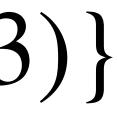
Symmetric Matrices Geometric Algorithms Lecture 25

CAS CS 132

Recap Problem $\{(0,3), (1,1), (-1,1), (2,3)\}$

Find the matrices X as in the previous example to find the least squares best fix parabola <u>and the</u> <u>least squares best fit cubic</u> for this dataset.

$\{(0,3),(1,1),(-1,1),(2,3)\}$



Objectives

- 1. Talk about about symmetric matrices and eigenvalues.
- 2. Describe an application to constrained optimization problems.

Keywords

linear models design matrices general linear regression symmetric matrices the spectral theorem orthogonal diagonalizability quadratic forms definiteness constrained optimization

Symmetric Matrices

Recall: Symmetric Matrices

Definition. A square matrix A is **symmetric** if $A^T = A$.

Orthogonal Eigenvectors

Theorem. For a symmetric are eigenvectors for *d* and *v* are orthogonal. Verify:

Theorem. For a symmetric matrix A, if u and v are eigenvectors for *distinct* eigenvalues, then

Definition. A matrix A is **diagonalizable** if it is similar to a diagonal matrix.

is similar to a diagonal matrix.

There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$.

Definition. A matrix A is **diagonalizable** if it

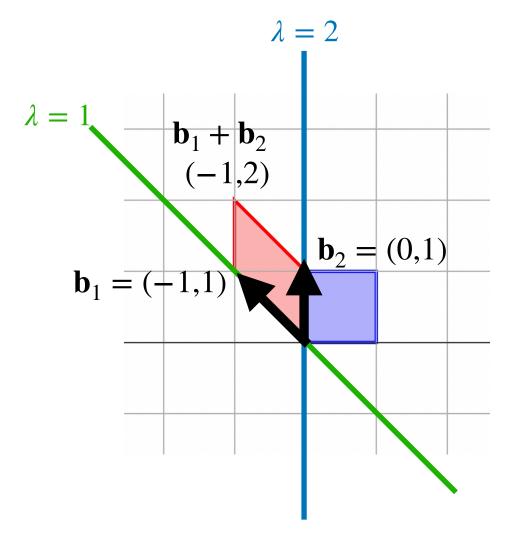
is similar to a diagonal matrix.

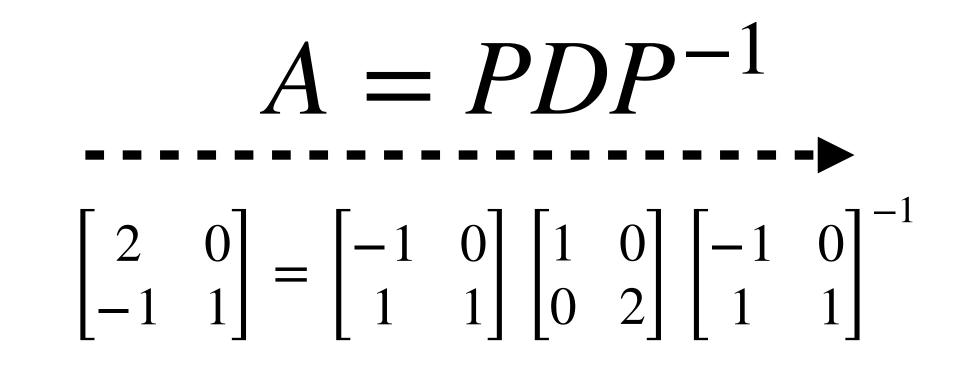
There is an invertible matrix P and <u>diagonal</u> matrix D such that $A = PDP^{-1}$.

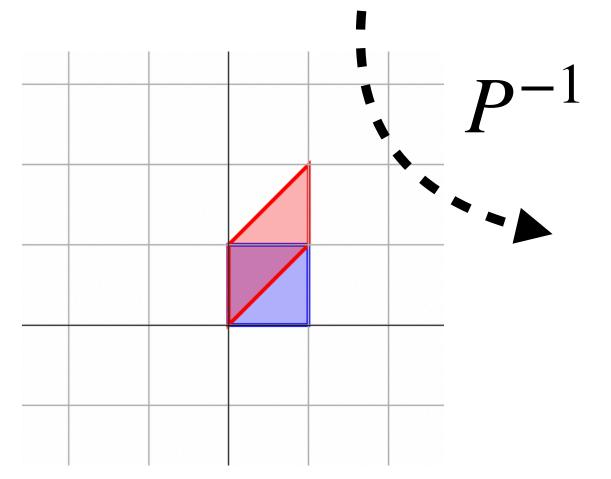
Diagonalizable matrices are the same as scaling matrices up to a change of basis.

