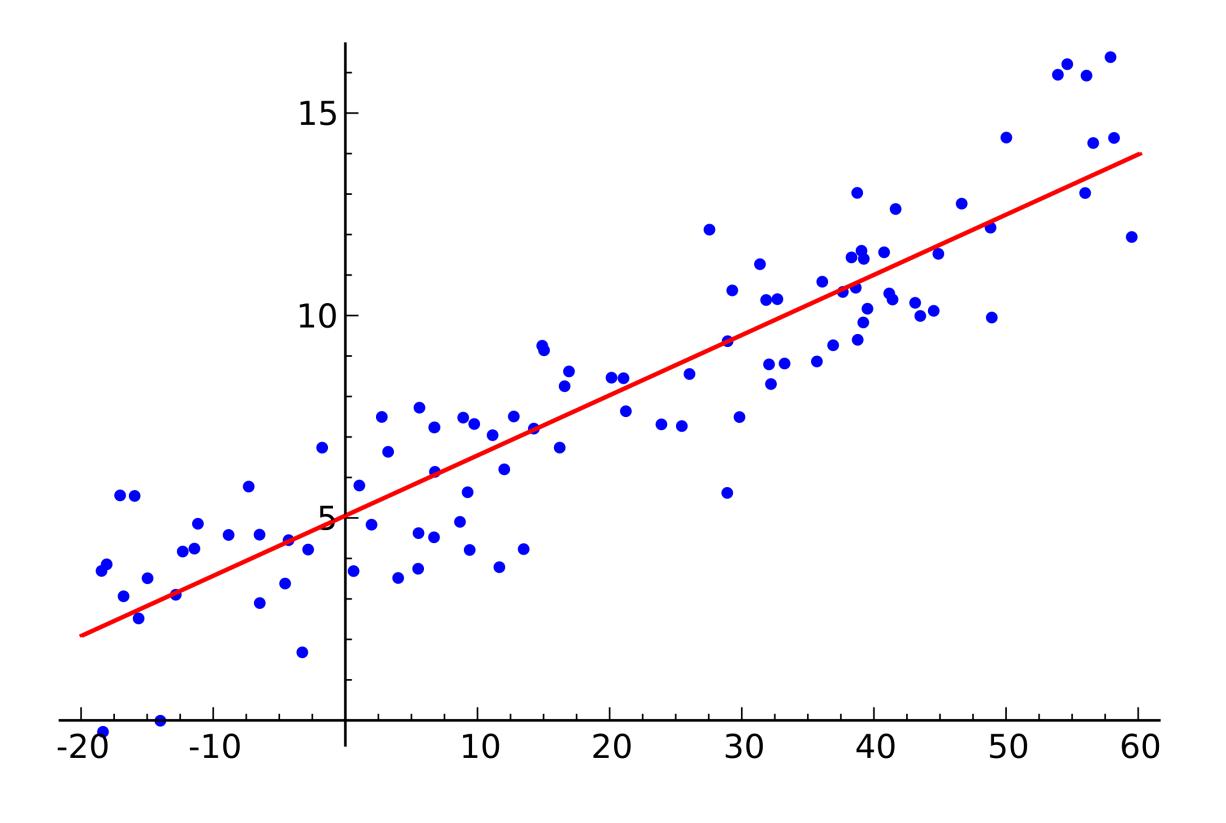
This is a lot more useful in practice than exact solutions



Least Squares is a method for finding approximate solutions to systems of linear equations

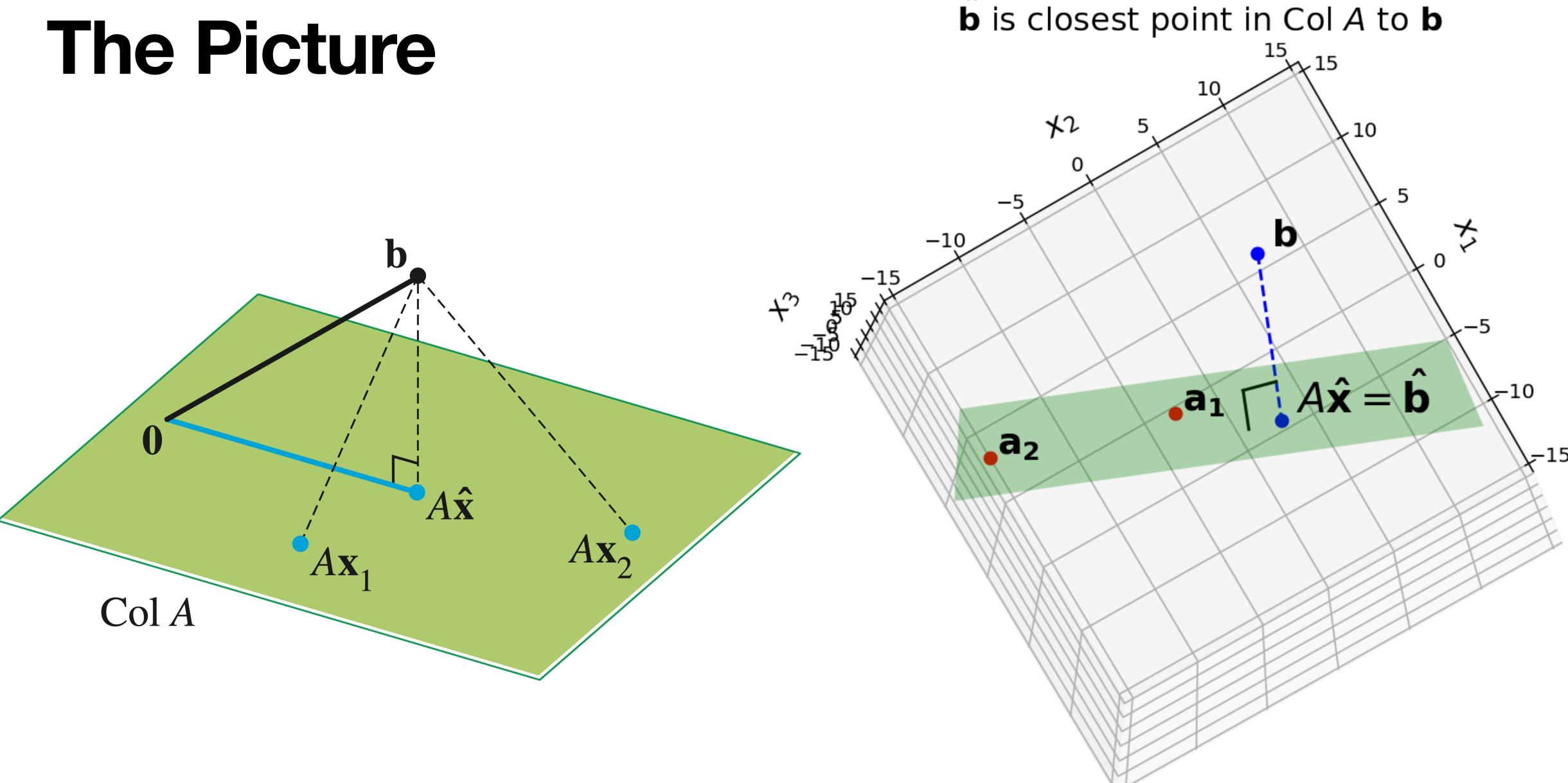
This is a lot more useful in practice than exact solutions

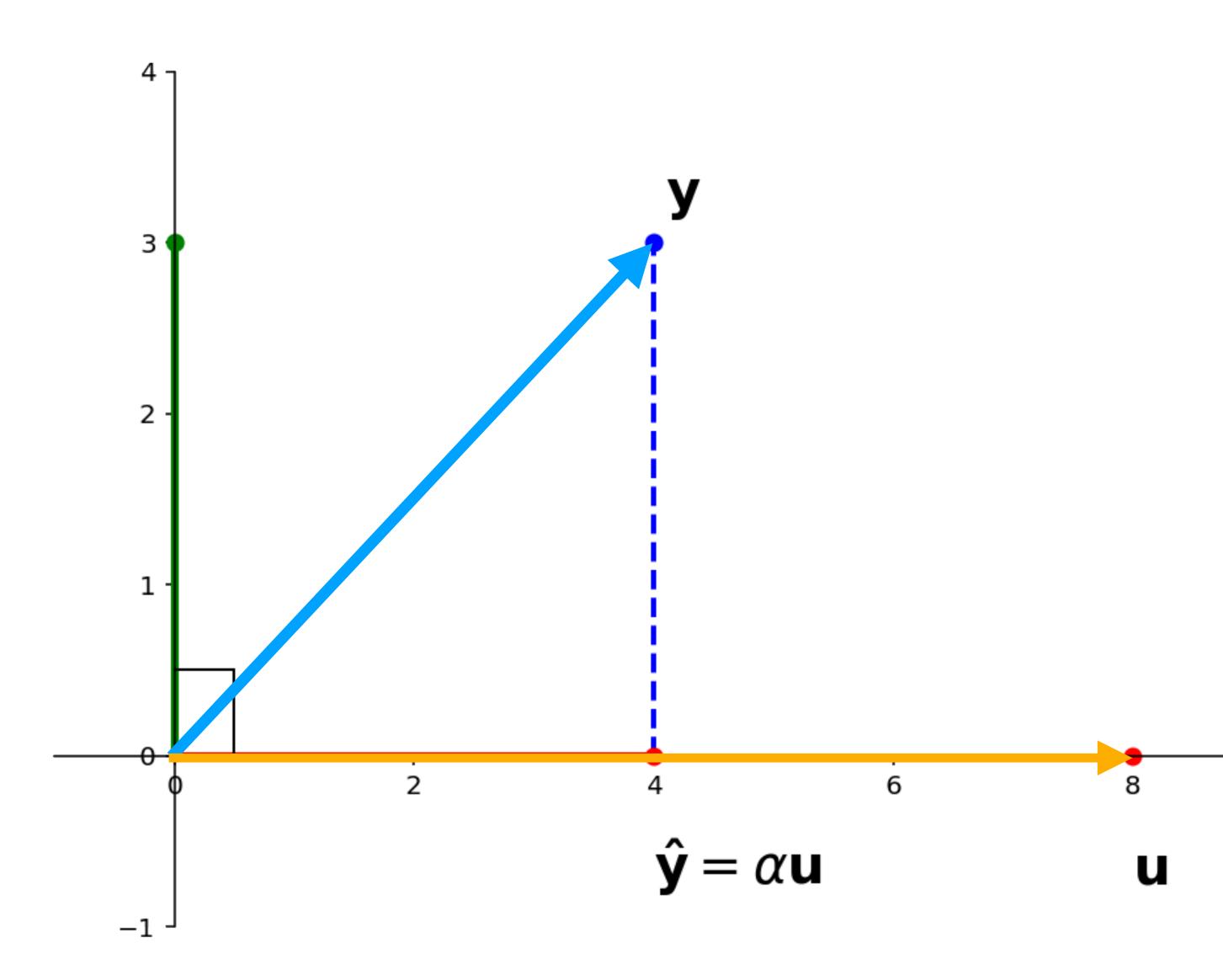
It can be used to do linear regression from stats class



