Symmetric Matrices

Geometric Algorithms
Lecture 25

Recap Problem

$$\{(0,3),(1,1),(-1,1),(2,3)\}$$

Find the matrices X at in the previous example to find the least squares best fix parabola <u>and the</u> <u>least squares best fit cubic</u> for this dataset.

Answer

$$\{(0,3),(1,1),(-1,1),(2,3)\}$$

$$\left(\begin{array}{c} \chi \\ \beta \end{array} \right) = \left[\begin{array}{c} 1 \\ \times \times^{2} \times^{3} \end{array} \right] \left[\begin{array}{c} 91 \\ 61 \\ 4 \end{array} \right]$$

$$= a + b \times + c \times^{2} + d \times^{3}$$

Objectives

- 1. Talk about about symmetric matrices and eigenvalues.
- 2. Describe an application to constrained optimization problems.

Keywords

linear models design matrices general linear regression symmetric matrices the spectral theorem orthogonal diagonalizability quadratic forms definiteness constrained optimization

Symmetric Matrices

Recall: Symmetric Matrices

Definition. A square matrix A is **symmetric** if $A^T = A$.

Orthogonal Eigenvectors

Theorem. For a symmetric matrix A, if u and v are eigenvectors for distinct eigenvalues, then u and v are orthogonal. $\lambda_{1} \neq \lambda_{2} \Rightarrow \langle u, \vec{v} \rangle = 0$

Verify: "<">\umber 15.

$$\langle \vec{u}, A \vec{r} \rangle = \langle u, \lambda, \vec{r} \rangle = \lambda, \langle u, \vec{r} \rangle$$

$$u^{T}(A r) = u^{T}A^{T}r = (Au)^{T}r = \langle Au, \vec{r} \rangle$$

$$= \lambda_{2}\langle \vec{u}, \vec{r} \rangle$$

Definition. A matrix A is **diagonalizable** if it is similar to a diagonal matrix.

Definition. A matrix *A* is **diagonalizable** if it is similar to a diagonal matrix.

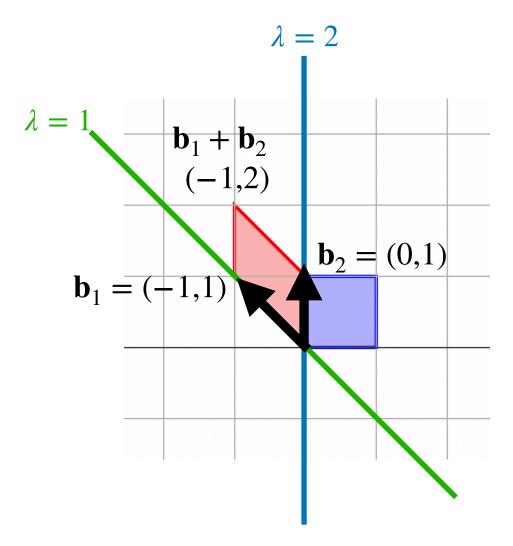
There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$.

Definition. A matrix *A* is **diagonalizable** if it is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$.

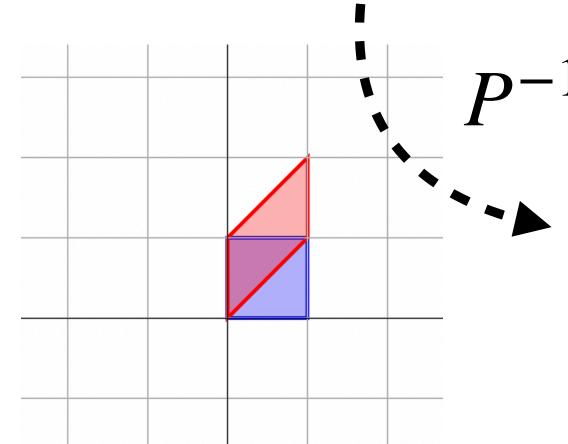
Diagonalizable matrices are the same as scaling matrices up to a change of basis.

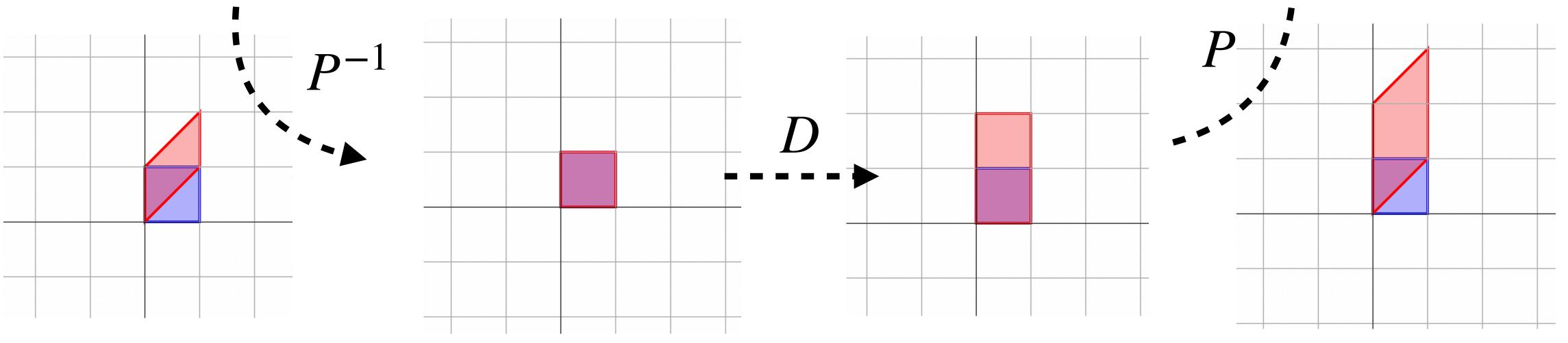
Recall: The Picture

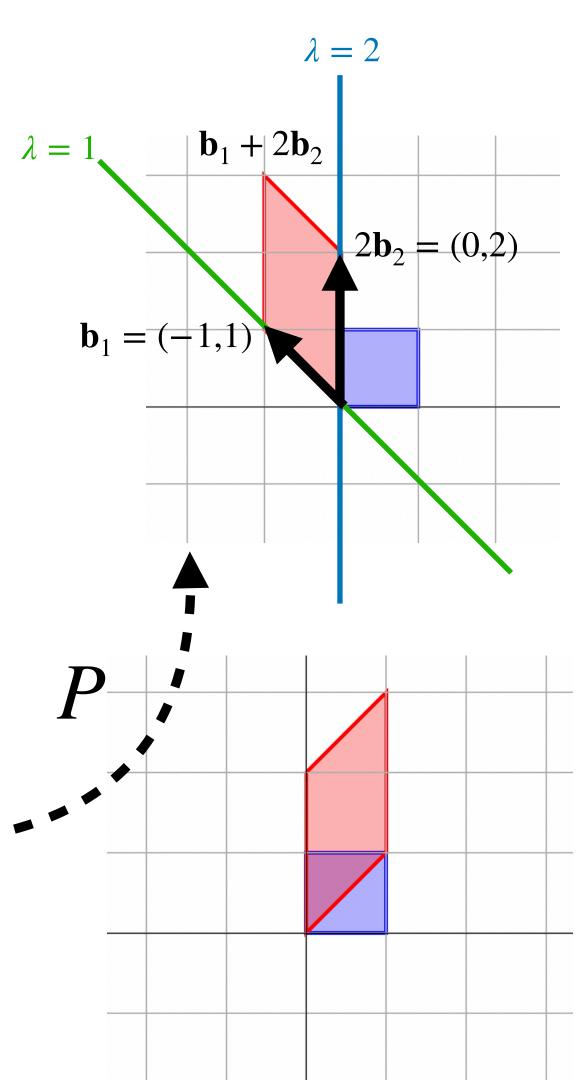


$$A = PDP^{-1}$$

$$\begin{bmatrix} 2 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}^{-1}$$







$$A = PDP^{-1}$$

$$A = PDP^{-1}$$

Theorem. A is diagonalizable if and only if it has an eigenbasis.

$$A = PDP^{-1}$$

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

The columns of P form an <u>eigenbasis</u> for A.

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

The columns of P form an <u>eigenbasis</u> for A.

The diagonal of D are the eigenvalues for each column of P_{ullet}

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

The columns of P form an <u>eigenbasis</u> for A.

The diagonal of D are the eigenvalues for each column of P_{ullet}

The matrix P^{-1} is a change of basis to this eigenbasis of A.

The Spectral Theorem

Theorem. If A is symmetric, then it has an orthonormal eigenbasis.

(we won't prove this)

Symmetric matrices are <u>diagonalizable</u>.

But more than that, we can choose P to be orthogonal.

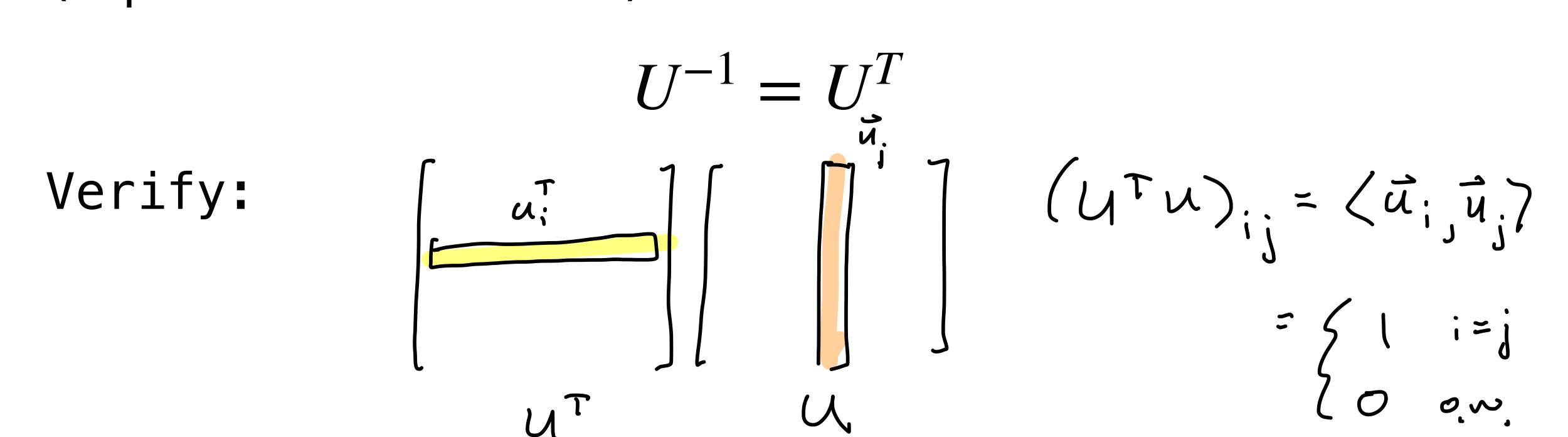
Recall: Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set.

