CAS CS 132

Symmetric Matrices Geometric Algorithms Lecture 25

Recap Problem $\{(0,3), (1,1), (-1,1), (2,3)\}\$

Find the matrices X as in the previous example to find the least squares best fix parabola and the *least squares best fit cubic for this dataset.*

 $\{(0,3), (1,1), (-1,1), (2,3)\}\$ x_1 x_2 x_3 x_4 $(\times \vec{\beta})$ = $[1 \times x^2 \times \frac{3}{4}]$ $= a + b x + c x^2 d x^3$

Objectives

- 1. Talk about about symmetric matrices and eigenvalues.
- 2. Describe an application to constrained optimization problems.

Keywords

linear models design matrices general linear regression symmetric matrices the spectral theorem orthogonal diagonalizability quadratic forms definiteness constrained optimization

Symmetric Matrices

Recall: Symmetric Matrices

Definition. A square matrix A is symmetric if $A^T = A$

Orthogonal Eigenvectors

u and v are orthogonal. Verify: $\langle u, v \rangle = 0$

$$
\langle \overrightarrow{u}, A\overrightarrow{v}\rangle = \langle u, \lambda
$$

 $\frac{1}{u^T(Av)} = u^T A^T v$

Theorem. For a symmetric matrix A , if **u** and **v** are eigenvectors for *distinct* eigenvalues, then $\lambda_1 \neq \lambda_2 \Rightarrow \langle u, v \rangle = 0$

 $\langle \overrightarrow{r} \rangle = \lambda_1 \langle u, \overrightarrow{r} \rangle$ = $(Au)^T$ \sim = (Au, r) $=\lambda_{2}\angle\vec{u},\vec{v}\rangle$

Definition. A matrix A is diagonalizable if it is similar to a diagonal matrix.

is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> $\mathsf{matrix}\ \mathsf{D}\ \mathsf{such}\ \mathsf{that}\ \mathsf{A}=PDP^{-1}\textbf{.}$

Definition. A matrix A is diagonalizable if it

is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> $\mathsf{matrix}\ \mathsf{D}\ \mathsf{such}\ \mathsf{that}\ \mathsf{A}=PDP^{-1}\textbf{.}$

Diagonalizable matrices are the same as scaling matrices up to a change of basis.

Definition. A matrix A is diagonalizable if it

Recall: The Picture

A = *PDP*−¹

Theorem. A is diagonalizable if and only if it has an eigenbasis.

A = *PDP*−¹

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

A = *PDP*−¹

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

The columns of *P* form an eigenbasis for *A*.

A = *PDP*−¹ eigenbasis

- Theorem. A is diagonalizable if and only if it has an eigenbasis.
- **The idea:**
- The columns of *P* form an eigenbasis for *A*.
- The diagonal of *D* are the eigenvalues for each column of *P*.

Theorem. A is diagonalizable if and only if it has an eigenbasis.

- The columns of *P* form an eigenbasis for *A*.
- The diagonal of *D* are the eigenvalues for each column of *P*.
- The matrix P^{-1} is a change of basis to this eigenbasis of A .

The idea:

The Spectral Theorem

Theorem. If A is symmetric, then it has an *orthonormal* eigenbasis**.**

(we won't prove this)

Symmetric matrices are diagonalizable.

But more than that, we can choose P to be *orthogonal*.

Recall: Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set.

The notes call a square orthonormal matrix an **orthogonal** matrix.

Recall: Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal

- (square orthonormal) then it is invertible and
	- $U^{-1} = U_{\vec{a}}^T$
 $\begin{bmatrix} \vec{a}^T \\ \vec{b} \end{bmatrix}$ $(U^T u)_{ij} = \langle \vec{a}_{ij} \vec{a}_{ij} \rangle$
 $\begin{bmatrix} \vec{a} \\ \vec{b} \end{bmatrix}$ $\begin{bmatrix} U^T u \\ \vec{b} \end{bmatrix}$ \mathcal{O}

Verify:

Orthogonal Diagonalizability

Definition. A matrix A is orthogonally **diagonalizable** if there is a diagonal matrix *D* and matrix P such that

$A = P D P^T = P D P^{-1}$

must be an orthonormal matrix. *P*

Symmetric matrices are orthogonally diagonalizable

Fact. All orthogonally diagonalizable matrices

Orthogonal Diagonalizability and Symmetry $(AB)^T = B^T A^T$

are symmetric.