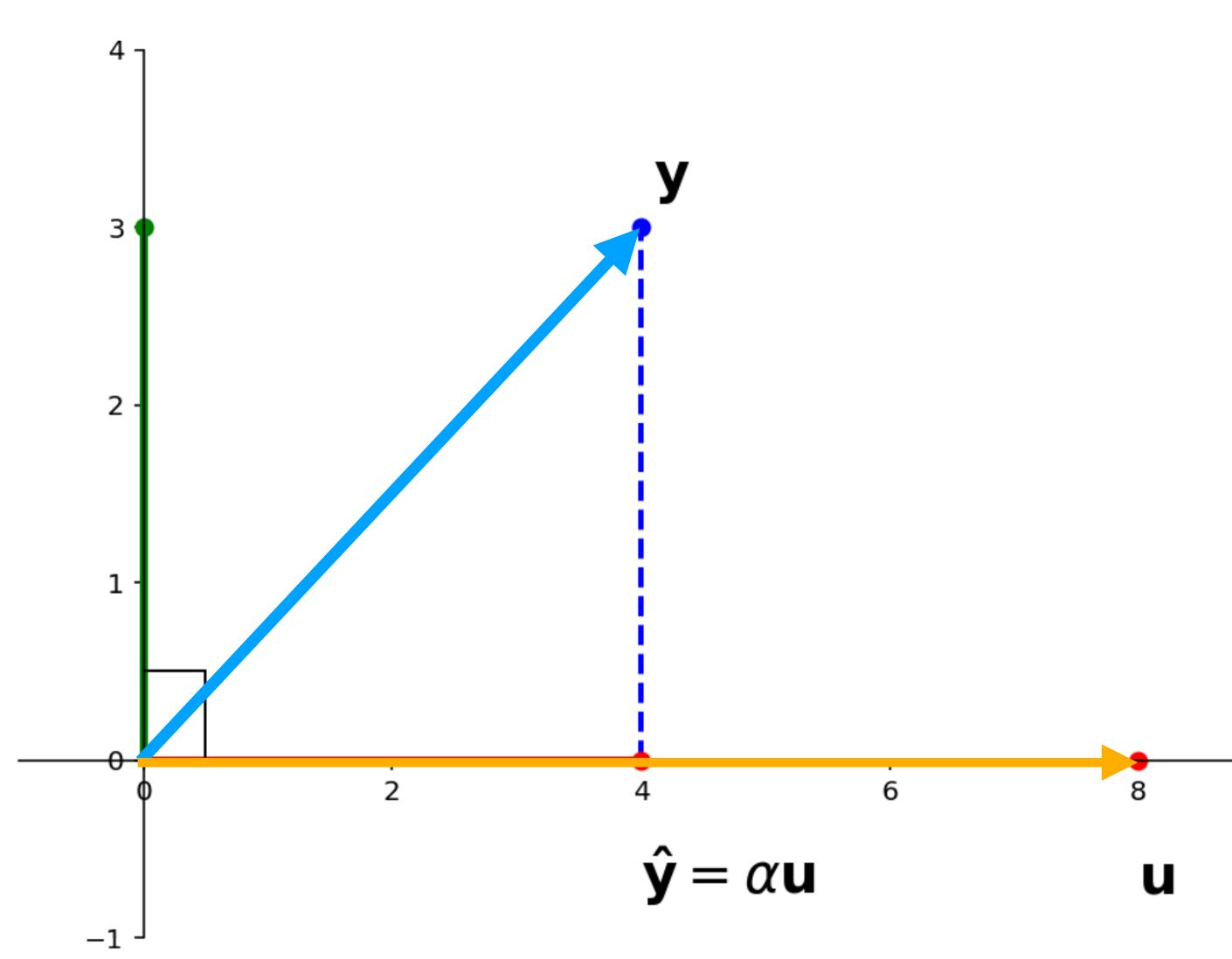
General Least Squares Problem

The Picture



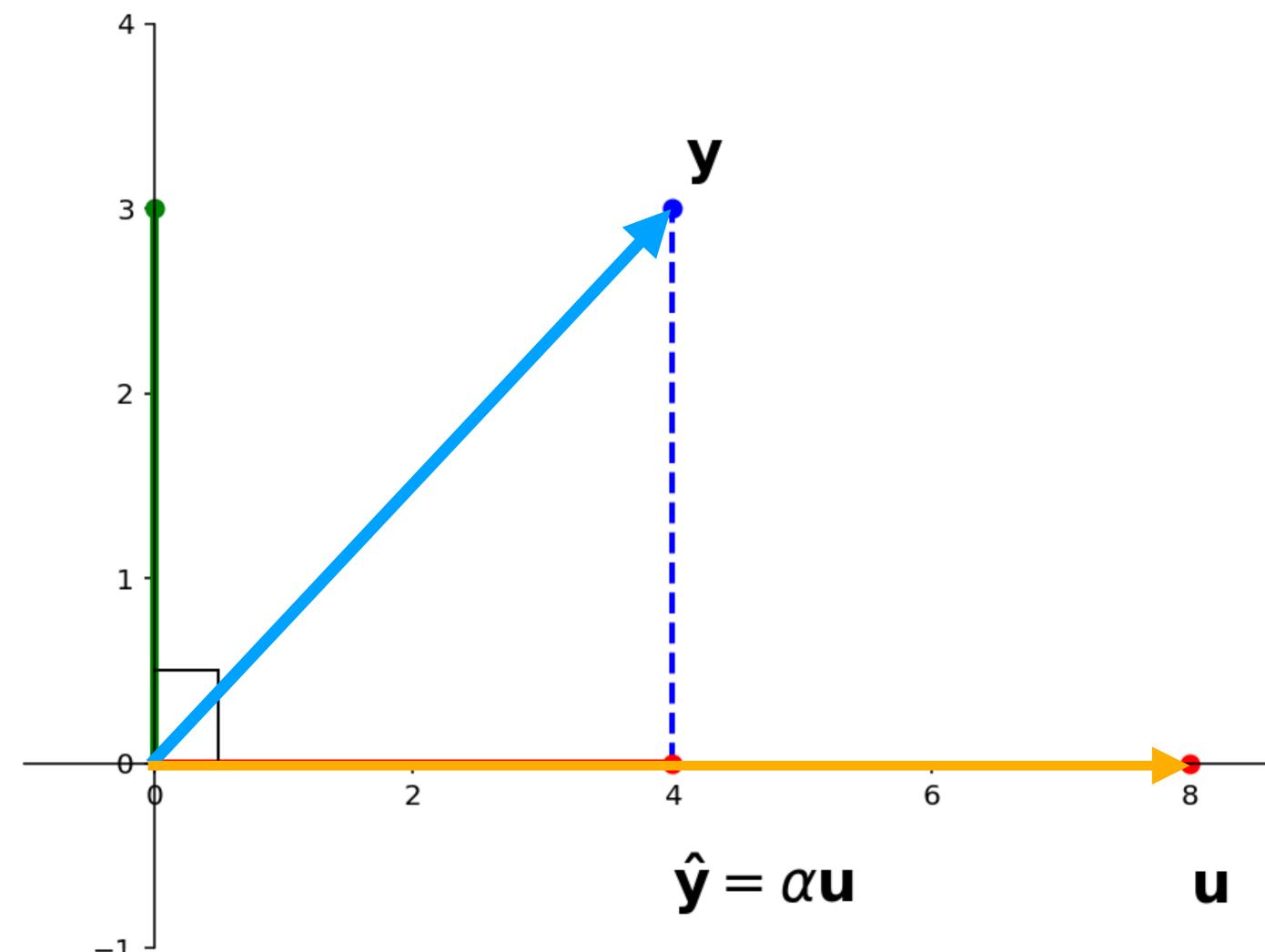


Question. Given vectors y and u in R^n , find vectors \hat{y} and z such that



Question. Given vectors y and u in R^n , find vectors \hat{y} and z such that

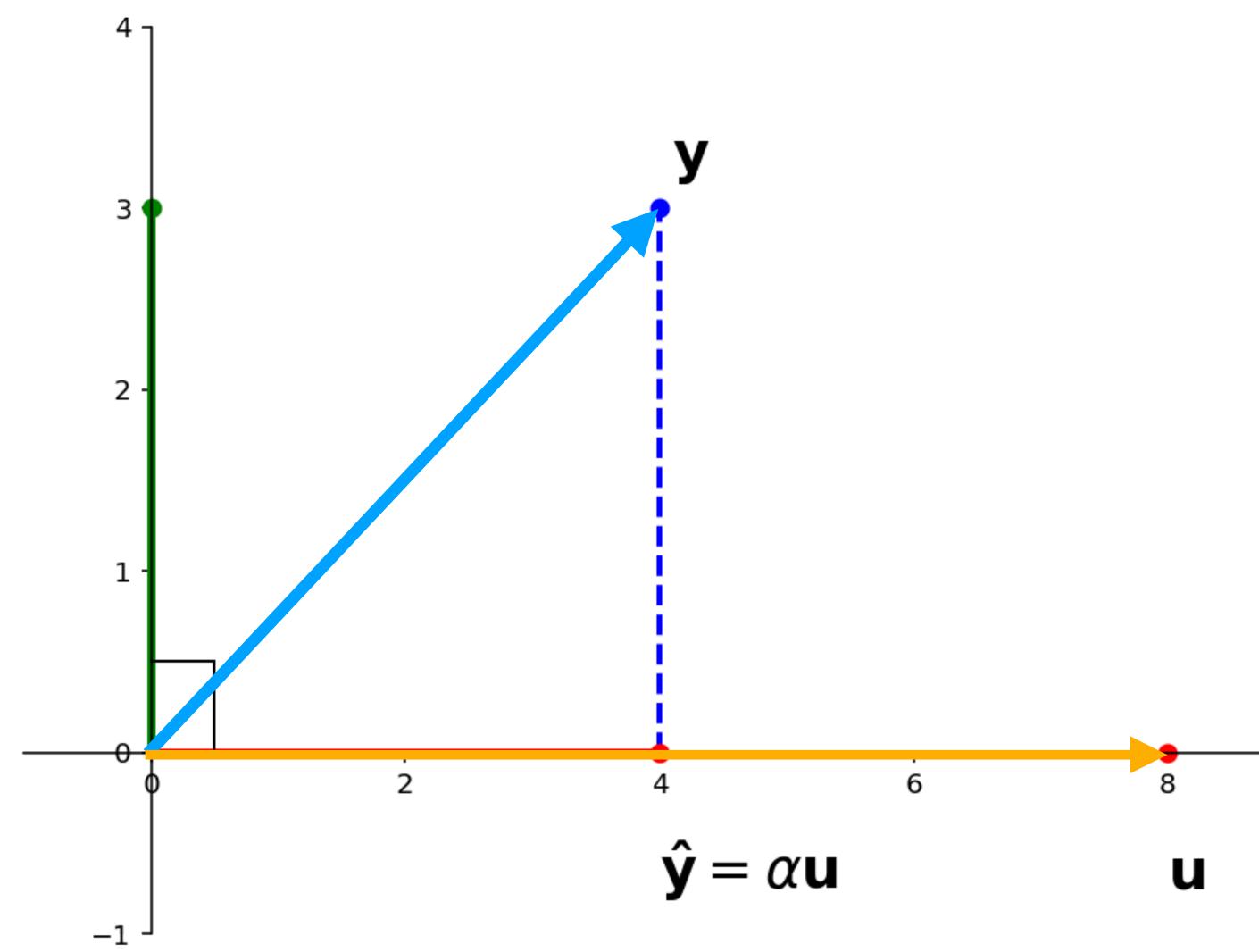
 \Rightarrow z is orthogonal to u (i.e., $z \cdot u = 0$)



Question. Given vectors y and u in R^n , find vectors \hat{y} and z such that

 \Rightarrow z is orthogonal to u (i.e., z·u = 0)

 $\Rightarrow \hat{\mathbf{y}} \in span\{\mathbf{u}\}$

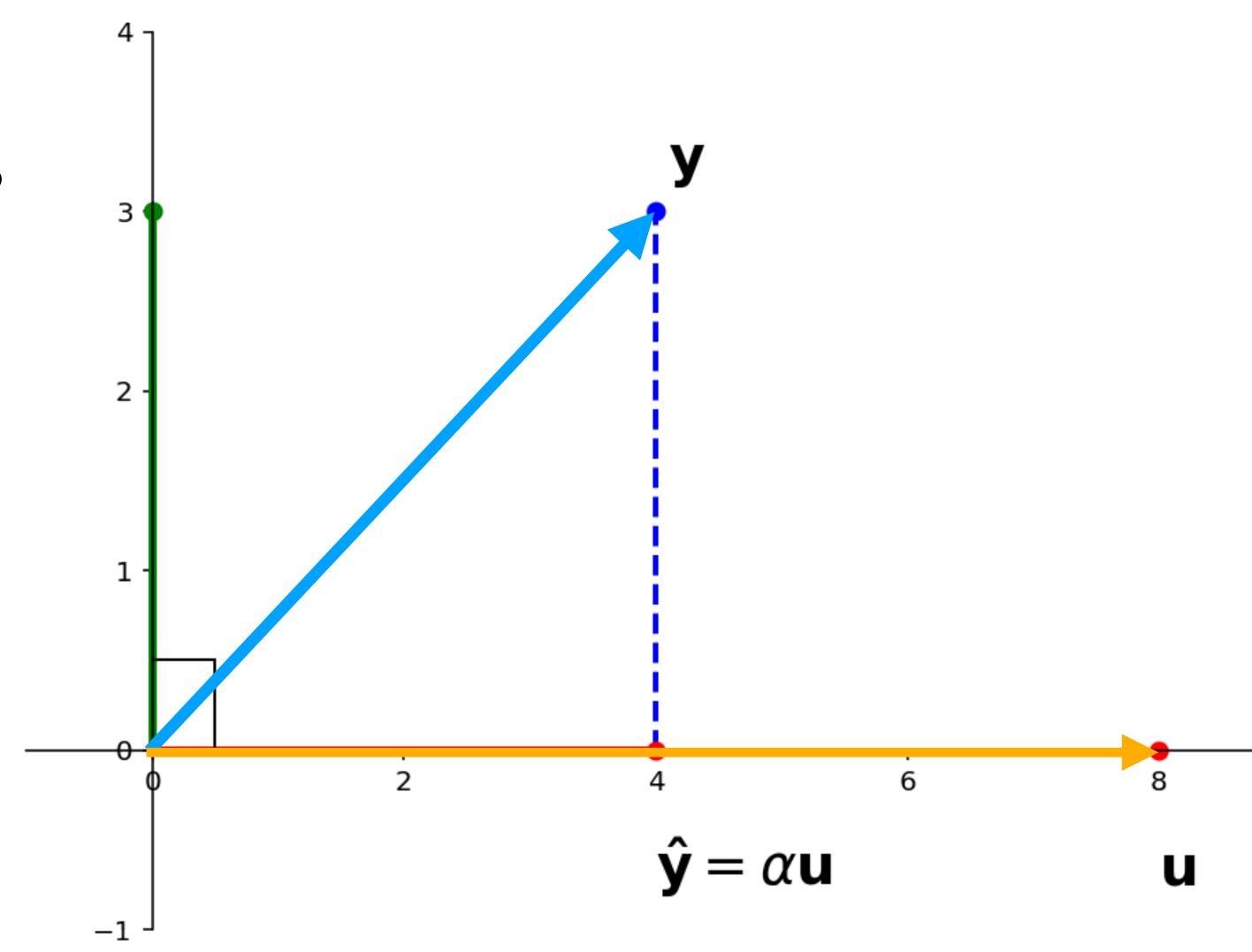


Question. Given vectors y and u in R^n , find vectors \hat{y} and z such that

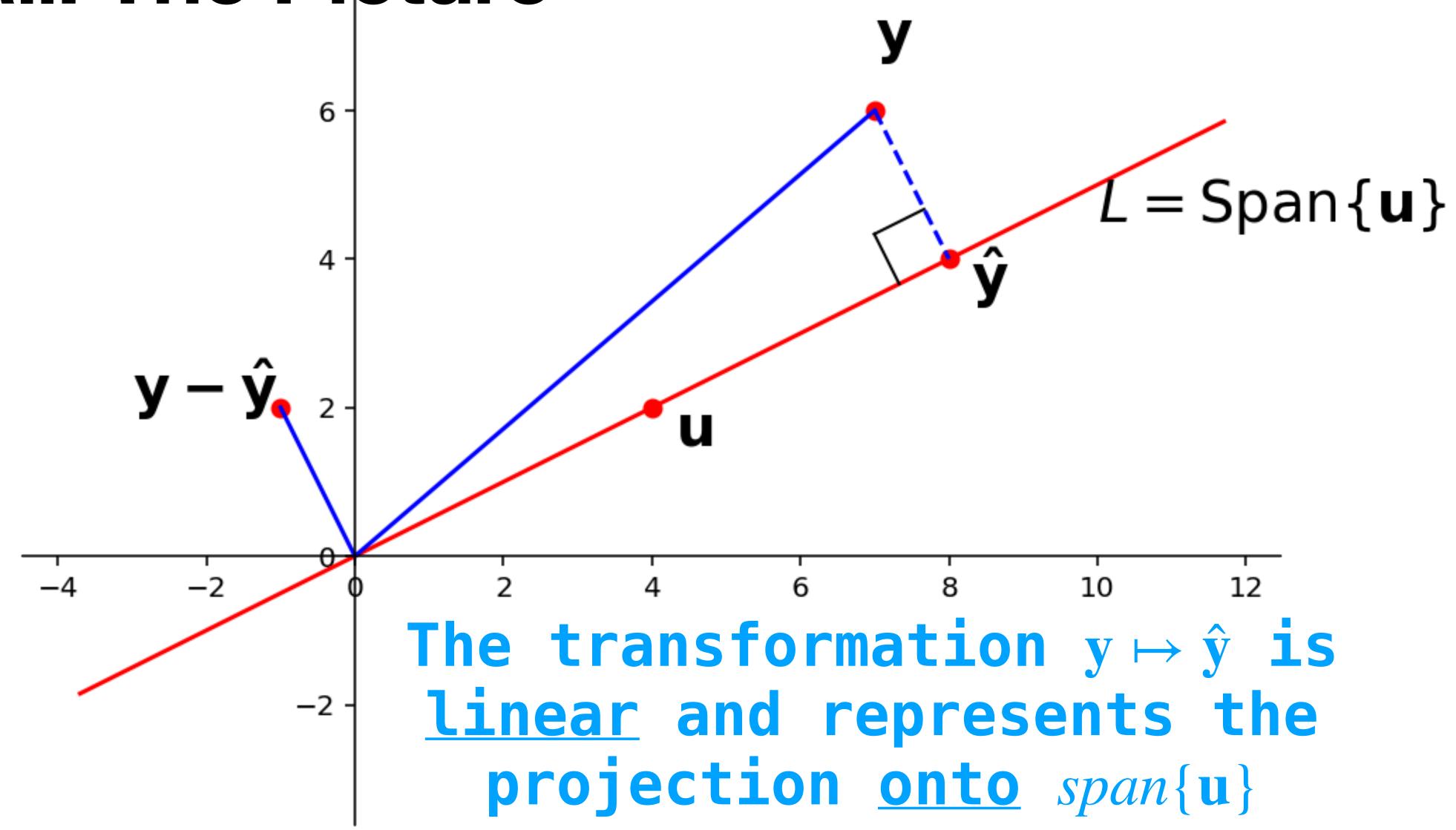
 \Rightarrow z is orthogonal to u (i.e., $z \cdot u = 0$)