The notes call a square orthonormal matrix an orthogonal matrix.

Recall: Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal (square orthonormal) then it is invertible and



Orthogonal Diagonalizability

Definition. A matrix A is **orthogonally diagonalizable** if there is a diagonal matrix D and matrix P such that

$$A = PDP^T = PDP^{-1}$$

P must be an <u>orthonormal matrix</u>.

Symmetric matrices are orthogonally diagonalizable

Orthogonal Diagonalizability and Symmetry

Fact. All orthogonally diagonalizable matrices are symmetric.

Verify:
$$(PDPT)^T = D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

 $(DPT)^TPT = D^TPT = PD^TPT = PD^TPT$

Orthogonal Diagonalizability and Symmetry

```
Theorem. A matrix is orthogonally diagonalizable if and only if it is symmetric. (We'll usually just use NumPy)
```

Practice Problem

Find an orthogonal diagonalization of $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$

$$(3-\lambda)(3-\lambda) = ((\lambda-3))(-(\lambda-3)) ((\frac{1}{16})) = 0$$
 [3 1] wer

Answer

$$A - \lambda I = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$$

$$= (3 - \lambda)^{2} - 1$$

$$\det(A - \lambda I) = (\lambda - 3)^{2} - 1$$

$$= \lambda^{2} - (\lambda + 9 - 1)$$

$$= (\lambda - 4)(\lambda - 2)$$

$$\lambda = 4, 2$$

$$A-4I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 \end{bmatrix} \wedge \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \times_{1} = \times_{2} \times_{2} \times_{3} \times_{4} \times_{2} \times_{3} \times_{4} \times_{4}$$

Quadratic Forms

Quadratic Forms

Definition. A quadratic form is an function of variables $x_1, ..., x_n$ in which every term has degree two.

Examples:

$$Q(x, x_1, x_2, x_3) = 4 \times 1^2 + 8 \times 1^2 + 1 \times 1^2$$

$$Q(x, x_2, x_3) = 4x^3$$

$$Q(x_1, x_2) = 4x_1^2 + x_2$$

Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented as

where A is symmetric.
$$\begin{bmatrix} x_1 & x_2 \\ x_1 & x_2 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_1 & x_2 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_1 & x_2 \end{bmatrix} = x_1(2x_1 + x_2) + x_2(x_1 + 3x_2)$$

$$= 2x_1^2 + 2x_1x_2 + 3x_2^2$$

Example: Computing the Quadratic Form for a Matrix

$$A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$$

This means, given a symmetric matrix A, we can compute its corresponding quadratic form:

(exercise.)
$$(x_1 \times_2 J) \begin{pmatrix} 3 & -2 \\ -2 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \cdots$$

Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say

$$\mathbf{x}^{T} A \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j} = \sum_{i=1}^{n} A_{ii} x_{i}^{2} + \sum_{i \neq j} (A_{ij} + A_{ji}) x_{i} x_{j}$$

Verify:

$$\langle \times, A \times \rangle = \sum_{i=1}^{n} \times_{i} (A \times)_{i} = \sum_{j=1}^{n} \times_{i} (\sum_{j=1}^{n} A_{ij} \times_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} \times_{i} \times_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} \times_{i} \times_{j}$$

A Slightly more Complicated Example

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & 5 \end{bmatrix}$$

Let's expand $\mathbf{x}^T A \mathbf{x}$:

$$(x_1 x_2 x_3) A (x_1) = x_1^2 + 3x_2^2 + 5x_3^2 + 4x_1x_2 - 2x_1x_3$$

Matrices from Quadratic Forms

$$Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$$

We can also go in the other direction. Let's express this as $\mathbf{x}^T A \mathbf{x}$:

$$A = \begin{bmatrix} 5 & -1/2 & 0 \\ -1/2 & 3 & 4 \\ 0 & 4 & 2 \end{bmatrix}$$

How To: Matrices of Quadratic Forms

Problem. Given a quadratic form $Q(\mathbf{x})$, find the symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

Solution.

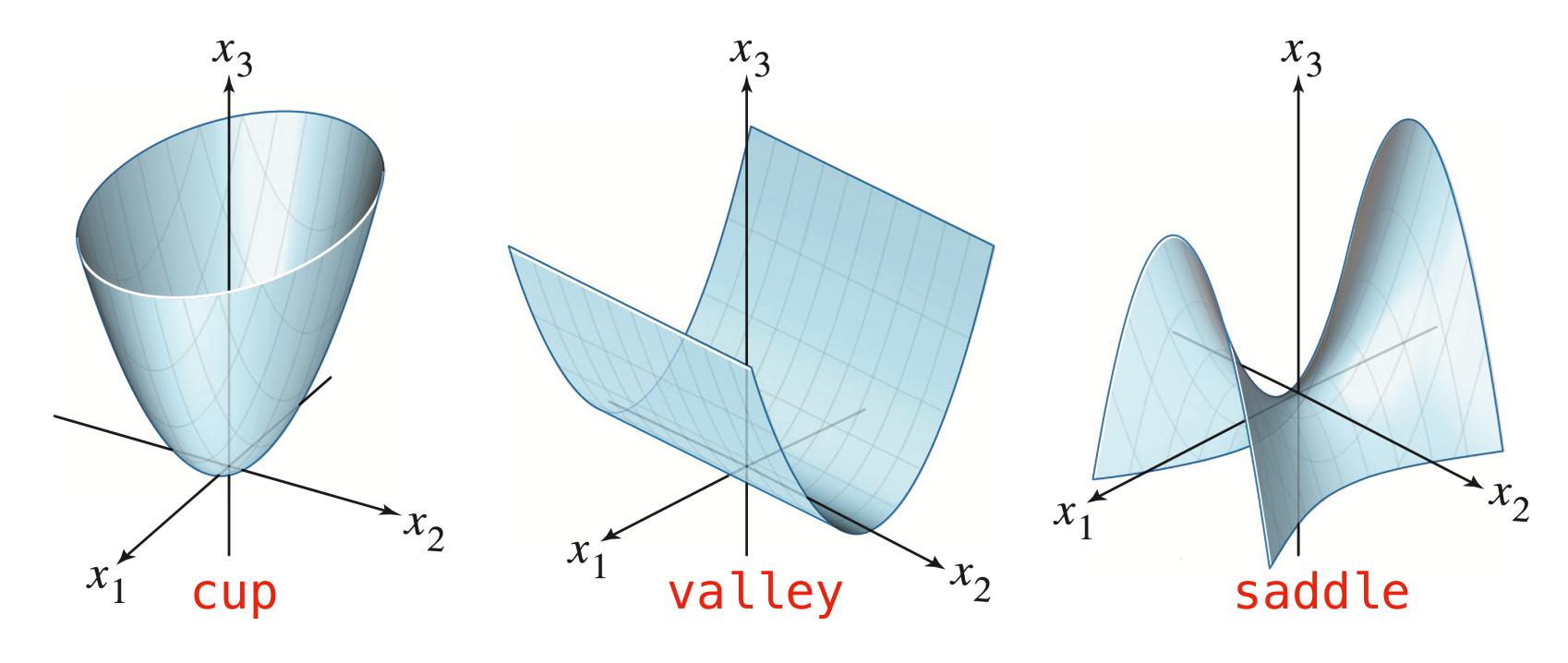
- » if $Q(\mathbf{x})$ has the term αx_i^2 then $A_{ii} = \alpha$
- » if $Q(\mathbf{x})$ has the term $\alpha x_i x_j$, then $A_{ij} = A_{ji} = \frac{\alpha}{2}$

Practice Problem

$$Q(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - 2x_3x_4 - 6x_4^2 + 7x_1x_3$$