Verify: (PDF) =

Orthogonal Diagonalizability and Symmetry

Theorem. A matrix is orthogonally diagonalizable if and only if it is symmetric. *(We'll usually just use NumPy)*

Practice Problem

Find an orthogonal diagonalization of [3 1 1 3]

 \mathbf{l} **Answer** $A - \lambda I = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \\ 1 & 3 - \lambda \end{bmatrix}$ $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$
 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ det($A-\lambda I$) = $(\lambda -3)^{2}$ - 1 $\mathcal{F}_{2} = ||\begin{pmatrix} 1 \\ 1 \end{pmatrix}|| = \sqrt{1^{2}+1^{2}}$ $= \lambda^2 - 6\lambda + 9 - 1$ $=(\lambda - 4)(\lambda - 2)$ $A-2I = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\sim \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ $\lambda = 4, 2$ $\left[\begin{array}{cc} 1 \\ -1 \end{array}\right]$ $\left[\begin$ $D = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$

Quadratic Forms

Quadratic Forms

Definition. A **quadratic form** is an function of

Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented

as

 $\mathbf{x}^T A \mathbf{x}$ where A is symmetric. *A*Example: $= 2x_1^2 + 2x_1x_2+3x_2^2$

Example: Computing the Quadratic Form for a Matrix

compute its corresponding quadratic form: $(execise.)$ (x, x, J) $(3 - 2)$

 $3x^{2}$

 $A =$

$$
\begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}
$$

This means, given a symmetric matrix A , we can

$$
\int_{0}^{1} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} dx = \cdots
$$

$$
4 \times 1 \times 7 + 7 \times 1
$$

Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say Verify:
 $\langle x, Ax \rangle = \sum_{i=1}^{n} x_i (Ax)_i = \sum_{i=1}^{n} x_i (\sum_{j=1}^{n} A_{i,j} x_j)$ $\mathbf{x}^T A \mathbf{x} =$ *n* ∑ *i*=1 *n* ∑ *j*=1 A_{ij} x_i x_j = *n* ∑ *i*=1 $A_{ii} x_i^2$ $\frac{1}{i}$ + \sum *i*≠*j*

 $\sum_{i=1}^{i=1} \sum_{j=1}^{n} A_{ij}x_{i}x_{j}$

A Slightly more Complicated Example 1 2 −1 $A =$ 2 3 0 [−]¹ ⁰ ⁵]Let's expand $\mathbf{x}^T A \mathbf{x}$: $[x_{1} x_{1} x_{3}] A \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = x_{1}^{2} + 3x_{2}^{2} + 5x_{3}^{2} + 4x_{1}x_{2} - 2x_{1}x_{3}$

Matrices from Quadratic Forms

$Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$

We can also go in the other direction. Let's express this as $\mathbf{x}^T A \mathbf{x}$:

 $A = \begin{bmatrix} 5 & \frac{1}{2} & 0 \\ -\frac{1}{2} & 3 & 4 \\ 0 & 4 & 7 \end{bmatrix}$ 0 4 L

How To: Matrices of Quadratic Forms

symmetric matrix A such that $Q(x) = x^T A x$. **Solution.**

 λ if $Q(x)$ has the term αx_i^2 then

 λ if $Q(\mathbf{x})$ has the term $\alpha x_i x_j$, then

Problem. Given a quadratic form $Q(x)$, find the

$$
\alpha x_i^2 \text{ then } A_{ii} = \alpha
$$

$$
\alpha x_i x_j, \text{ then } A_{ij} = A_{ji} = \frac{\alpha}{2}
$$

Practice Problem

Find the symmetric matrix A such that $Q(x) = x^T A x$ *.*

 $Q(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - 2x_3x_4 - 6x_4^2 + 7x_1x_3$
Shapes of of Quadratic Forms

There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

Linear Algebra and its Applications, Lay, Lay, McDonald

Shapes of of Quadratic Forms

you include the negations).

Can we determine what shape it will be mathematically?

There are essentially three possible shapes (six if

Linear Algebra and its Applications, Lay, Lay, McDonald

Definiteness

associated properties.

For $x \neq 0$, each of the above graphs satisfy the

Definiteness

associated properties.

For $x \neq 0$, each of the above graphs satisfy the

$Q(x) > 0$ ¹ $Q(x) \ge 0$ ^{4x₂} $Q(x)$ can be + & - $Q(x) < 0$ indefinite

v is av egende of **Definiteness and Eigenvectors**
 $Q(\chi) > 0 \Leftrightarrow \chi^T \Lambda \subset \chi^S \Lambda \subset \chi^S \Lambda \subset \chi^S$ $= \lambda \|v\|^2$

- Theorem. For a symmetric matrix A , the quadratic form **x***TA***x**
- » **positive definite** all <u>positive</u> eigenvalues
- » **positive semidefinite** ≡ all <u>nonnegative</u> eigenvalues
- » **indefinite** \equiv positive and negative eigenvalues
- » n**egative definite** e all <u>negative</u> eigenvalues