 $\Rightarrow \hat{\mathbf{y}} \in span\{\mathbf{u}\}$

 $y = \hat{y} + z$



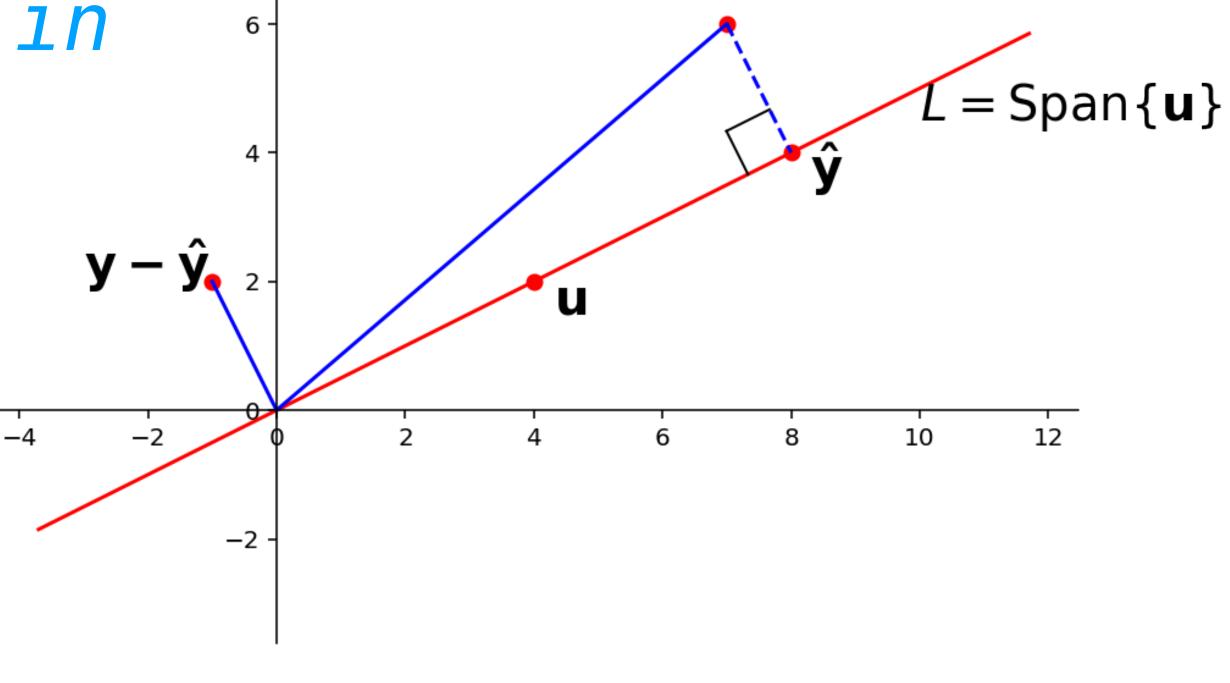
Recall: The Picture



Recall: ŷ and Distance

Theorem. $\|\hat{\mathbf{y}} - \mathbf{y}\| = \min_{\mathbf{w} \in span\{\mathbf{u}\}} \|\mathbf{w} - \mathbf{y}\|$ $\hat{\mathbf{y}}$ is the <u>closest</u> vector in $span\{\mathbf{u}\}$ to \mathbf{y}

"Proof" by inspection:



We know the equation $x\mathbf{u} = \mathbf{y}$ may have no solution

We know the equation $x\mathbf{u} = \mathbf{y}$ may have no solution **Question.** Find a value α such that $\alpha \mathbf{u}$ is as close as possible to \mathbf{y}

We know the equation $x\mathbf{u} = \mathbf{y}$ may have no solution

Question. Find a value α such that $\alpha \mathbf{u}$ is as close as possible to \mathbf{y}

That is, the distance $dist(\mathbf{y}, \alpha \mathbf{u}) = \|\mathbf{y} - \alpha \mathbf{u}\|$ is as small as possible

We know the equation $x\mathbf{u} = \mathbf{y}$ may have no solution

Question. Find a value α such that $\alpha \mathbf{u}$ is as close as possible to \mathbf{y}

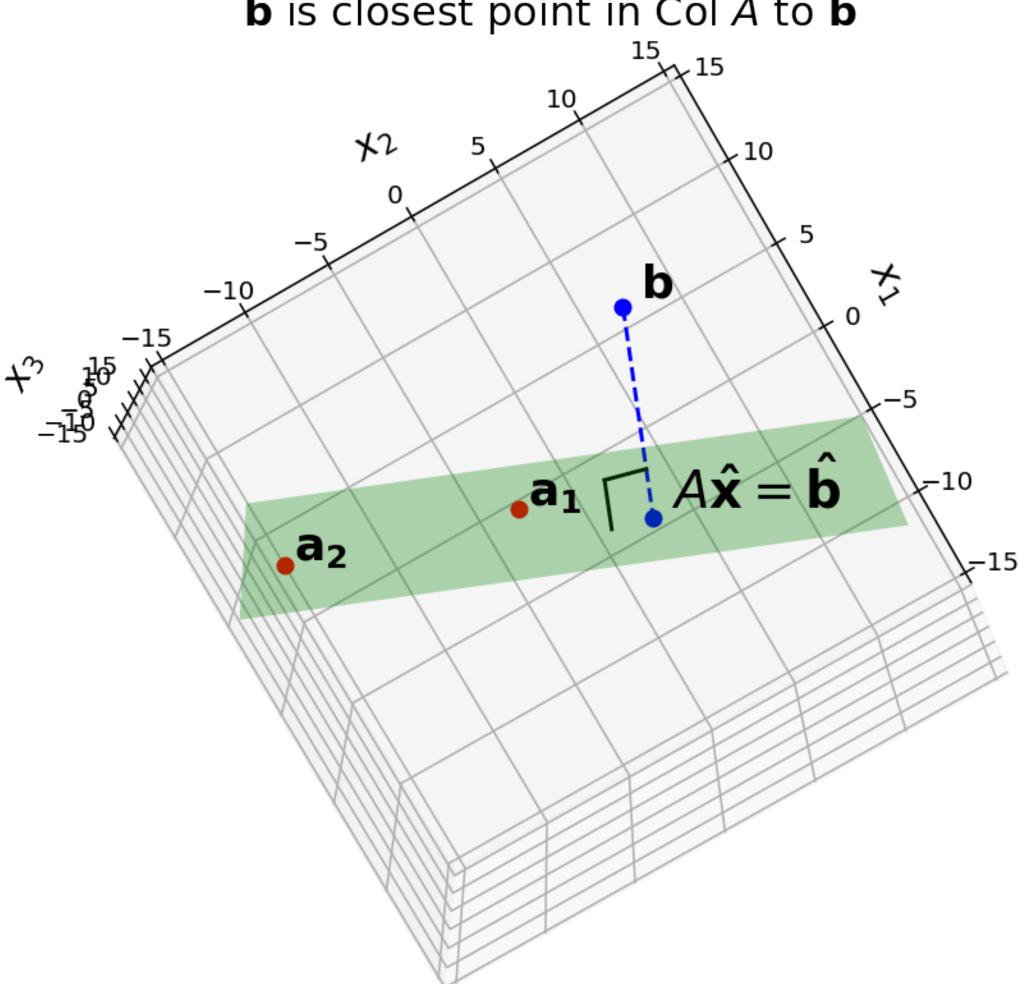
That is, the distance $dist(\mathbf{y}, \alpha \mathbf{u}) = \|\mathbf{y} - \alpha \mathbf{u}\|$ is as small as possible

We need to generalize this to arbitrary matrix equations

The General Least Squares Problem

Figure 22.8

 $\hat{\mathbf{b}}$ is closest point in Col A to \mathbf{b}

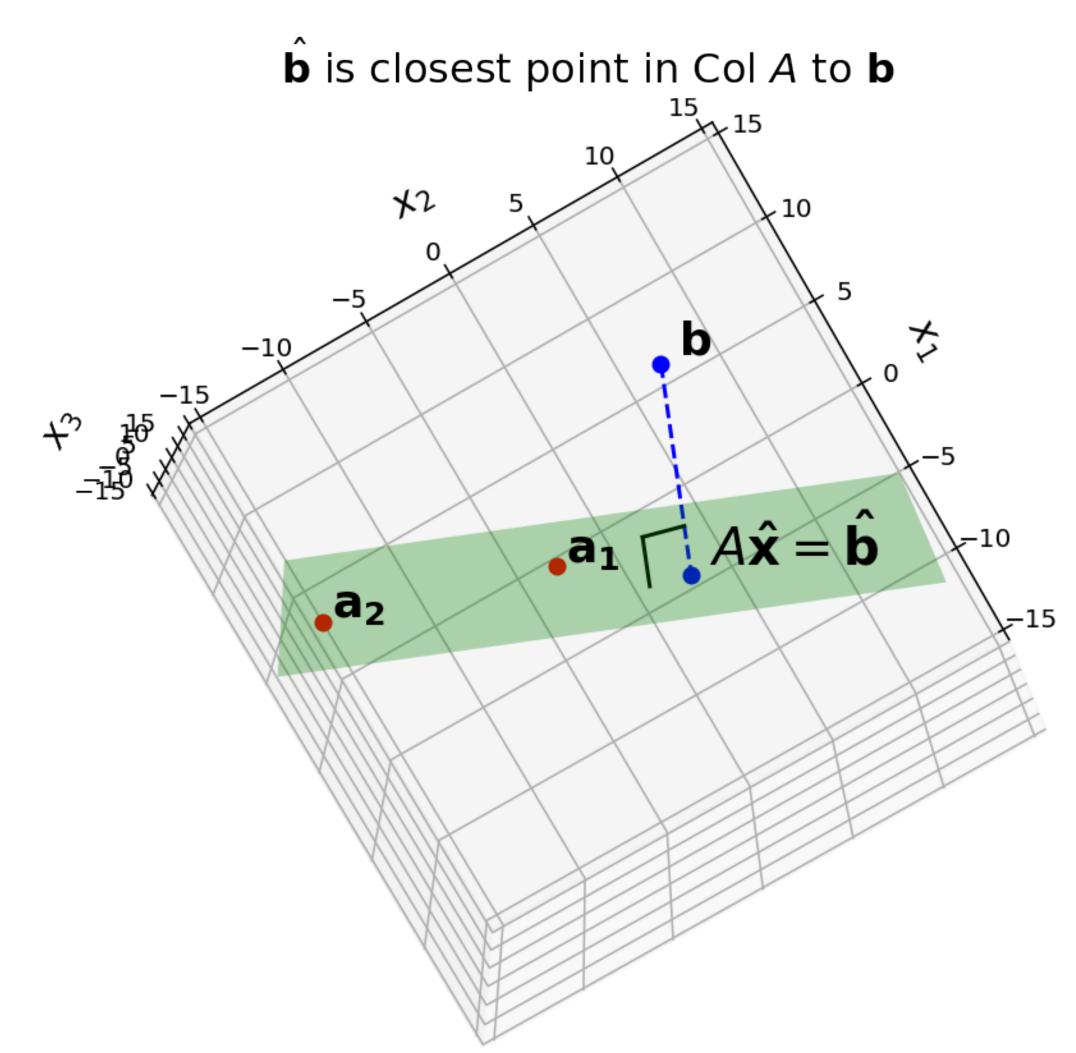


The General Least Squares Problem

Figure 22.8

Problem. Given a $m \times n$ matrix A and a vector \mathbf{b} from \mathbb{R}^m , find a vector \mathbf{x} in \mathbb{R}^n which minimizes

$$dist(A\mathbf{x}, \mathbf{b}) = ||A\mathbf{x} - \mathbf{b}||$$



The General Least Squares Problem

Figure 22.8

Problem. Given a $m \times n$ matrix A and a vector \mathbf{b} from \mathbb{R}^m , find a vector \mathbf{x} in \mathbb{R}^n which minimizes

$$dist(A\mathbf{x}, \mathbf{b}) = ||A\mathbf{x} - \mathbf{b}||$$

Find a vector \mathbf{x} which makes $\|A\mathbf{x} - \mathbf{b}\|$ as small as possible

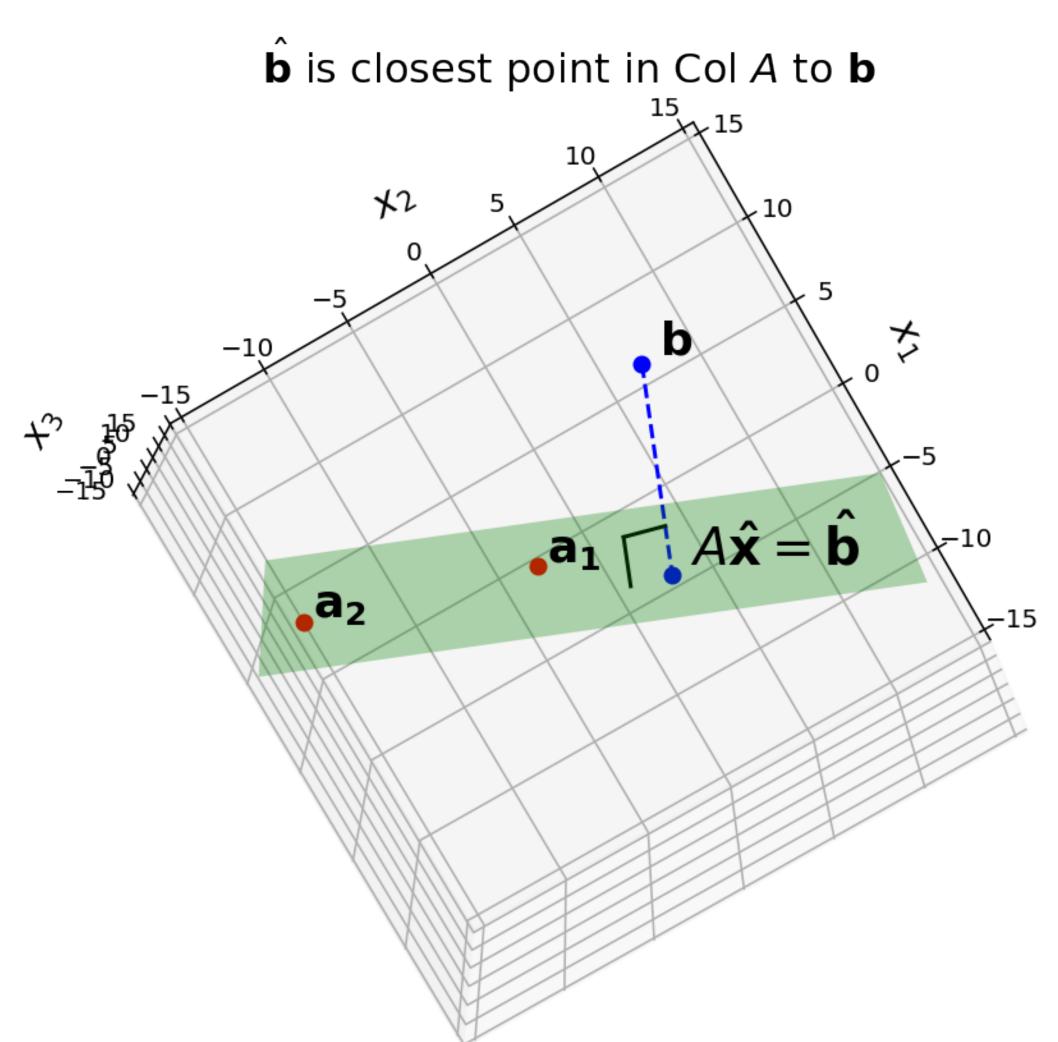
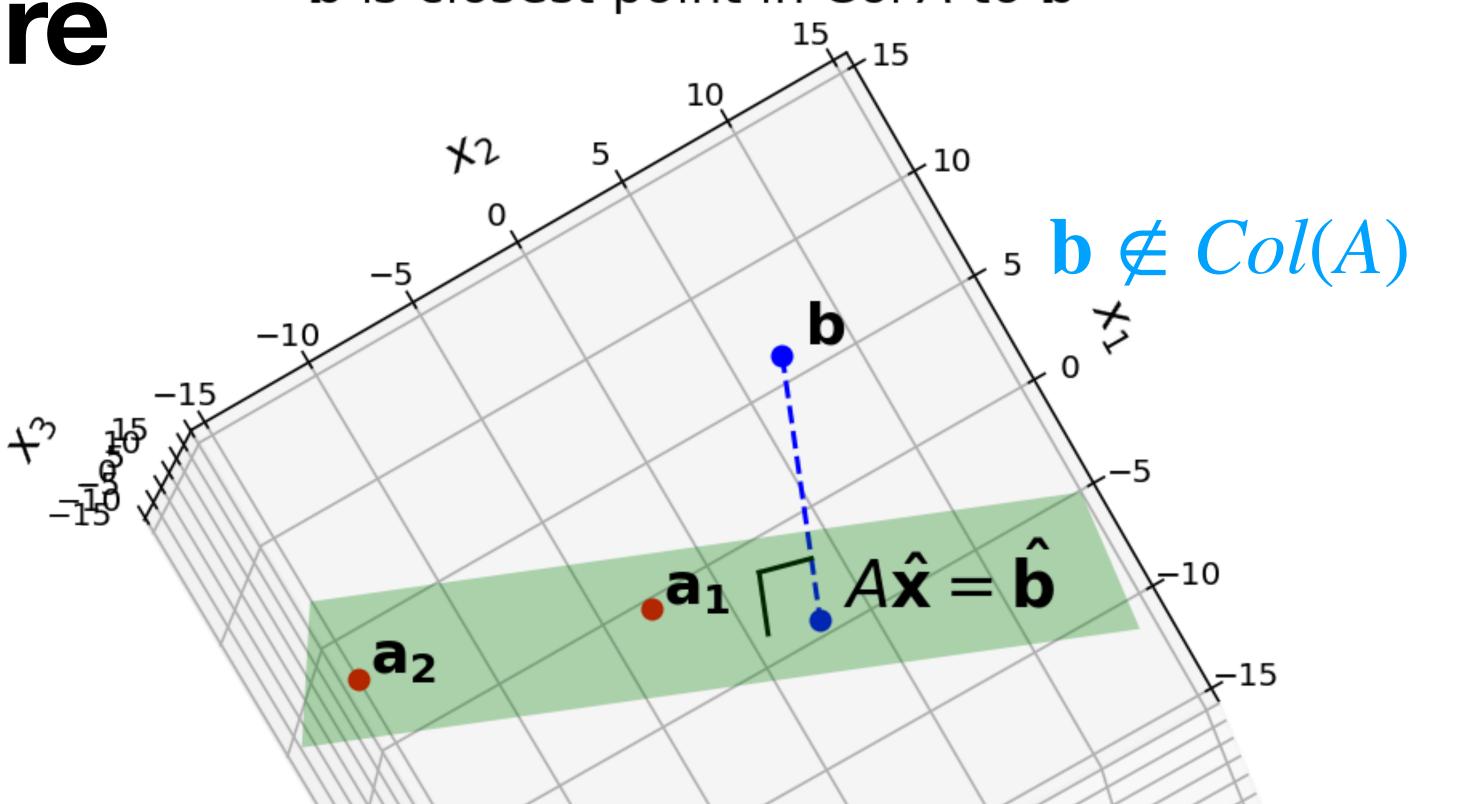