Find the symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

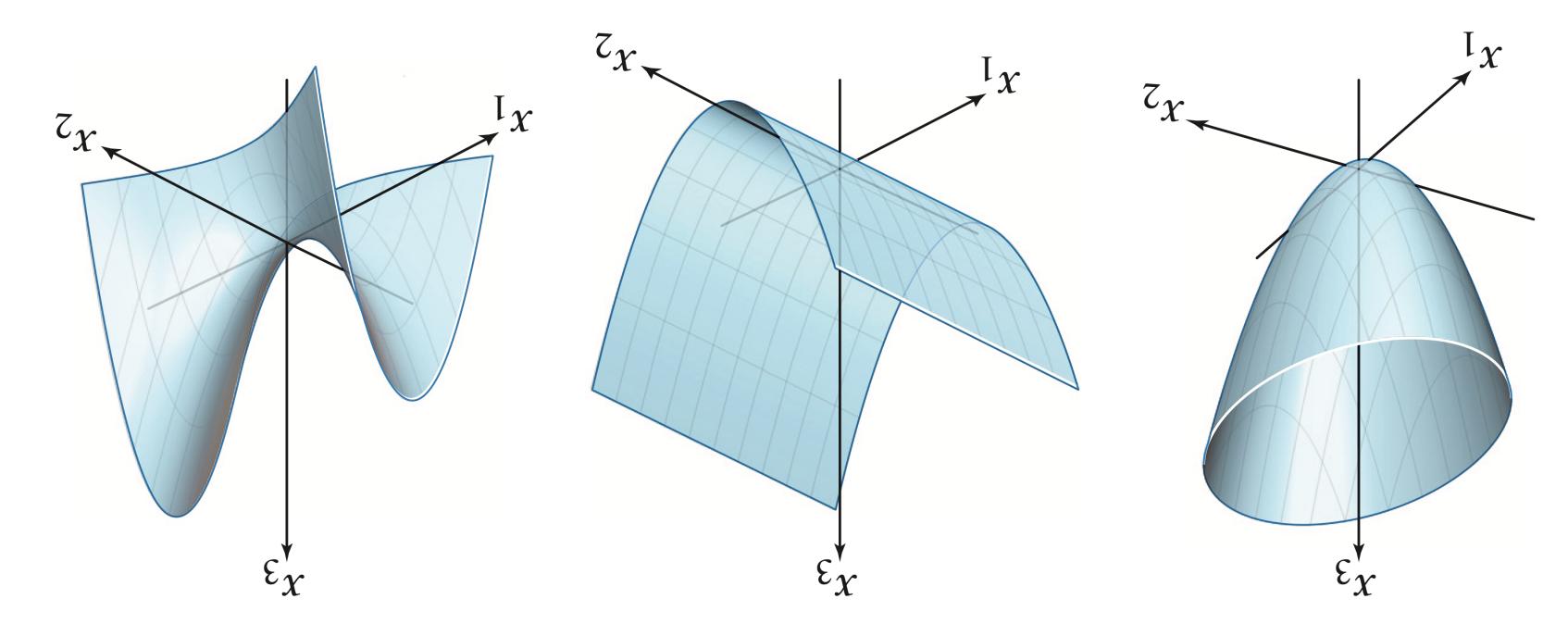
Shapes of of Quadratic Forms



There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

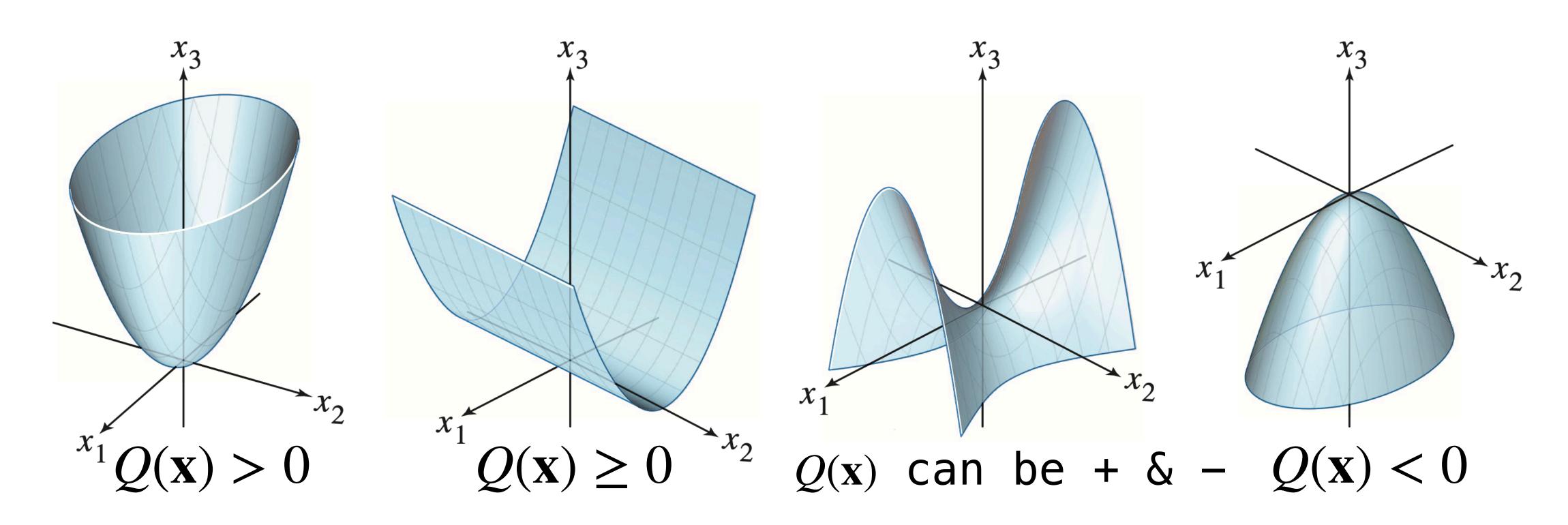
Shapes of of Quadratic Forms



There are essentially three possible shapes (six if you include the negations).

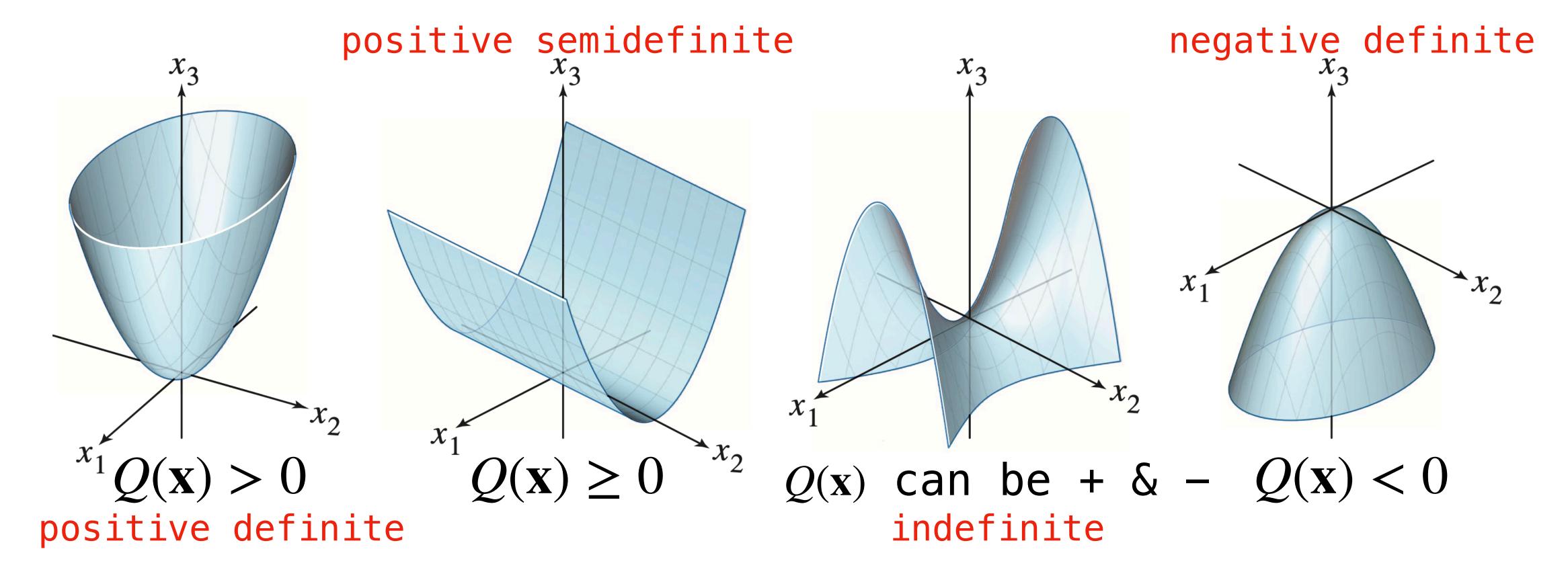
Can we determine what shape it will be mathematically?

Definiteness



For $x \neq 0$, each of the above graphs satisfy the associated properties.

Definiteness



For $x \neq 0$, each of the above graphs satisfy the associated properties.