Definiteness

all pos. eigenvals

Example $det(A - \lambda \zeta) = (3 - \lambda) (\lambda^2 - 2\lambda + 1 - 4)$
= $(3 - \lambda) (\lambda^2 - 2\lambda - 3) = (3 - \lambda) (\lambda - 3) (\lambda + 1)$ $Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$ Let's determine which case this is:
 $Q(x_1, x_2, x_3) = x^T Ax \quad A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$ indefinite
 $+(A-xI) = (3-x)(1-x)(1-x^2-4)$ det (A-15) = $(3-1)(1-1)^{2}-4)$ $A - \lambda = \begin{bmatrix} 3-\lambda & 0 & 0 \\ 0 & 1-\lambda & 2 \\ 0 & 2 & 1-\lambda \end{bmatrix} \sim \begin{bmatrix} 3-\lambda & 0 & 0 \\ 0 & 1-\lambda & 2 \\ 0 & 2(1-\lambda) & (1-\lambda)^2 \end{bmatrix} \sim \begin{bmatrix} 3-\lambda & 0 & 0 \\ 0 & 1-\lambda & 2 \\ 0 & 0 & (1-\lambda)^2 \end{bmatrix}$

Constrained Optimization

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the constrained minimization problem for f over X is the problem of determining

 $min f(v)$ $v \in X$

$Given$ a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for *f* over X is the problem of determining

min *f*(**v**) **v**∈*X*

(analogously for maximization)

$Given$ a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the **constrained minimization problem** for *f* over X is the problem of determining

min *f*(**v**) **v**∈*X*

(analogously for maximization) Find the smallest value of $f(\mathbf{v})$ <u>subject to</u> choosing a *vector in X*

Constrained Optimization for Quadratic Forms and Unit Vectors

$miniz / maximize x^T A x$ subject to $||x|| = 1$

Example: $3x_1^2 + 7x_2^2$

What are the min/max values?:

 $3x_i^2 + 7x_i^2 \leq 7x_i^2 + 7x_i^2$ $=7(x^{2}+x^{2})$ $= 7(1)$ $3(0) + 7(1) = 7$ (sinier for nin)

Example: $3x_1^2 + 7x_2^2$

The minimum and maximum values are attained when the "weight" of the vector is distributed all on x_1 or x_2 .

Example: $3x_1^2 + 7x_2^2$

What is the matrix?:

 $\lambda = 3, 4$

Constrained Optimization and Eigenvalues

eigenvalue λ_1 and smallest eigenvalue λ_n

max ∥**x**∥=1 $\mathbf{x}^T A \mathbf{x} = \lambda_1$ min

No matter the shape of A, this will hold.

Theorem. For a symmetric matrix A , with *largest*

$$
\min_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_n
$$

 to $\|\mathbf{x}\| = 1$.

Problem. Find the maximum value of $x^T Ax$ subject

Problem. Find the maximum value of $x^T Ax$ subject to $\|x\| = 1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

Problem. Find the maximum value of $x^T Ax$ subject to $\|x\| = 1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

(Use NumPy)

Practice Problem

Find the maximum value of $Q(x)$ subject to $||x|| = 1$

 $Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$

Singular Value Decomposition (Looking Ahead)

Question

What shape is a the unit sphere after a linear transformation?

Ellipsoids

Ellipsoids are spheres "stretched" in orthogonal directions called the **axes of symmetry** or the **principle axes.**

Linear transformations maps spheres to ellipsoids.

The Picture

This is not a quadratic form...

The Picture

This is not a quadratic form...

A Quadratic Form

What does $||Ax||^2$ look like?:

Properties of $A^T A$

Properties of $A^T A$

» It's symmetric.
Properties of *ATA*

- » It's symmetric.
- » So its orthogonally diagonalizable.

Properties of A^TA

- » It's symmetric.
- » So its orthogonally diagonalizable.
-

» There is an orthogonal basis of eigenvectors.

Properties of *ATA*

- » It's symmetric.
- » So its orthogonally diagonalizable.
-
- » It's eigenvalues are nonnegative.

» There is an orthogonal basis of eigenvectors.

Properties of *ATA*

» There is an orthogonal basis of eigenvectors.

- » It's symmetric.
- » So its orthogonally diagonalizable.
-
- » It's eigenvalues are nonnegative.
- **» It's positive semidefinite.**

Singular Values

values of A are the *n* values where $\sigma_i = \sqrt{\lambda_i}$ and λ_i is an eigenvalue of $A^T A$.

- **Definition.** For an $m \times n$ matrix A , the singular
	- $\sigma_1 \geq \sigma_2 ... \geq \sigma_n \geq 0$
		-

Another picture

$||Ay_2|| = \sqrt{\lambda_2} = \sigma_2$ The **singular values** are the lengths of the *axes of symmetry* of the ellipsoid after transforming the unit sphere.

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg

Every $m \times n$ matrix transforms the $unit$ m -sphere into an n -ellipsoid.

So <u>every</u> $m \times n$ matrix has singular values. *n*