Figure 22.8

The Picture

 $\hat{\mathbf{b}}$ is closest point in Col A to \mathbf{b}



There is no solution to $A\mathbf{x} = \mathbf{b}$

But there's a solution that's pretty close

$$||A\mathbf{x} - \mathbf{b}||^2 = \sum_{i=1}^{n} ((A\mathbf{x})_i - \mathbf{b}_i)^2$$

$$||A\mathbf{x} - \mathbf{b}||^2 = \sum_{i=1}^{n} ((A\mathbf{x})_i - \mathbf{b}_i)^2$$

It is equivalent to minimize $||Ax - b||^2$, which can be viewed as a **sum of squares**

$$||A\mathbf{x} - \mathbf{b}||^2 = \sum_{i=1}^n ((A\mathbf{x})_i - \mathbf{b}_i)^2$$

It is equivalent to minimize $||Ax - b||^2$, which can be viewed as a **sum of squares**

These things come up everywhere

$$||A\mathbf{x} - \mathbf{b}||^2 = \sum_{i=1}^n ((A\mathbf{x})_i - \mathbf{b}_i)^2$$

It is equivalent to minimize $||Ax - b||^2$, which can be viewed as a **sum of squares**

These things come up everywhere

(Advanced.) This error is everywhere differentiable, whereas $\sum_{i=1}^{n} |(A\mathbf{x})_i - b_i|$ is not

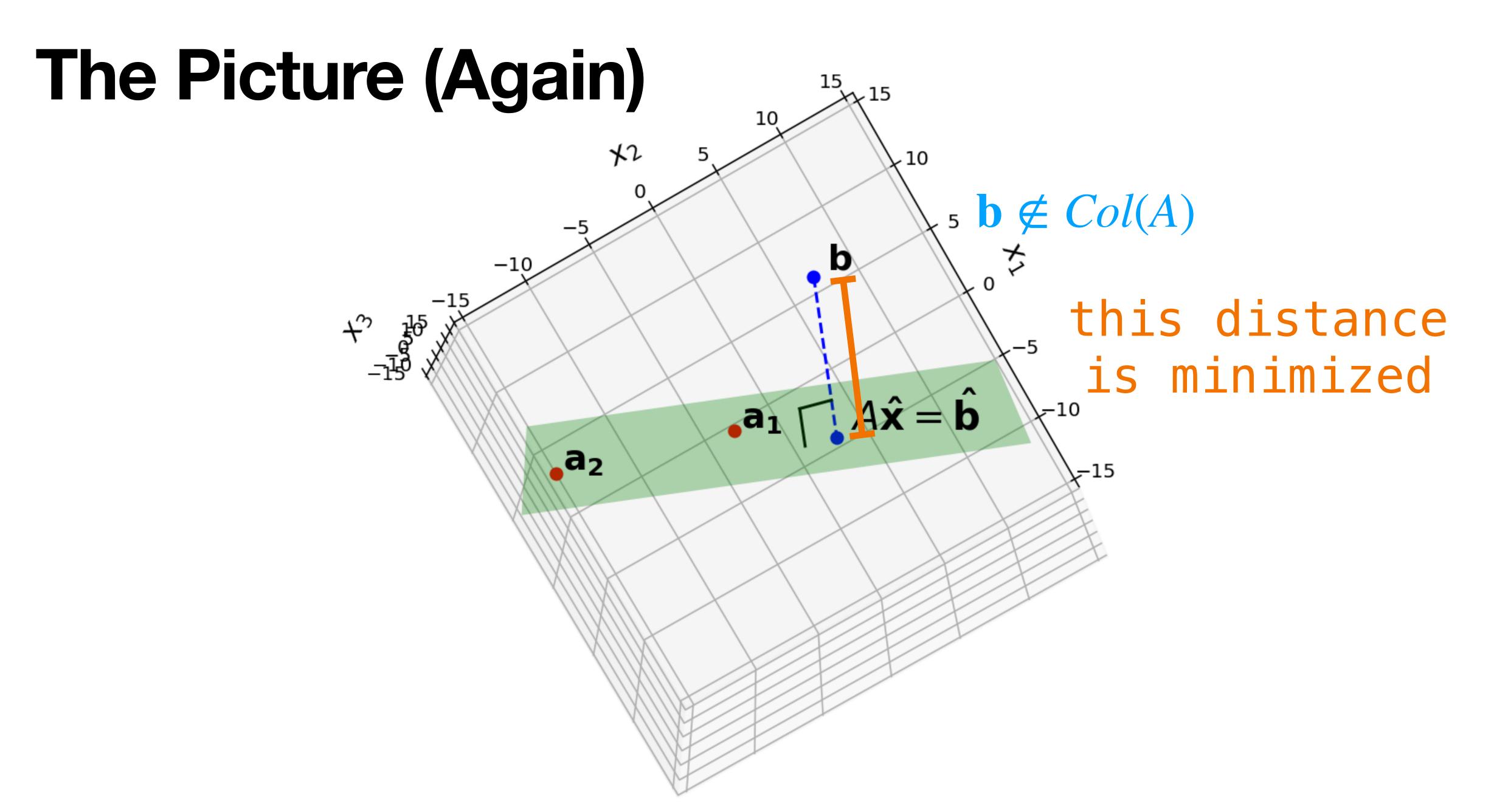
Least Squares Solution

Definition. Given a $m \times n$ matrix A and a vector \mathbf{b} in \mathbb{R}^m , a **least squares solution** of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}}$ from \mathbb{R}^n such that

$$||A\hat{\mathbf{x}} - \mathbf{b}|| \le ||A\mathbf{x} - \mathbf{b}||$$

for any x in \mathbb{R}^n

Again, $\|A\hat{\mathbf{x}} - \mathbf{b}\|$ is as small as possible



$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg min}} \|A\mathbf{x} - \mathbf{b}\|$$

$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\text{arg min}} \|A\mathbf{x} - \mathbf{b}\|$$

Another way of framing this is via arg min

$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\text{arg min}} \|A\mathbf{x} - \mathbf{b}\|$$

Another way of framing this is via arg min**Defintion.** $arg min f(x) = \hat{x}$ where $f(\hat{x}) = min f(x)$

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^n} ||A\mathbf{x} - \mathbf{b}||$$

Another way of framing this is via $\arg\min$ Defintion. $\arg\min_{x\in X}f(x)=\hat{x}$ where $f(\hat{x})=\min_{x\in X}f(x)$

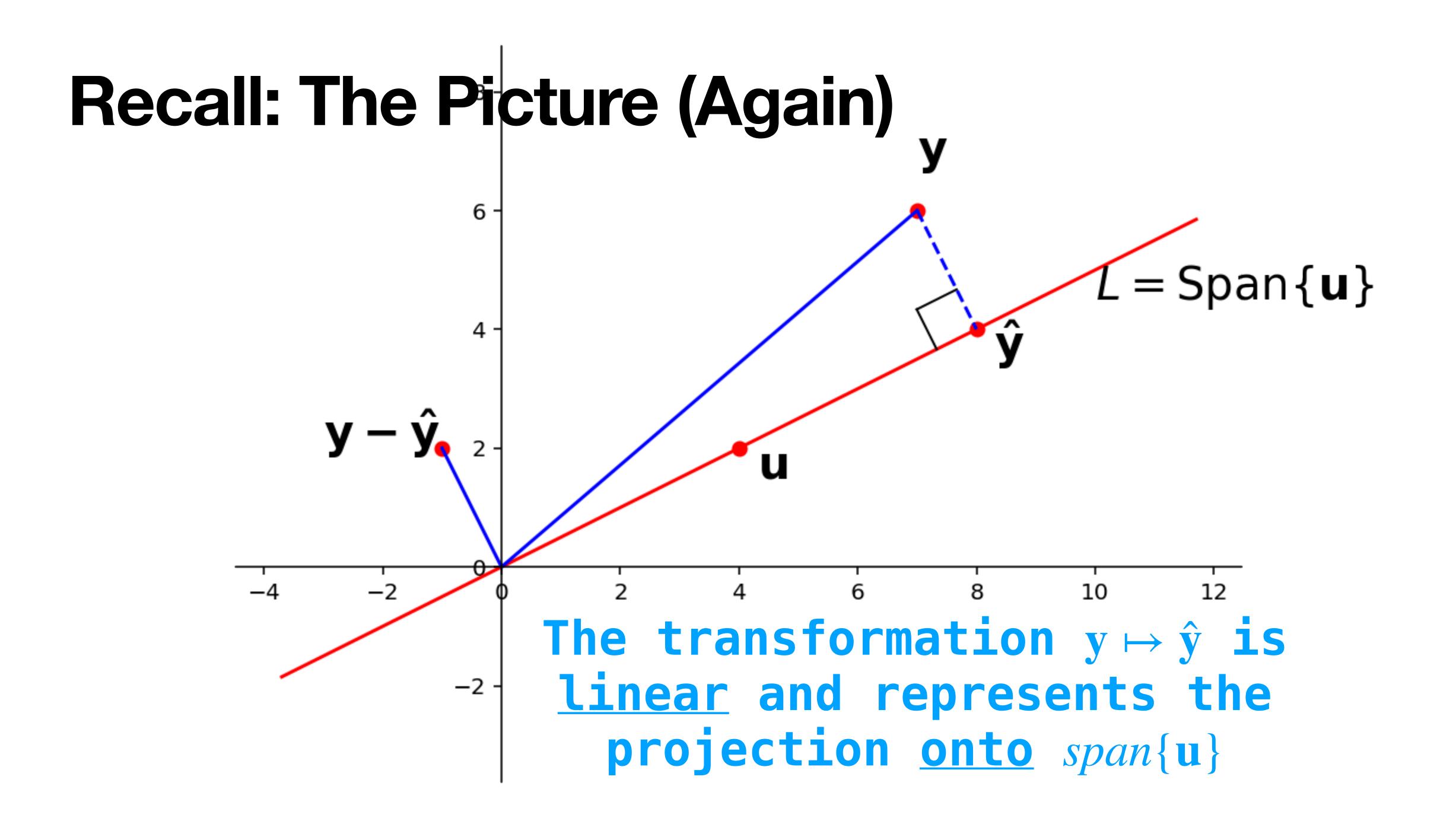
 \hat{x} is the *argument* that *minimizes* f

$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg min}} \|A\mathbf{x} - \mathbf{b}\|$$

Another way of framing this is via $\underset{x \in X}{\operatorname{arg\,min}}$ Defintion. $\underset{x \in X}{\operatorname{arg\,min}} f(x) = \hat{x}$ where $f(\hat{x}) = \underset{x \in X}{\min} f(x)$

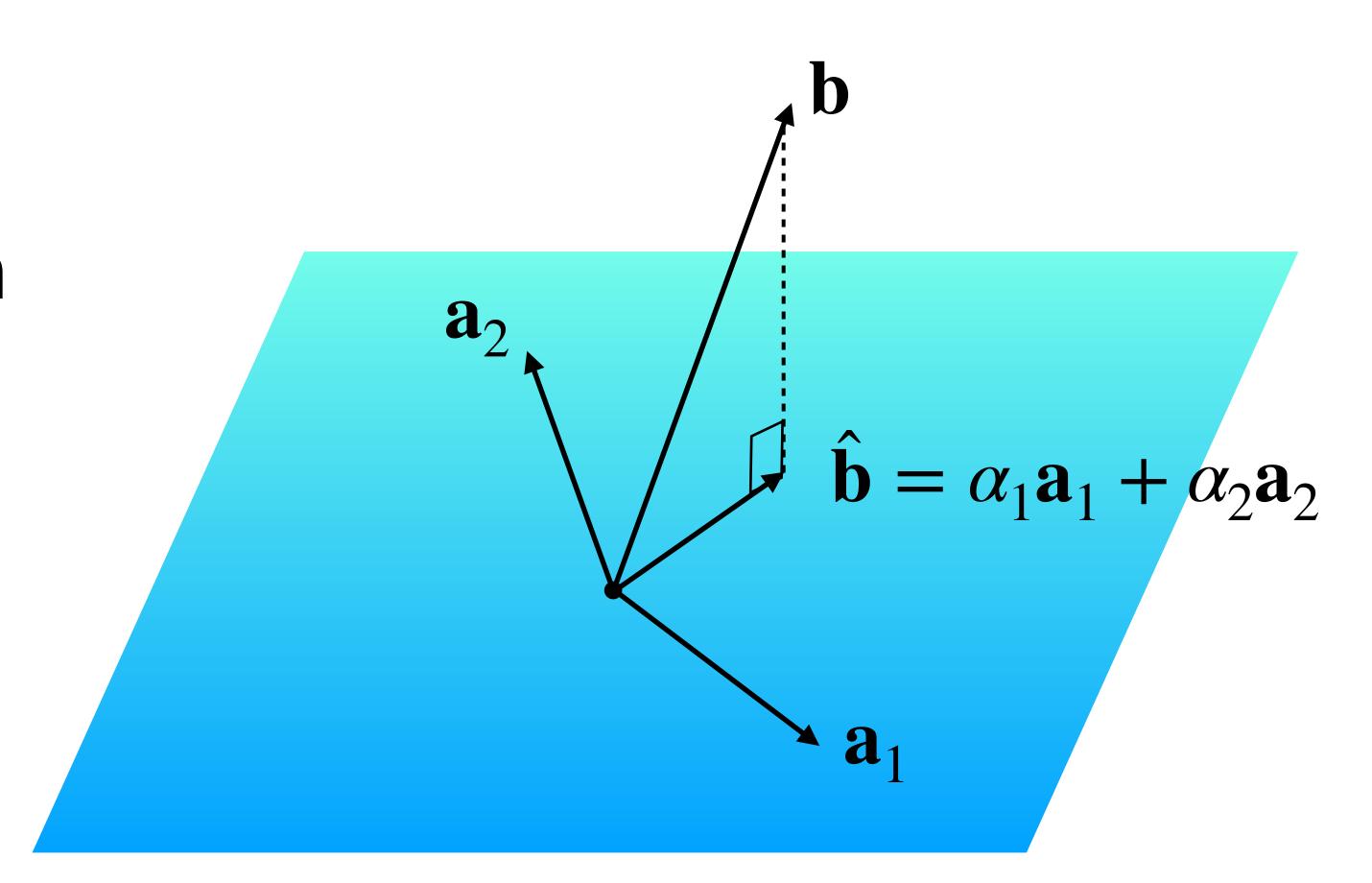
 \hat{x} is the **arg**ument that **min**imizes fThis is now an optimization problem

Solving the General Least Squares Problems



Projects onto other Spans

The transformation $\mathbf{b}\mapsto\hat{\mathbf{b}}$ is the projection of \mathbf{b} onto $\text{span}\{\mathbf{a}_1,\mathbf{a}_2\}$



The High Level Approach.