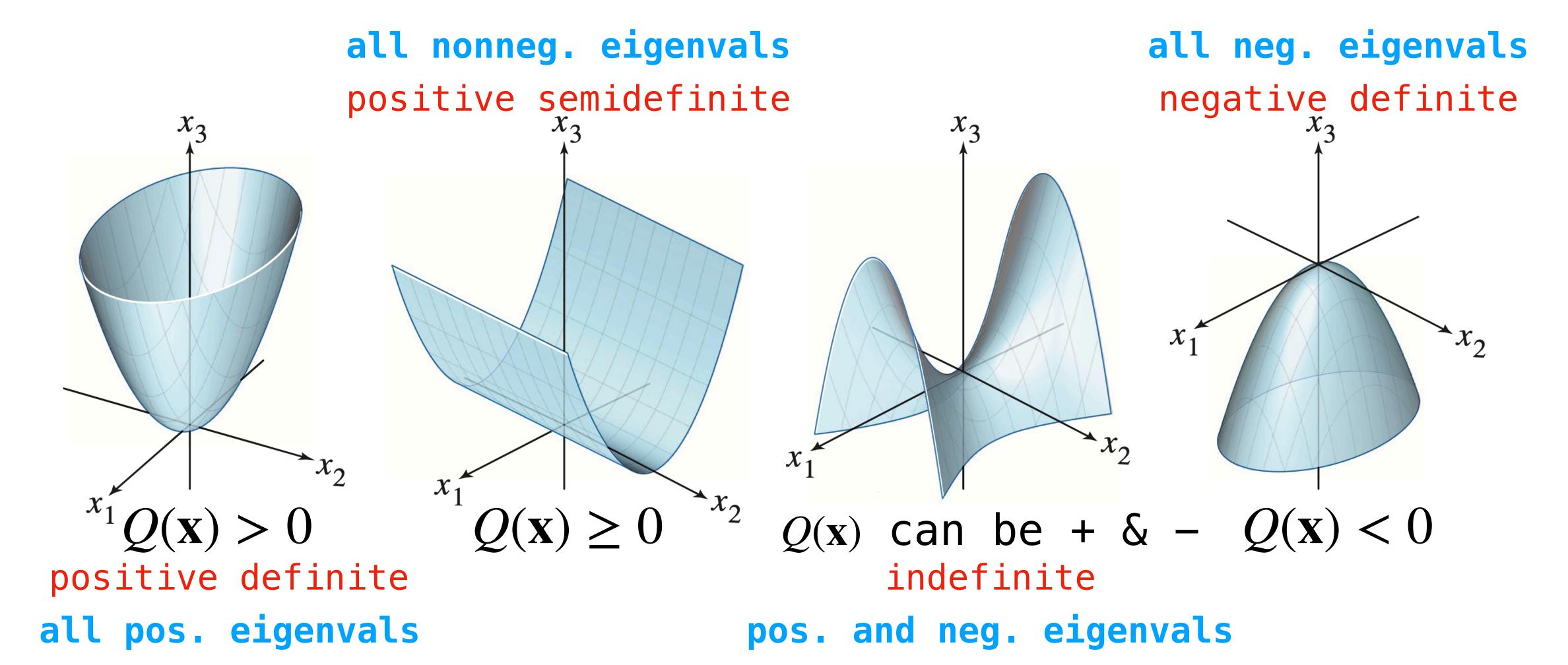
Definiteness and Eigenvectors

v is ar egineda of

Theorem. For a symmetric matrix A, the quadratic form $\mathbf{x}^T A \mathbf{x}$

- > positive definite \equiv all positive eigenvalues
- \Rightarrow positive semidefinite \equiv all <u>nonnegative</u> eigenvalues
- \Rightarrow indefinite \equiv positive and negative eigenvalues
- \Rightarrow negative definite \equiv all negative eigenvalues

Definiteness



$$Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$$

Let's determine which case this is:

Let's determine which case this is:
$$Q(x_1, x_2, x_3) = x^T A \times A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

$$det(A-\lambda I) = (3-\lambda)(y-\lambda)((1-\lambda)^2-4)$$

$$\frac{det(A-\lambda I) = (3-\lambda)(\lambda I)((1-\lambda)^{3}-4)}{(\lambda I-\lambda)^{2}}$$

$$A - \lambda = \begin{bmatrix} 3-\lambda & 0 & 0 & 1 \\ 0 & 1-\lambda & 2 & 0 \\ 0 & 2 & 1-\lambda & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3-\lambda & 0 & 0 & 1 \\ 0 & 1-\lambda & 2 & 0 \\ 0 & 2(1-\lambda) & (1-\lambda)^{2} \end{bmatrix}$$

$$\begin{bmatrix} 3-\lambda & 0 & 0 & 1 \\ 0 & 1-\lambda & 2 & 0 \\ 0 & 0 & (1-\lambda)^{2} & 1 \end{bmatrix}$$

Constrained Optimization

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

(analogously for maximization)

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for f over X is the problem of determining

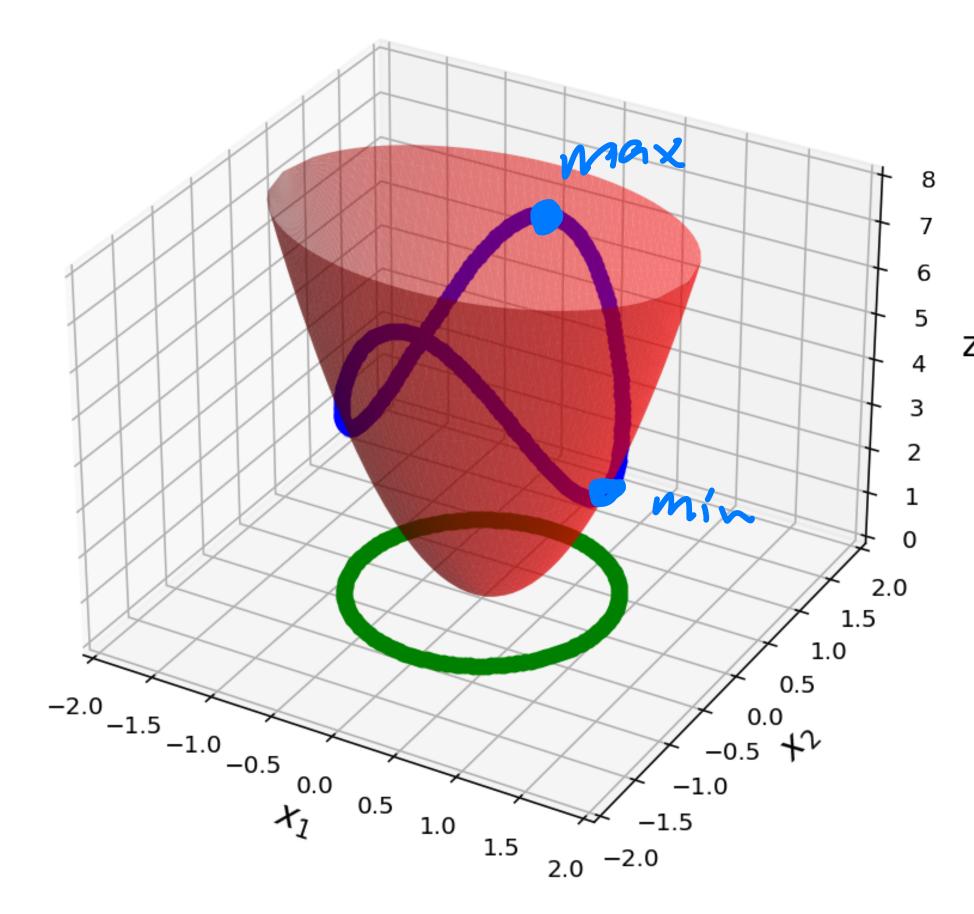
$$\min_{\mathbf{v} \in X} f(\mathbf{v})$$

(analogously for maximization)

Find the smallest value of $f(\mathbf{v})$ subject to choosing a vector in X

Constrained Optimization for Quadratic Forms and Unit Vectors

mini/maximize $\mathbf{x}^T A \mathbf{x}$ subject to $||\mathbf{x}|| = 1$



It's common to constraint to unit vectors.

Example: $3x_1^2 + 7x_2^2$

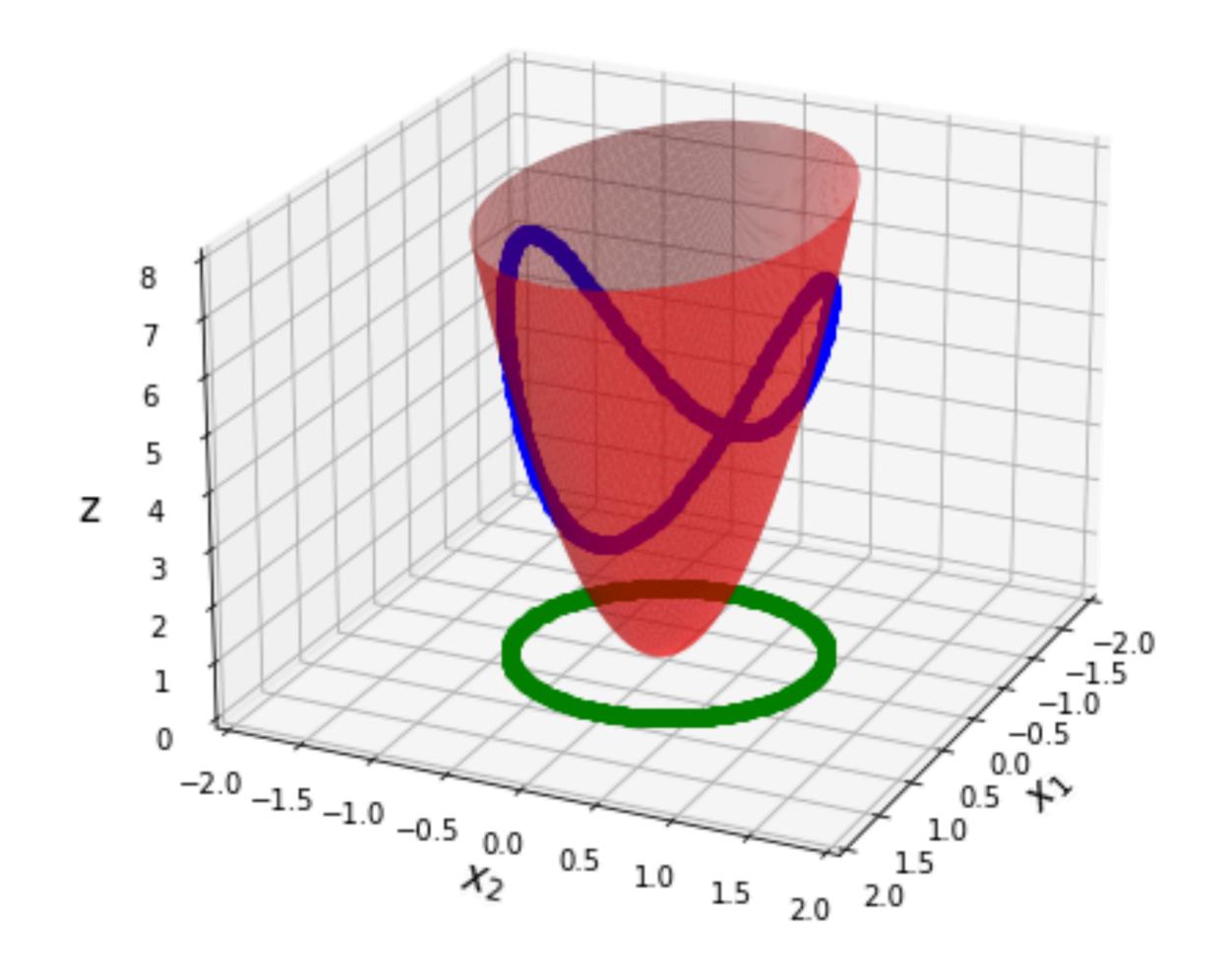
What are the min/max values?:

$$3 \times 7 + 7 \times 7 + 7 \times 7 = 7 (\times 7 + 7 \times 7)$$

$$= 7 (\times 7)$$

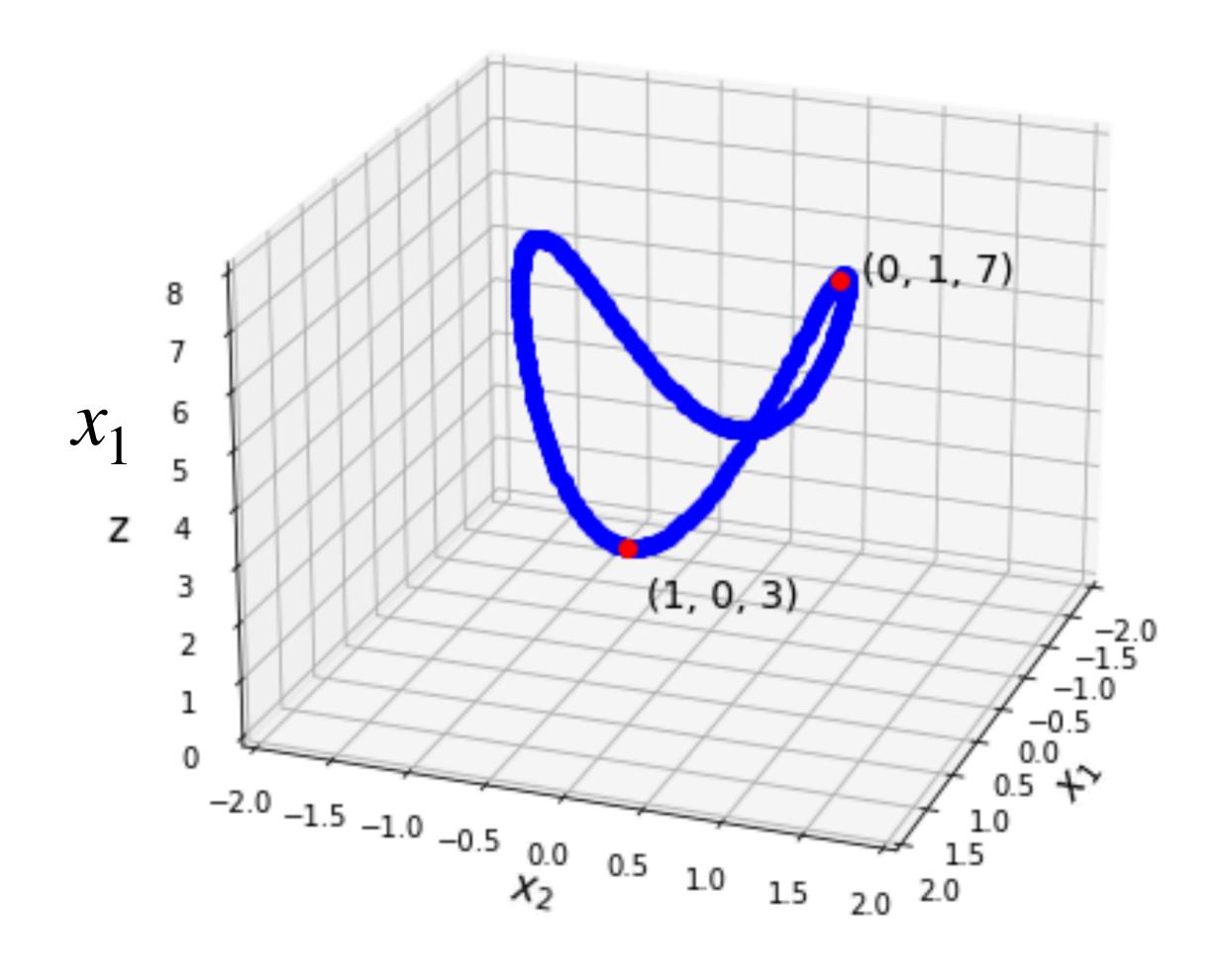
$$= 7 (1)$$

$$3 (0) + 7 (1) = 7$$
(similar for min)



Example: $3x_1^2 + 7x_2^2$

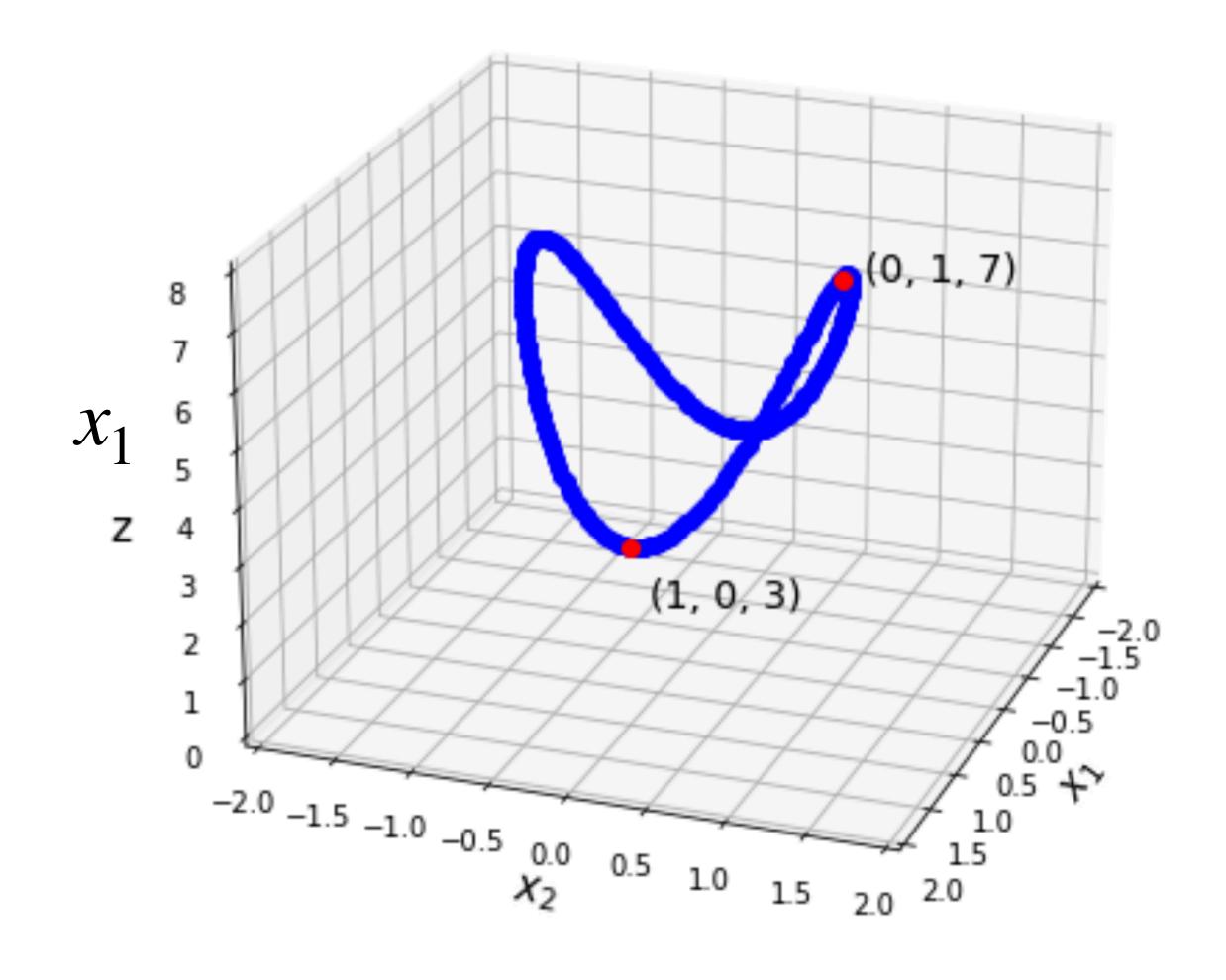
The minimum and maximum values are attained when the "weight" of the vector is distributed all on x_1 or x_2 .



Example: $3x_1^2 + 7x_2^2$

What is the matrix?:

$$\lambda = 3, 7$$



Constrained Optimization and Eigenvalues

Theorem. For a symmetric matrix A, with largest eigenvalue λ_1 and smallest eigenvalue λ_n

$$\max_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_1 \qquad \min_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_n$$

No matter the shape of A, this will hold.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

(Use NumPy)

Practice Problem

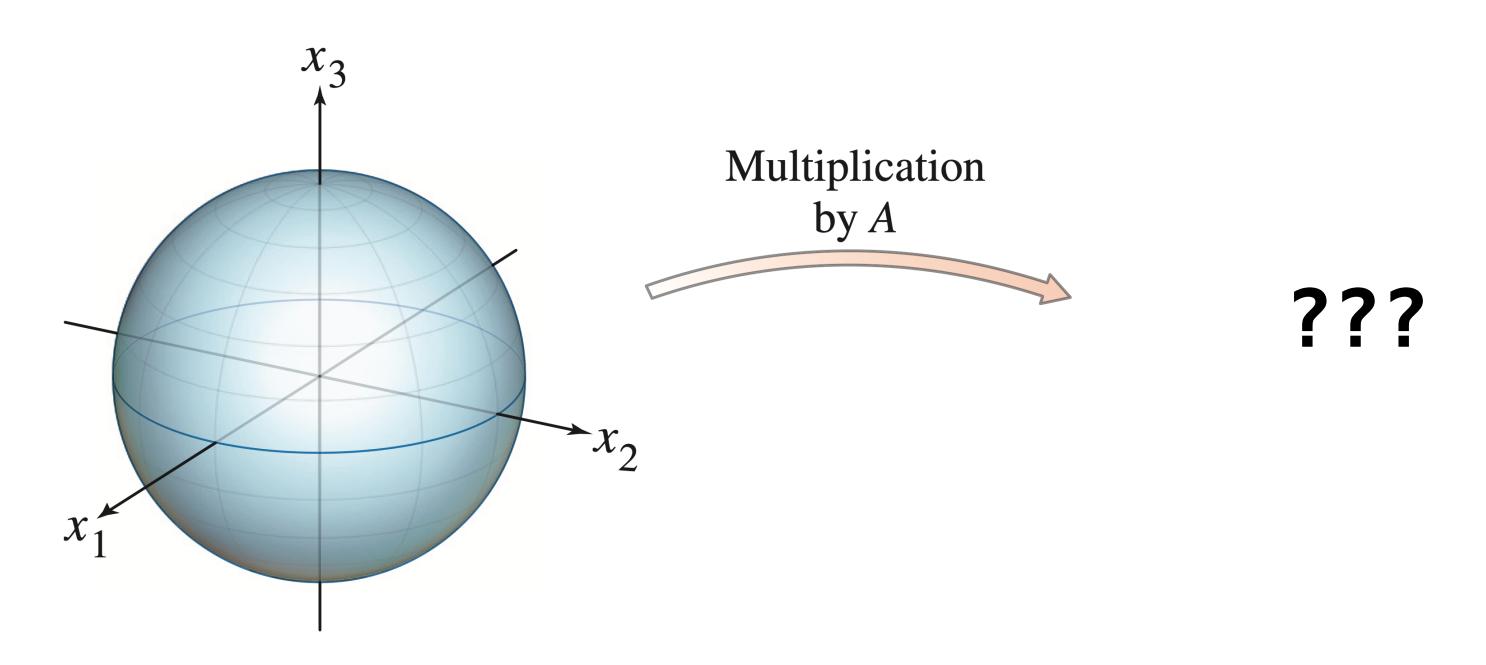
$$Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$$

Find the maximum value of $Q(\mathbf{x})$ subject to $\|\mathbf{x}\| = 1$

Singular Value Decomposition (Looking Ahead)

Question

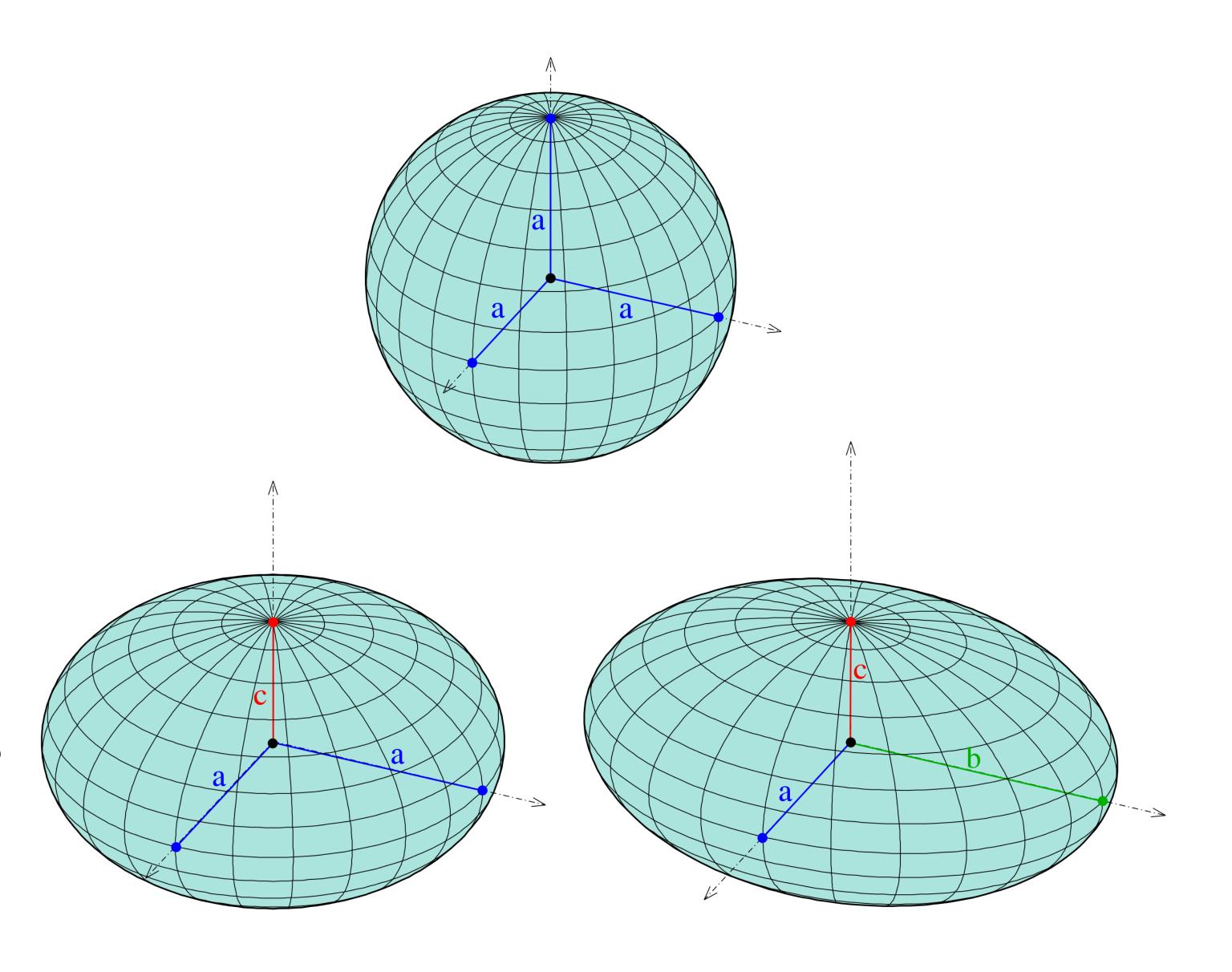
What shape is a the unit sphere after a linear transformation?



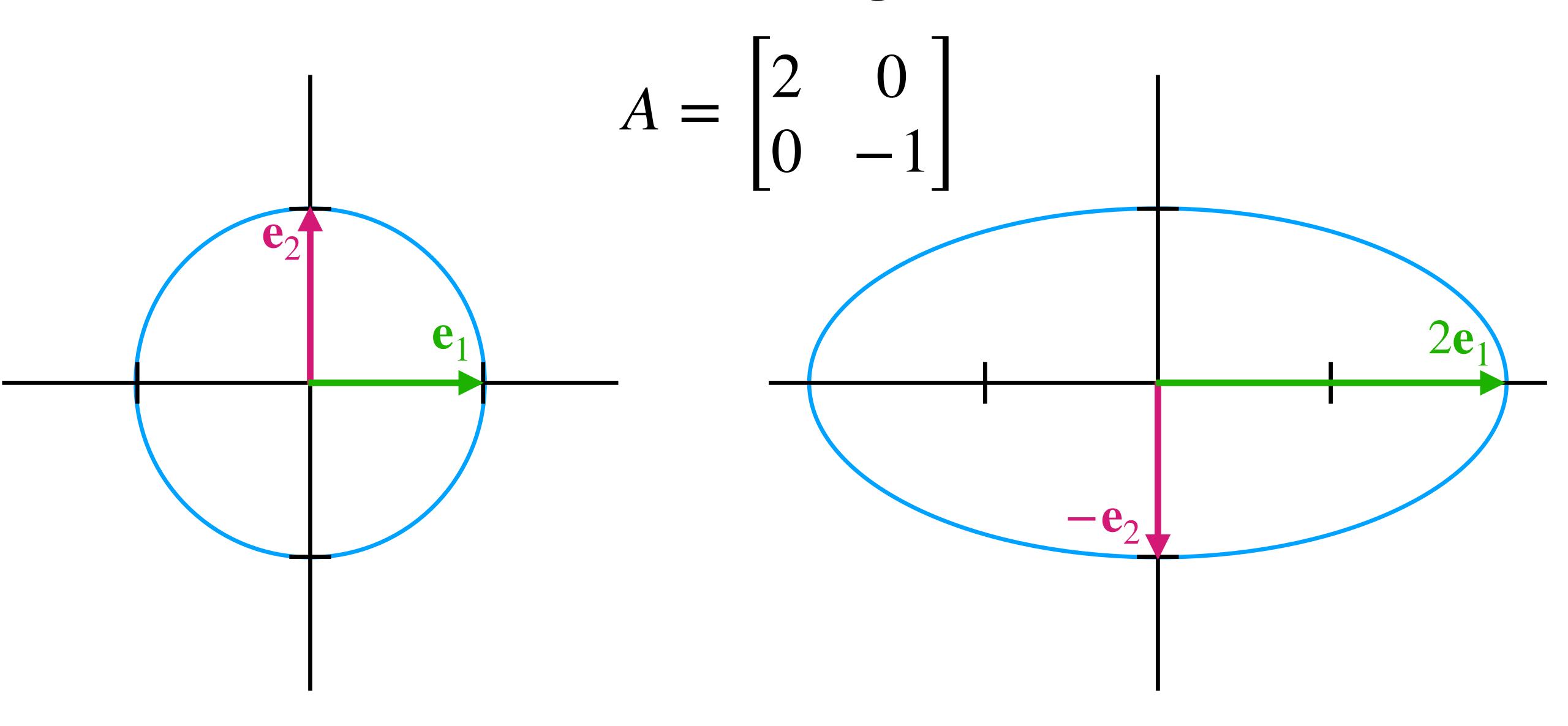
Ellipsoids

Ellipsoids are spheres
"stretched" in orthogonal
directions called the
axes of symmetry or the
principle axes.