Question. Find a least squares solutions to $A = \mathbf{b}$

Solution.

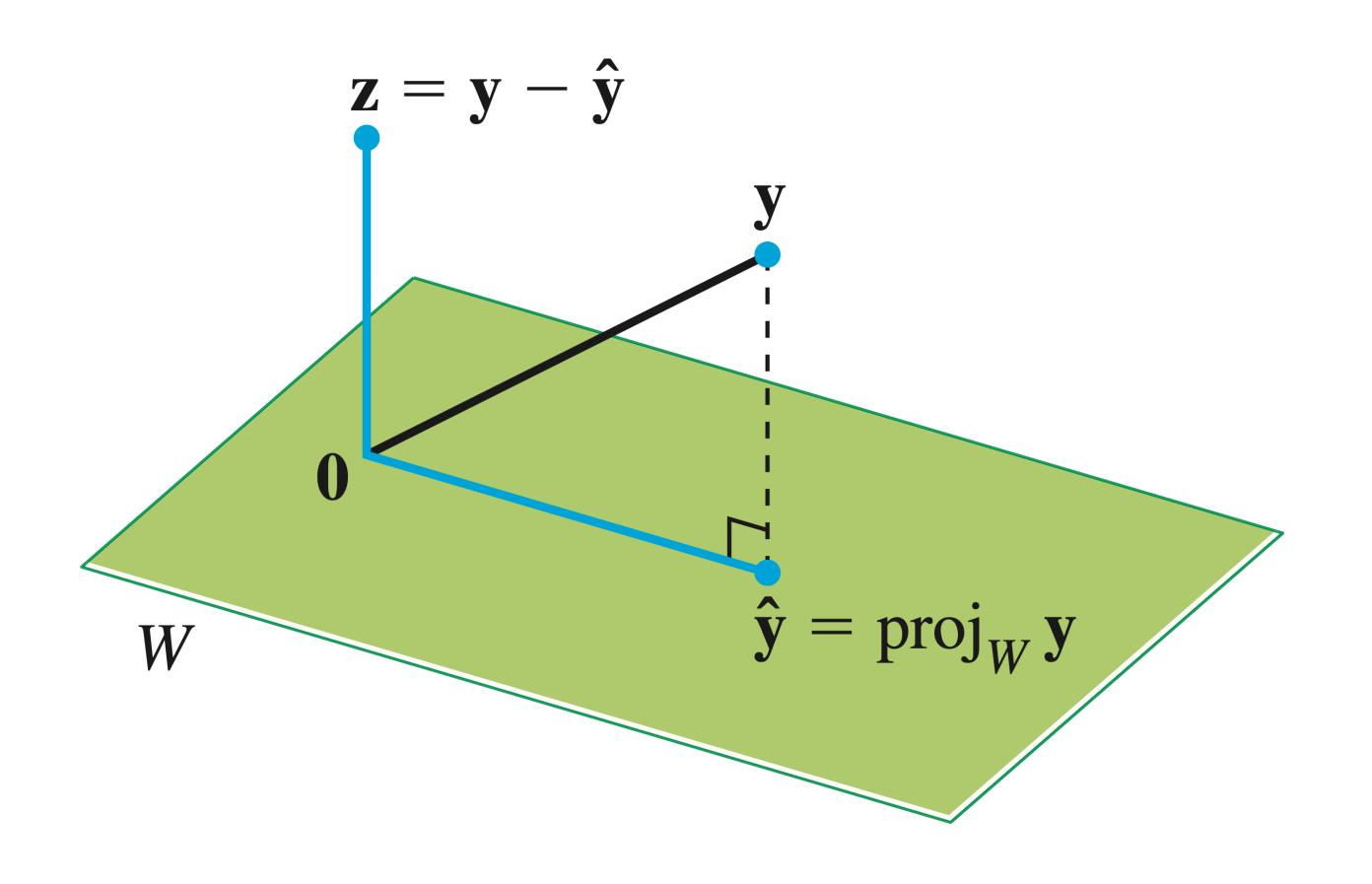
- 1. Find the closest point $\hat{\mathbf{b}}$ in Col(A) to \mathbf{b}
- 2. Solve the equation $A\mathbf{x} = \hat{\mathbf{b}}$ instead

Orthogonal Decomposition Theorem

Theorem. Let W be a subspace of \mathbb{R}^n . Every vector \mathbf{y} in \mathbb{R}^n can be written <u>uniquely</u> as

$$y = \hat{y} + z$$

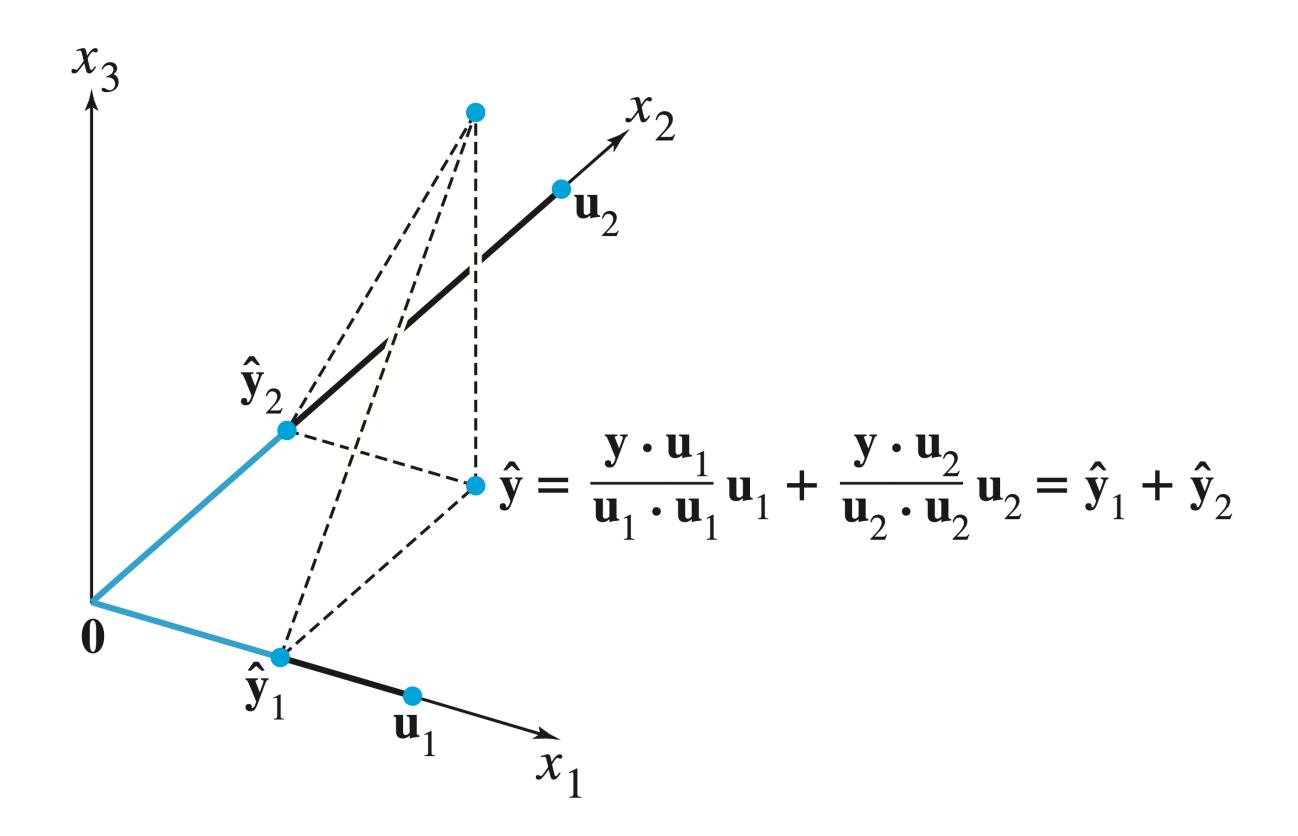
where $\hat{y} \in W$ and z is orthogonal to every vector in W



Projection via Orthogonal Bases

We can determine $\hat{\mathbf{y}}$ by projecting onto an orthogonal basis

Every subspace has an orthogonal basis (we won't prove this)



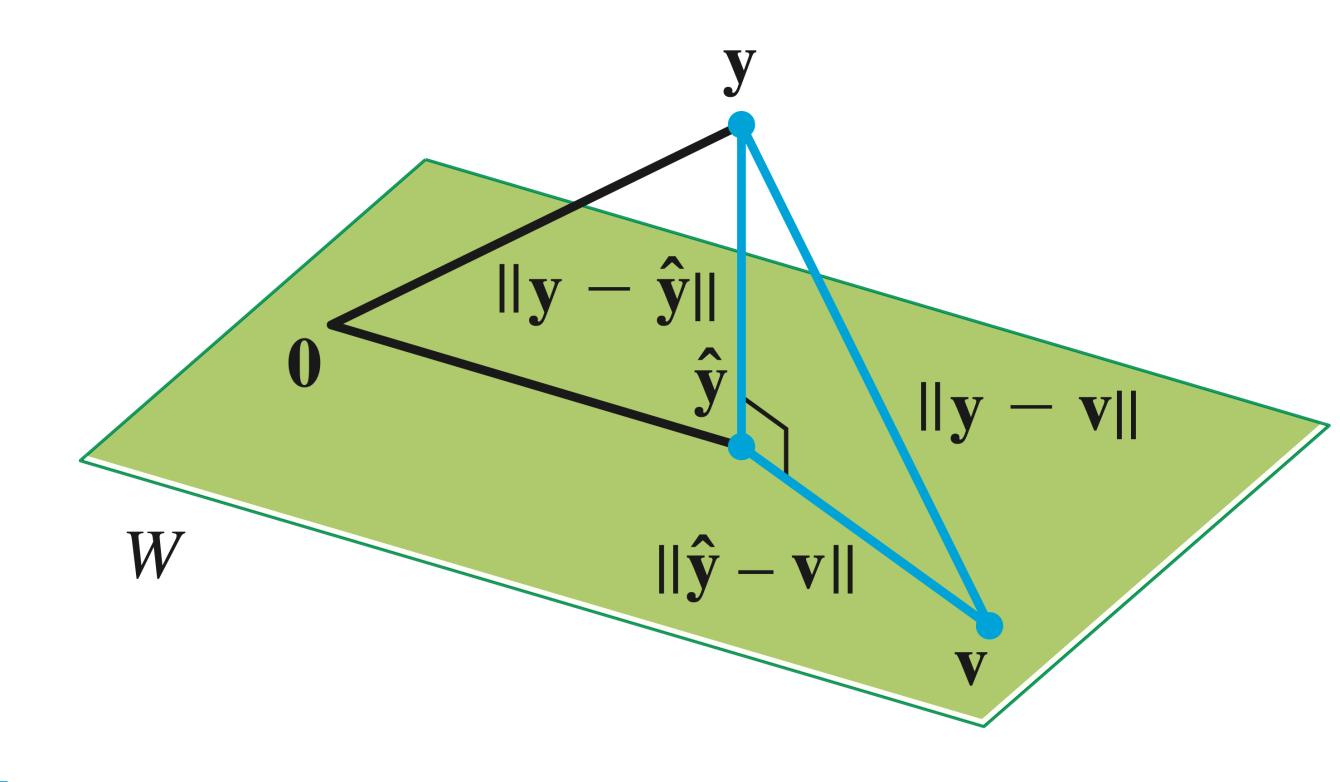
The Best-Approximation Theorem

Theorem. Let W be a subspace of \mathbb{R}^n , and let \hat{y} be the orthogonal projection of y onto W Then