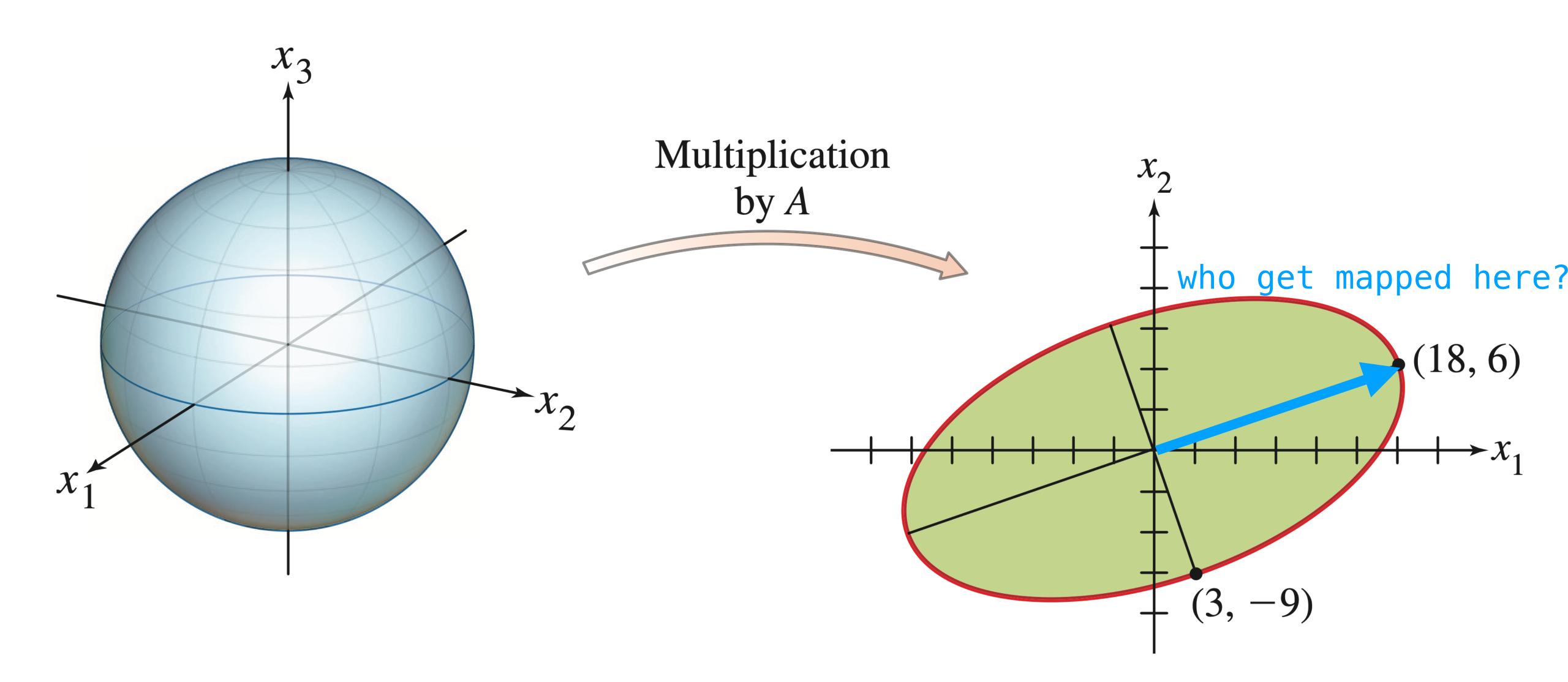
Linear transformations maps spheres to ellipsoids.