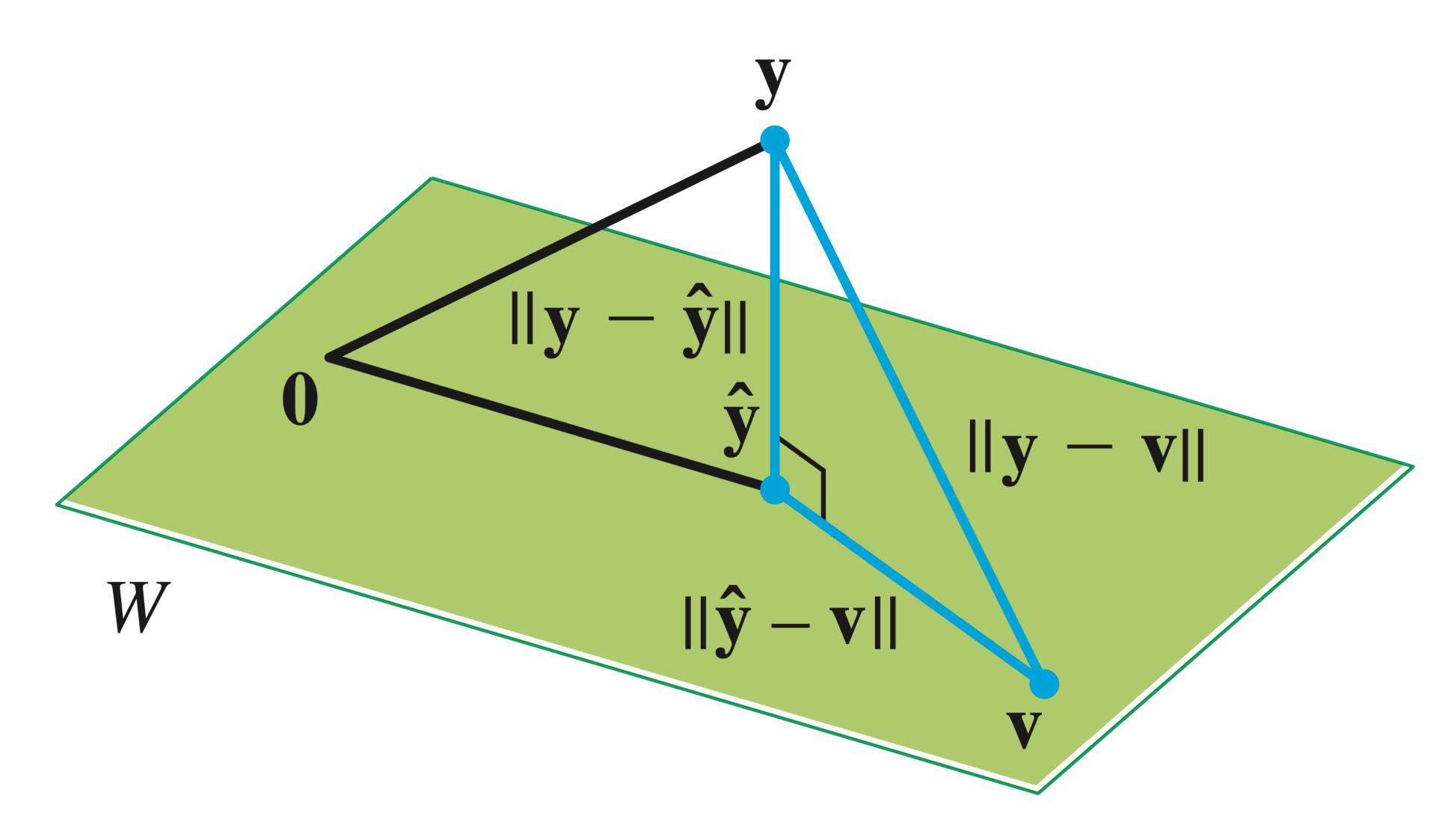
$$\|\mathbf{y} - \hat{\mathbf{y}}\| \le \|\mathbf{y} - \mathbf{w}\|$$

for \underline{any} vector \mathbf{w} in W

 $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y}

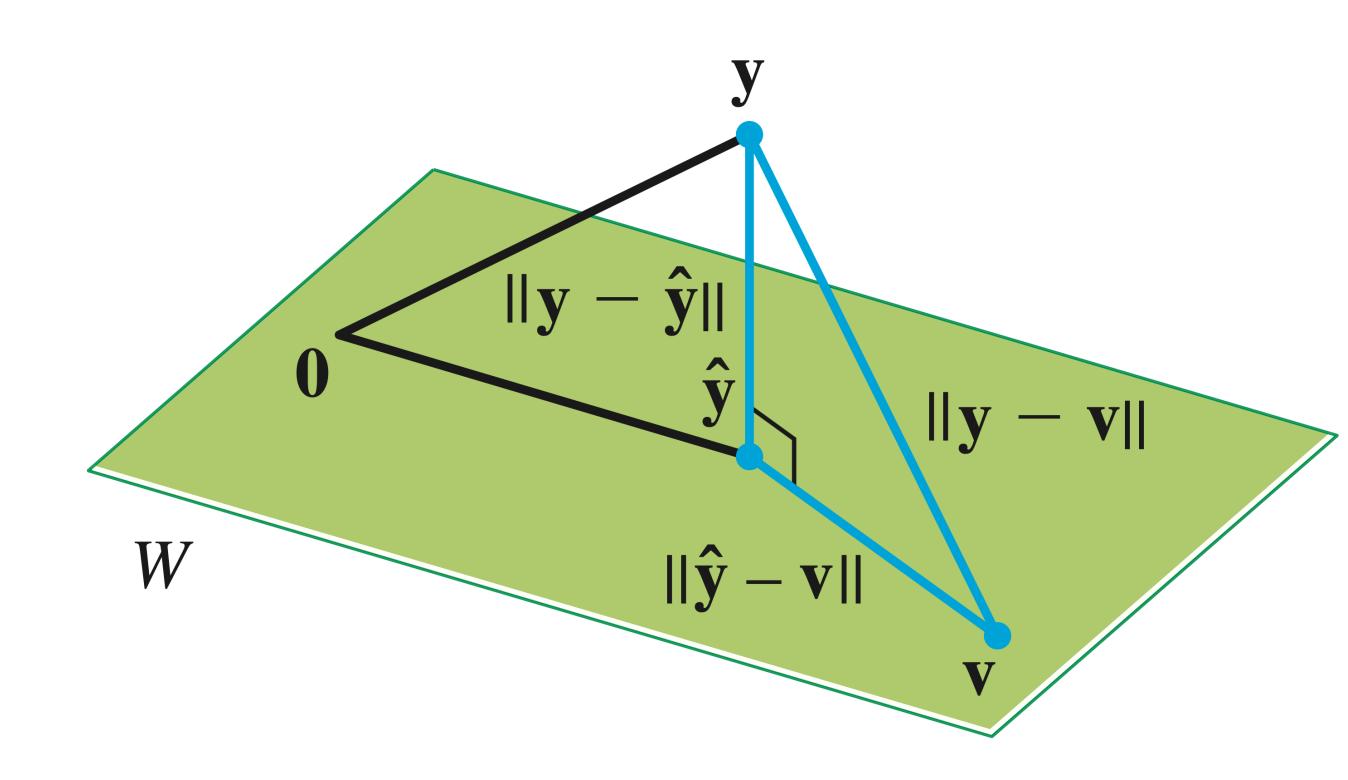


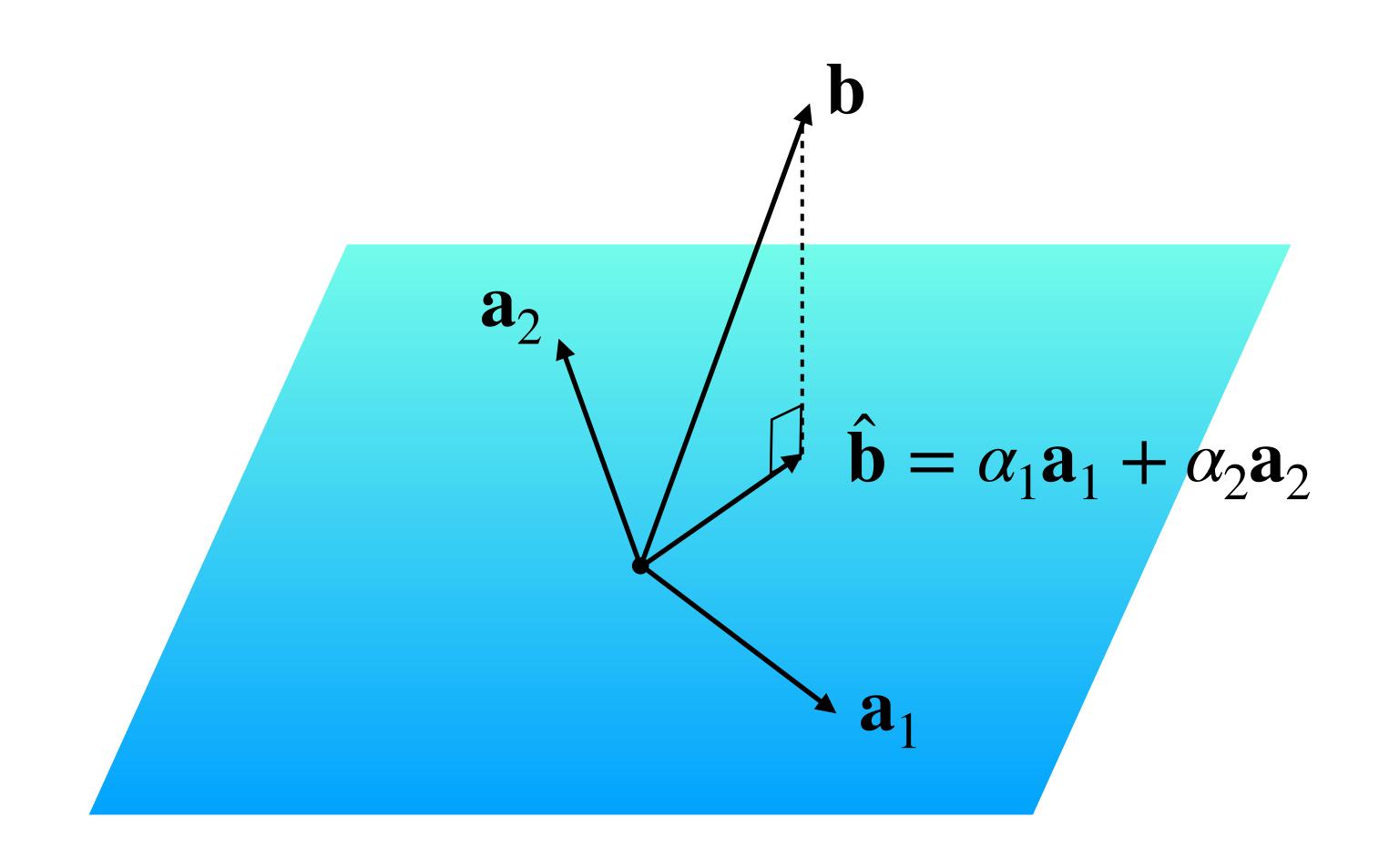
Proof by Inspection



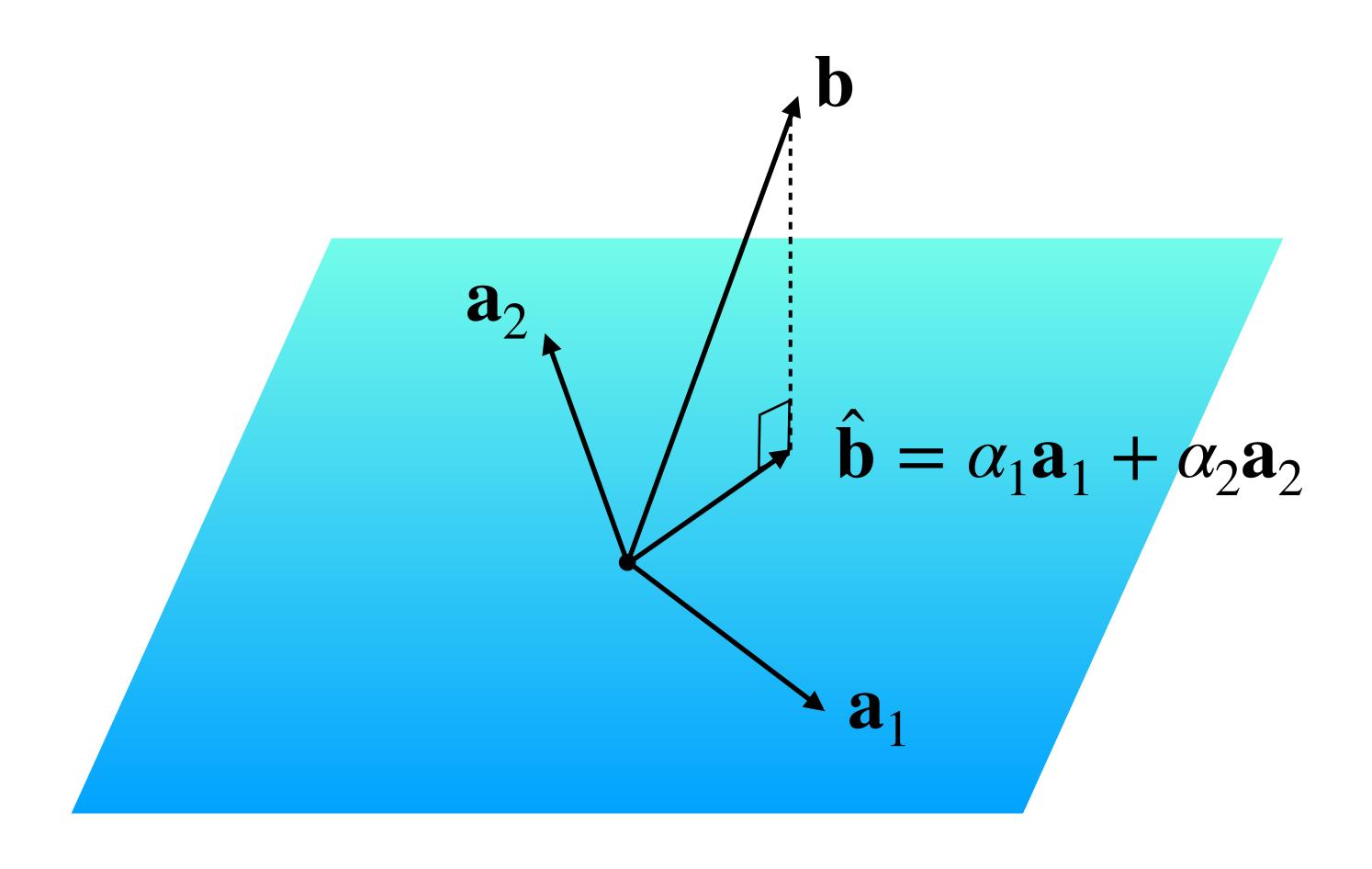
Proof by Algebra

Verify:



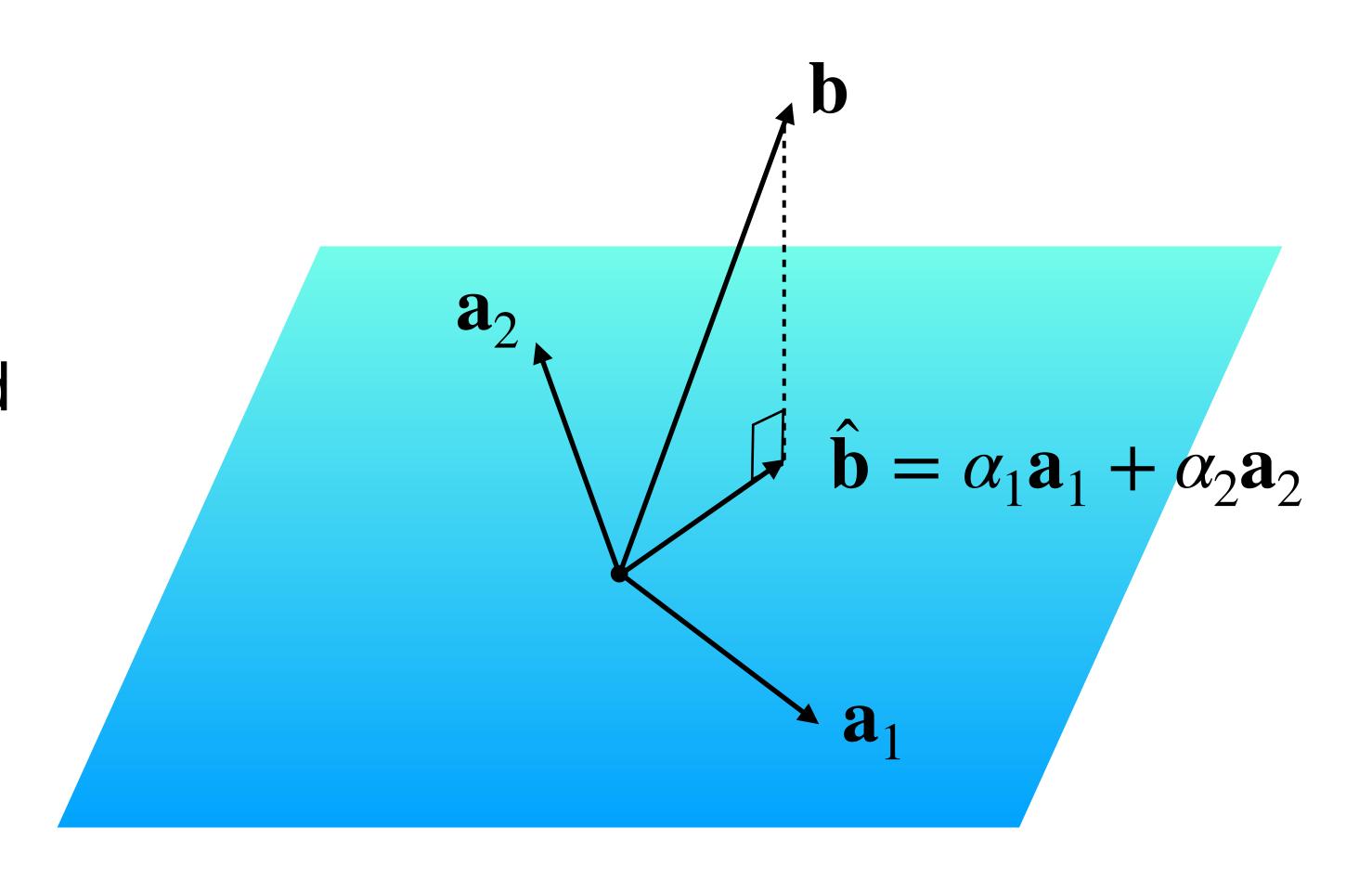


 $\hat{\mathbf{b}}$ is in Col(A) so $A\mathbf{x} = \hat{\mathbf{b}}$ has a solution