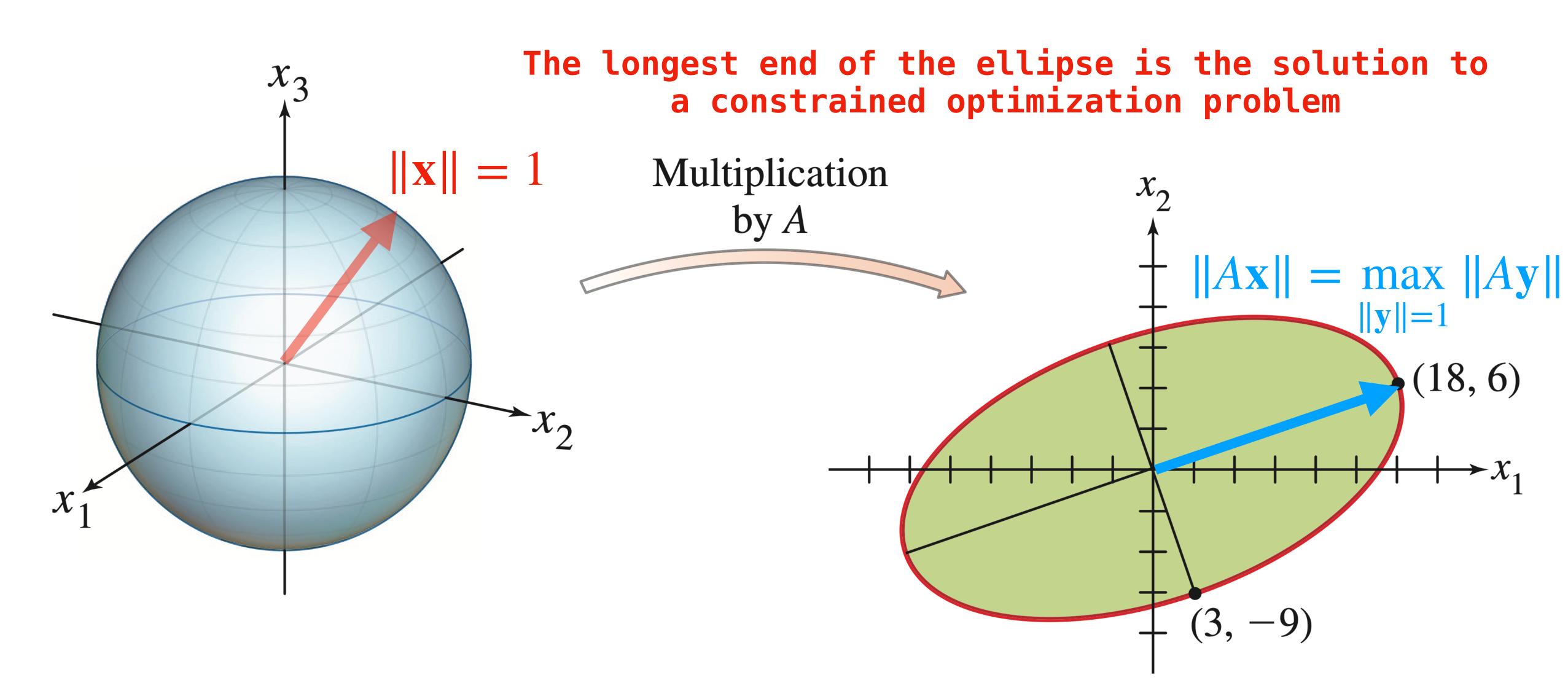


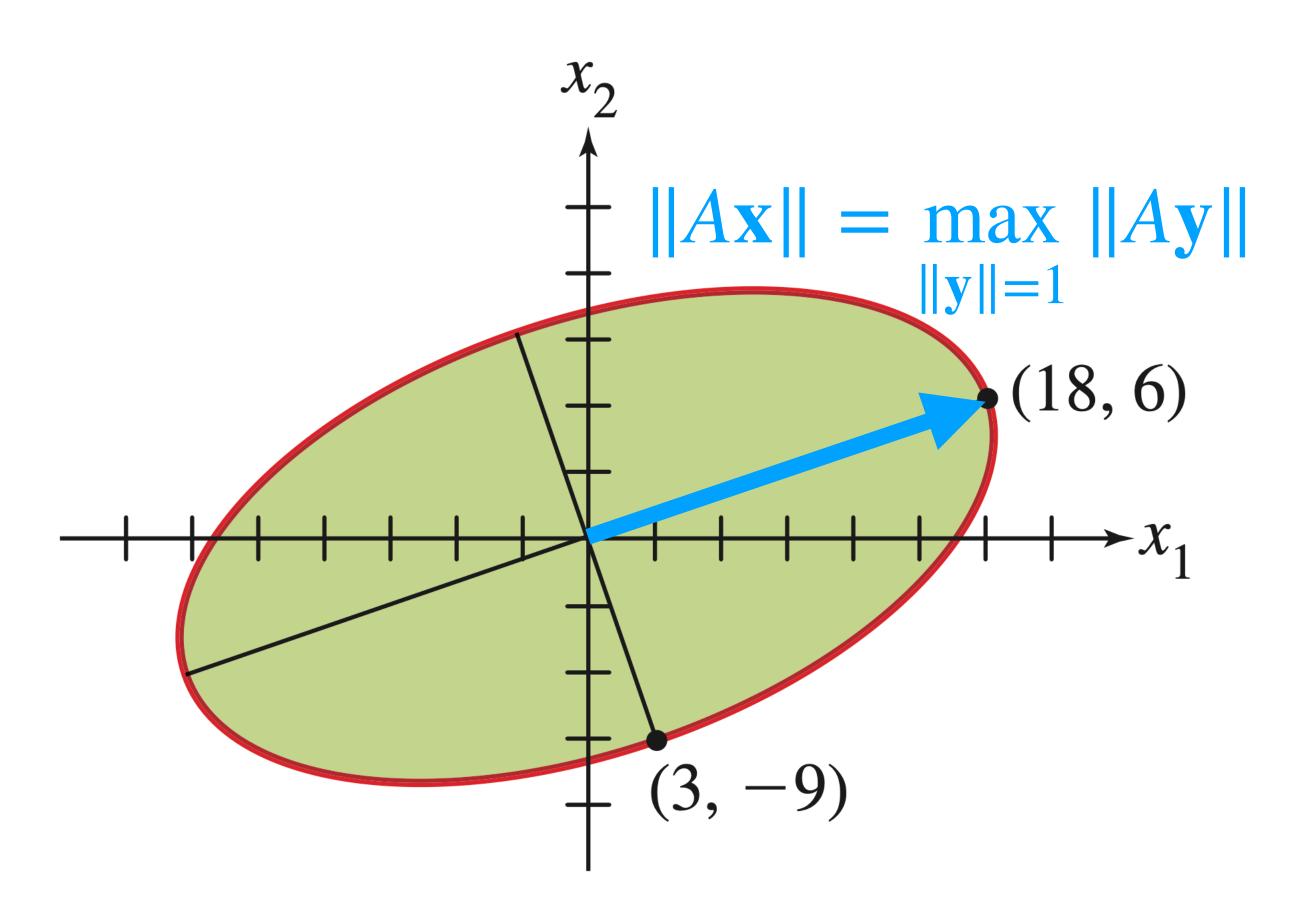
Simple Example: Scaling Matrices



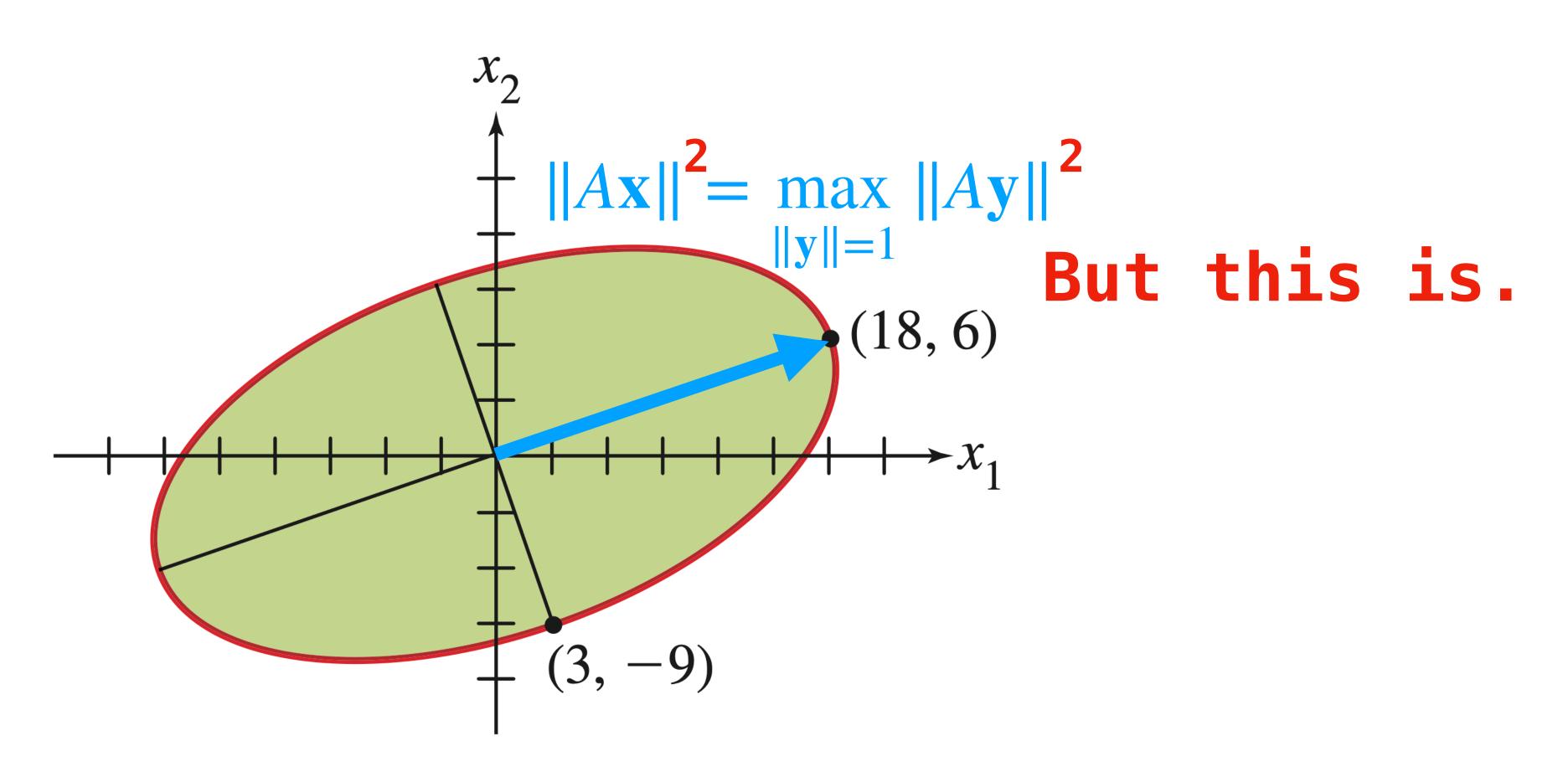








This is not a quadratic form...



This is not a quadratic form...

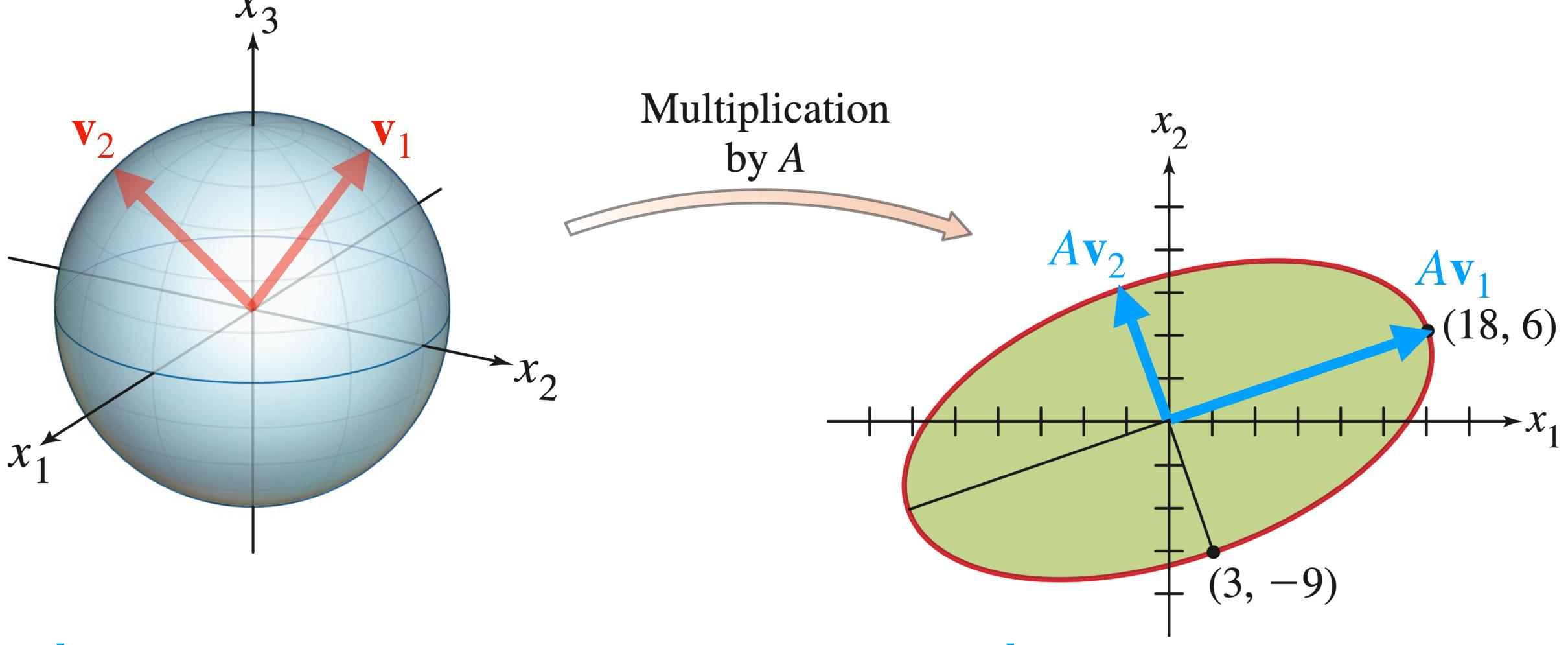
A Quadratic Form

What does $||A\mathbf{x}||^2$ look like?:

The Picture x_3 The eigenvector of A^TA with largest eigenvalue Multiplication by A $A^T A \mathbf{v}_1 = \lambda_1 \mathbf{v}_1$ (18, 6) x_2

 \mathbf{v}_1 solves the constrained optimization problem.

The "Influence" of A



 \mathbf{v}_1 is "most affected" by A and \mathbf{v}_2 is "least affected"

» It's symmetric.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.
- » There is an orthogonal basis of eigenvectors.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.
- » There is an orthogonal basis of eigenvectors.
- » It's eigenvalues are nonnegative.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.
- » There is an orthogonal basis of eigenvectors.
- » It's eigenvalues are nonnegative.
- » It's positive semidefinite.

Singular Values

Definition. For an $m \times n$ matrix A, the **singular values** of A are the n values

$$\sigma_1 \geq \sigma_2 \dots \geq \sigma_n \geq 0$$

where $\sigma_i = \sqrt{\lambda_i}$ and λ_i is an eigenvalue of A^TA .

Another picture

 $||A\mathbf{v}_3|| = \sqrt{\lambda_3} = \sigma_3$ $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are the eigenvectors of A^TA $||A\mathbf{v}_1|| = \sqrt{\lambda_1} = \sigma_1$ $||A\mathbf{v}_2|| = \sqrt{\lambda_2} = \sigma_2 \, \mathbf{v}$

The **singular values** are the <u>lengths</u> of the *axes of symmetry* of the ellipsoid after transforming the unit sphere.

Every $m \times n$ matrix transforms the unit m-sphere into an n-ellipsoid.

So <u>every</u> $m \times n$ matrix has n singular values.