 $\hat{\mathbf{b}}$ is in Col(A) so $A\mathbf{x} = \hat{\mathbf{b}}$ has a solution

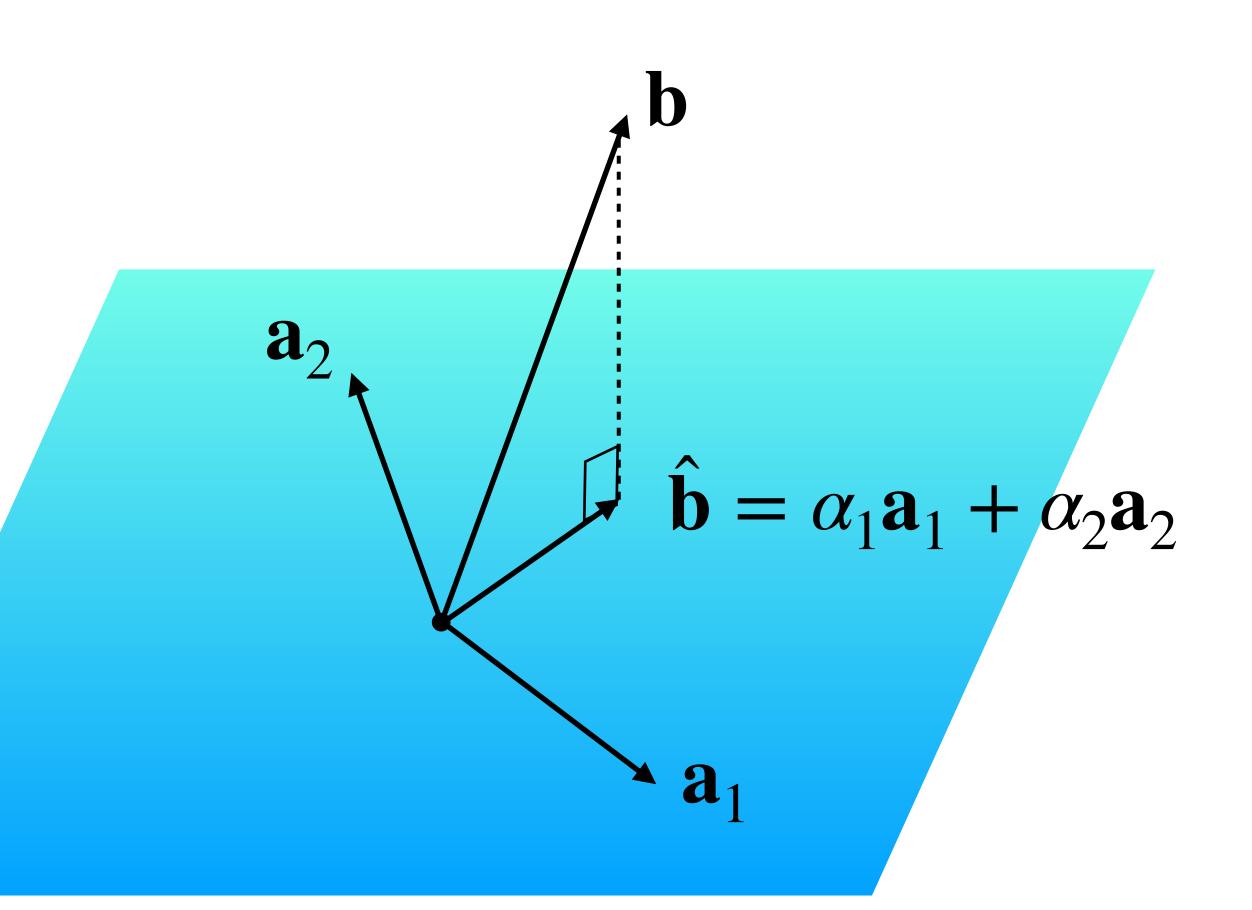
At this point, we could call it a day:



 $\hat{\mathbf{b}}$ is in Col(A) so $A\mathbf{x} = \hat{\mathbf{b}}$ has a solution

At this point, we could call it a day:

Question. Find a least squares solution to $A\mathbf{x} = \mathbf{b}$

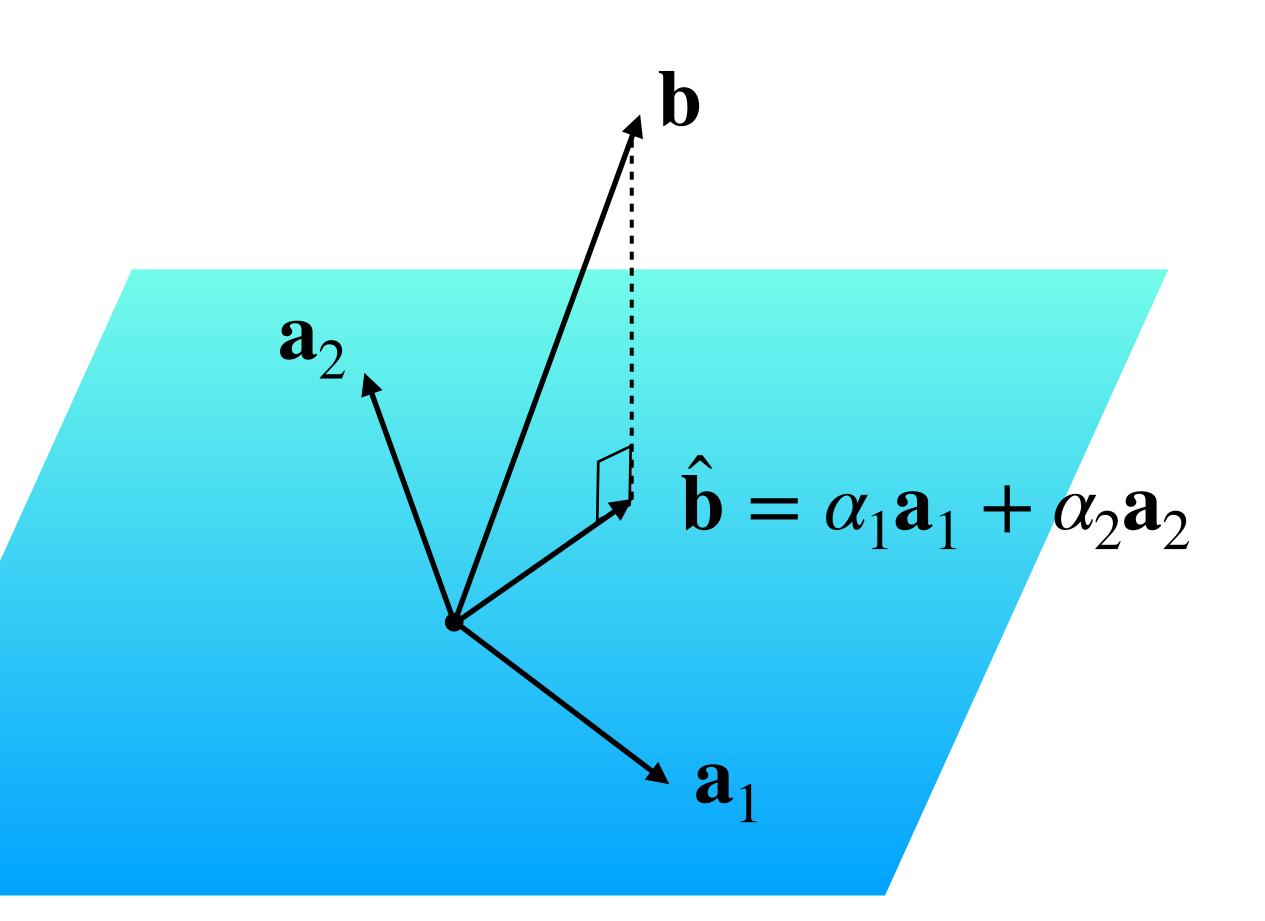


 $\hat{\mathbf{b}}$ is in Col(A) so $A\mathbf{x} = \hat{\mathbf{b}}$ has a solution

At this point, we could call it a day:

Question. Find a least squares solution to $A\mathbf{x} = \mathbf{b}$

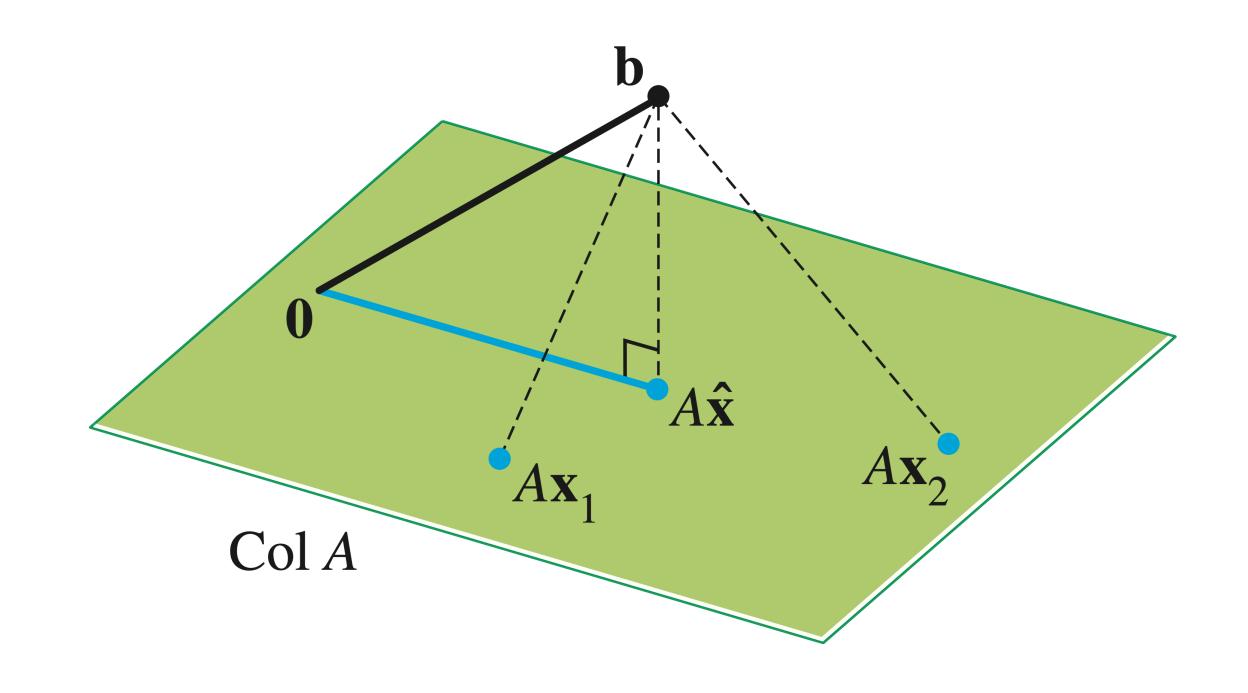
Solution. Find $\hat{\mathbf{b}}$, then solve $A\mathbf{x} = \hat{\mathbf{b}}$

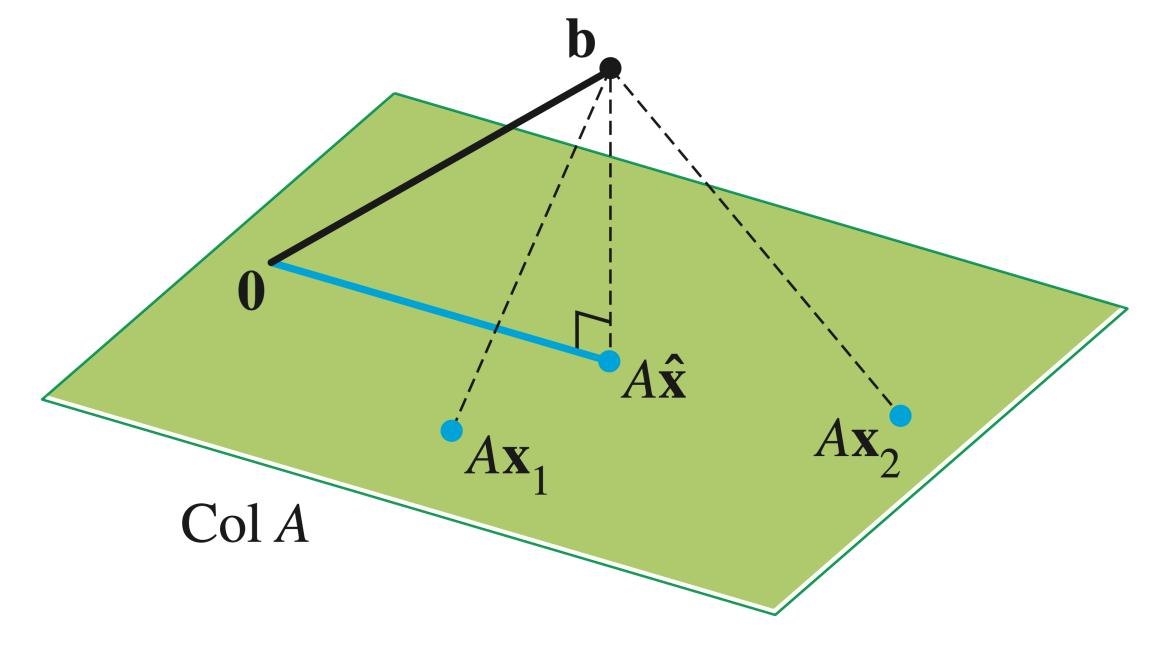


Example

$$\begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 4 \end{bmatrix}$$

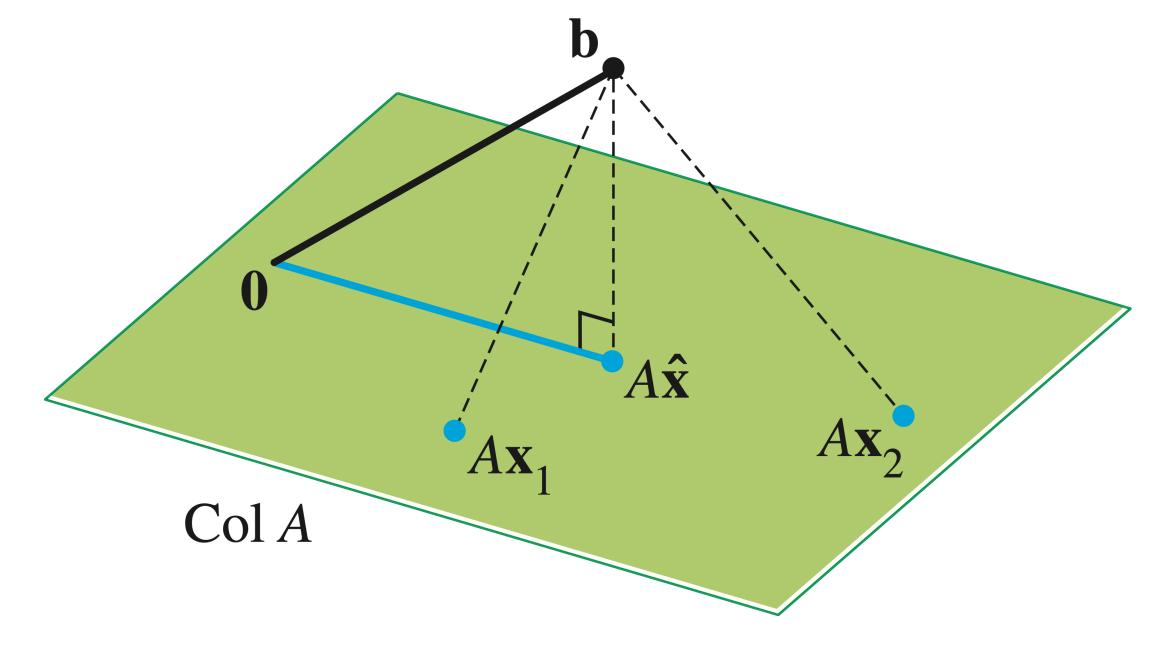
Let's determine the least squares solution for the above system:



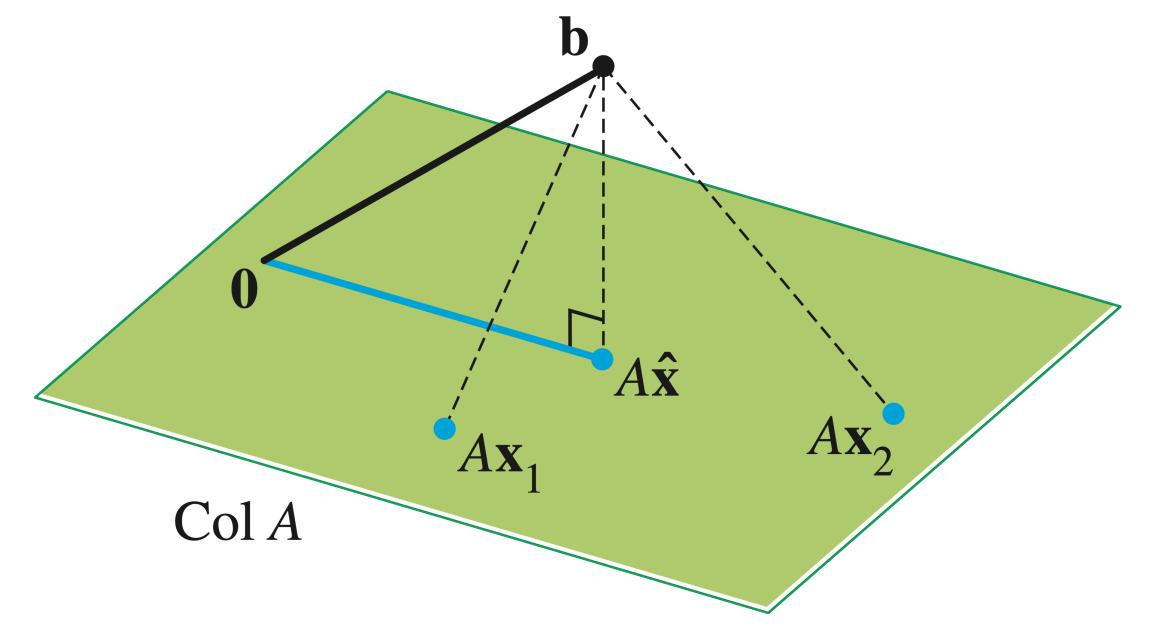


Suppose that $\hat{\mathbf{x}}$ is a least squares solution to A, so $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$

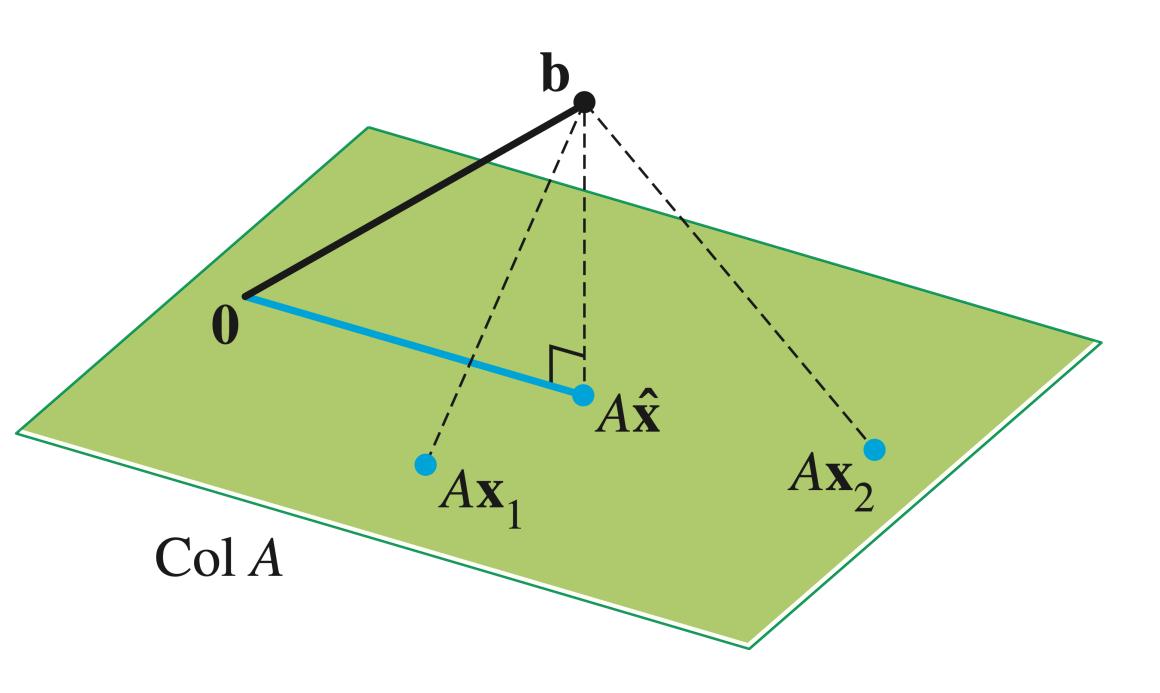
• $\hat{\mathbf{b}} - \mathbf{b}$ is orthogonal to Col(A)



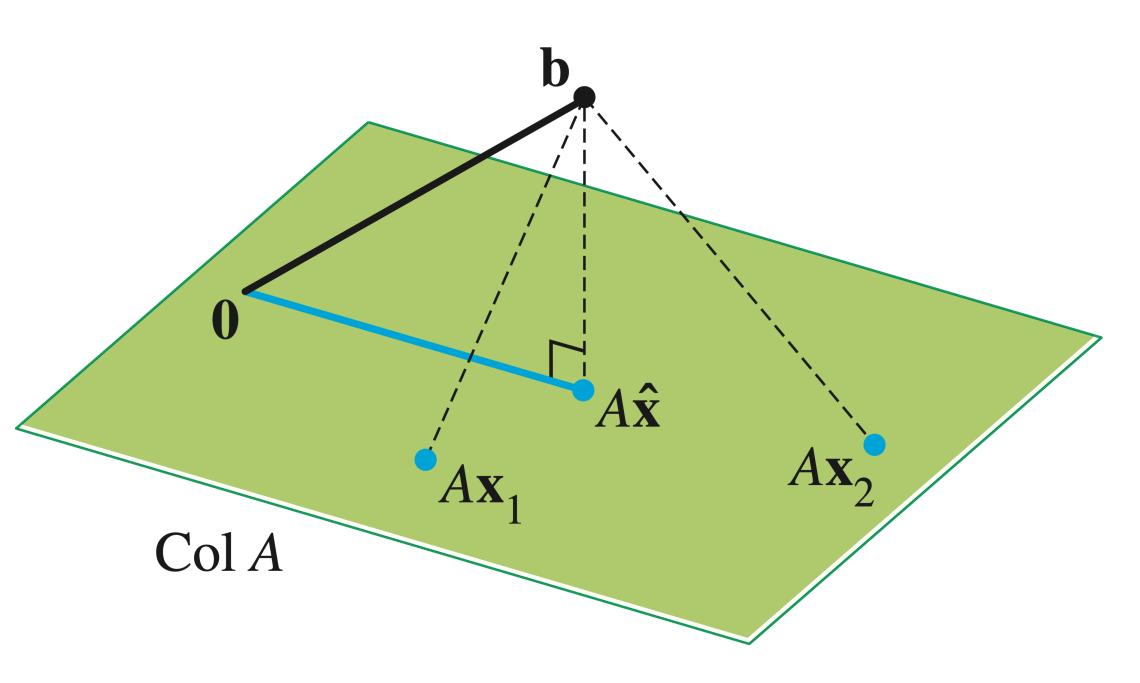
- $\hat{\mathbf{b}} \mathbf{b}$ is orthogonal to Col(A)
- $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to Col(A)



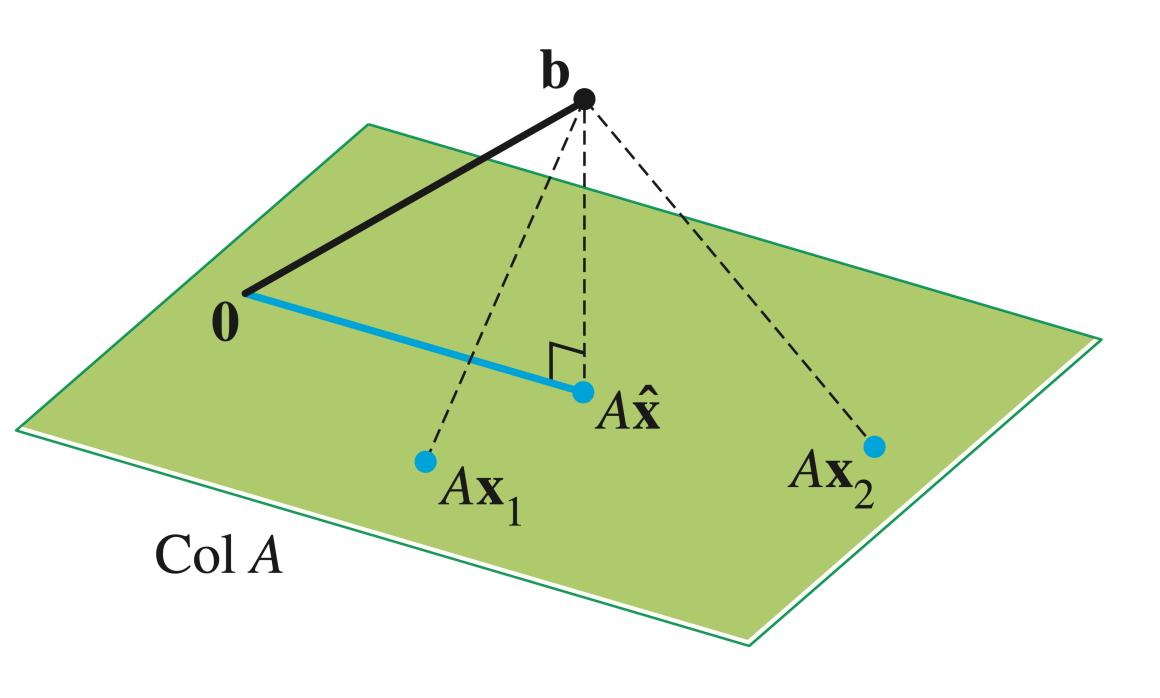
- $\hat{\mathbf{b}} \mathbf{b}$ is orthogonal to Col(A)
- $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to Col(A)
- If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ ... \ \mathbf{a}_n]$ then $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to each $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$



- $\hat{\mathbf{b}} \mathbf{b}$ is orthogonal to Col(A)
- $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to Col(A)
- If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ ... \ \mathbf{a}_n]$ then $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to each $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$
- $\bullet \quad \mathbf{a}_i^T (A\hat{\mathbf{x}} \mathbf{b}) = 0$



- $\hat{\mathbf{b}} \mathbf{b}$ is orthogonal to Col(A)
- $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to Col(A)
- If $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ ... \ \mathbf{a}_n]$ then $A\hat{\mathbf{x}} \mathbf{b}$ is orthogonal to each $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$
- $\bullet \quad \mathbf{a}_i^T (A\hat{\mathbf{x}} \mathbf{b}) = 0$
- $\bullet \quad A^T(A\hat{\mathbf{x}} \mathbf{b}) = \mathbf{0}$



A bit more magic

Let's simplify $A^{T}(A\hat{\mathbf{x}} - \mathbf{b})$:

Theorem. The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the same as the set of solutions to

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

Theorem. The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the same as the set of solutions to

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

In particular, this set of solutions is nonempty

Theorem. The set of least-squares solutions of $A\mathbf{x} = \mathbf{b}$ is the same as the set of solutions to

$$A^T A \mathbf{x} = A^T \mathbf{b}$$

In particular, this set of solutions is nonempty

(We just showed that if $\hat{\mathbf{x}}$ is a least squares solution then $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$)

Example
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$

Let's find the normal equations for Ax = b:

Example
$$\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$$

Let's solve the normal equations for Ax = b:

Example

$$\begin{bmatrix} 1 & 2 \\ -1 & 3 \\ 0 & 0 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 4 \\ 1 \\ 4 \end{bmatrix}$$

Let's do it again...

Unique Least Squares Solutions

Question (Conceptual)

Is a least squares solution unique?

Answer: No

Remember that if $\mathbf{b} \in Col(A)$ then $\hat{\mathbf{b}} = \mathbf{b}$ and then we're asking if $A\mathbf{x} = \mathbf{b}$ has a unique solution for any choice of A

When is there a unique solution?

The least squares method gives us to find an approximate solution when there is no exact solution

But it doesn't help us choose a solution in the case that there are many

Practically Speaking

numpy.linalg.lstsq

```
linalg.lstsq(a, b, rcond='warn')
```

[source]

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation a @ x = b. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm ||b-ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If *b* is two-dimensional, the least-squares solution is calculated for each of the *K* columns of *b*.

rcond: float. optional

Practically Speaking

numpy.linalg.lstsq

```
linalg.lstsq(a, b, rcond='warn')
```

[source]

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation a @ x = b. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm ||b-ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Numpy chooses the shortest vector

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If *b* is two-dimensional, the least-squares solution is calculated for each of the *K* columns of *b*.

rcond: float. optional

Practically Speaking

numpy.linalg.lstsq

```
linalg.lstsq(a, b, rcond='warn')
```

[source]

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation $a \otimes x = b$. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm ||b-ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Numpy chooses the shortest vector

Parameters: a : (M, N) array_like

(why?...)

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If *b* is two-dimensional, the least-squares solution is calculated for each of the *K* columns of *b*.

rcond: float. optional

Unique Least Squares Solutions

Theorem. For a $m \times n$ matrix A the following are equivalent:

- » The columns of A are <u>linearly independent</u>
- $\Rightarrow A^T A$ is <u>invertible</u>

Unique Least Squares Solutions

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$$

If A has linearly independent columns, then its unique least squares solution is defined as above:

Projecting onto a subspace

$$\hat{\mathbf{b}} = A\hat{\mathbf{x}} = A(A^TA)^{-1}A^T\mathbf{b}$$

If the columns of A are linearly independent, then they form a basis

Said another way: if \mathscr{B} is a basis, then we can construct a matrix A whose columns are the vectors in \mathscr{B}

This means we can find arbitrary projections