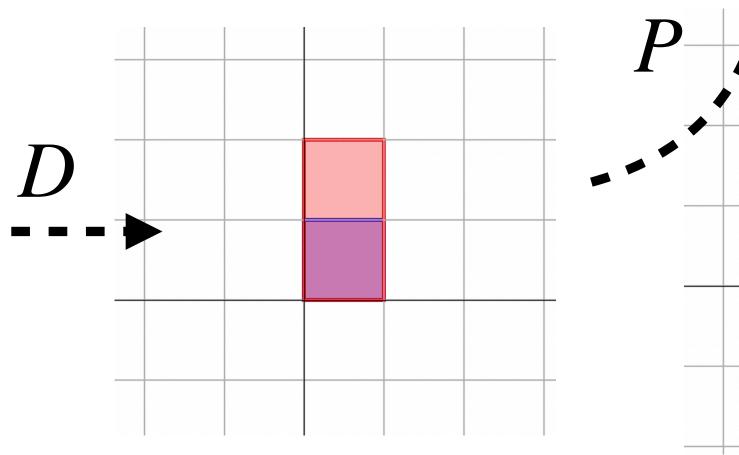
Definition. A matrix A is **diagonalizable** if it

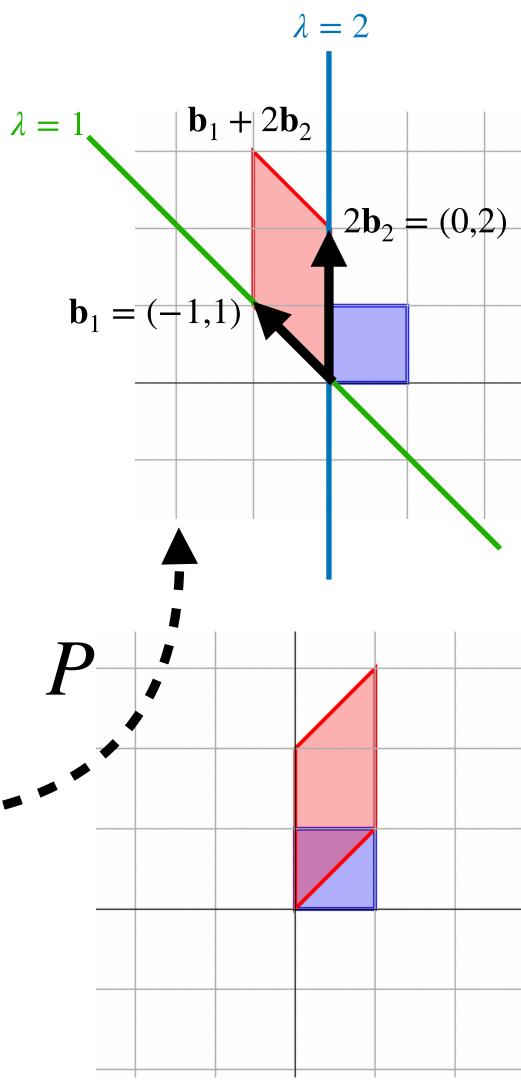
Recall: The Picture



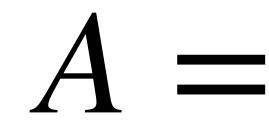






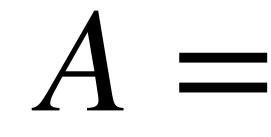


 $A = PDP^{-1}$



Theorem. A is diagonalizable if and only if it has an eigenbasis.

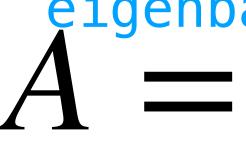
$A = PDP^{-1}$



Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

$A = PDP^{-1}$



Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

The columns of P form an <u>eigenbasis</u> for A.

eigenbasis A = PDP-1

- **Theorem.** A is diagonalizable if and only if it has an eigenbasis.
- The idea:
- The columns of P form an <u>eigenbasis</u> for A_{\bullet}
- The diagonal of D are the eigenvalues for each column of P.

Theorem. A is diagonalizable if and only if it has an eigenbasis.

The idea:

- The columns of P form an <u>eigenbasis</u> for A.
- The diagonal of D are the eigenvalues for each column of P_{\bullet}
- The matrix P^{-1} is a change of basis to this eigenbasis of A.

The Spectral Theorem

Theorem. If A is symmetric, then it has an *orthonormal* eigenbasis.

(we won't prove this)

Symmetric matrices are <u>diagonalizable</u>.

But more than that, we can choose *P* to be *orthogonal*.

<u>diagonalizable</u>. can choose *P* to be

Recall: Orthonormal Matrices

Definition. A matrix is **orthonormal** if its columns form an orthonormal set.

The notes call a square orthonormal matrix an orthogonal matrix.

Recall: Inverses of Orthogonal Matrices

Theorem. If an $n \times n$ matrix U is orthogonal

Verify:

- (square orthonormal) then it is invertible and
 - $U^{-1} = U^T$

Orthogonal Diagonalizability

Definition. A matrix A is orthogonally diagonalizable if there is a diagonal matrix D and matrix *P* such that

$A = PDP^T = PDP^{-1}$

P must be an <u>orthonormal matrix</u>.

Symmetric matrices are orthogonally diagonalizable

Orthogonal Diagonalizability and Symmetry

Fact. All orthogonally
are symmetric.

Verify:

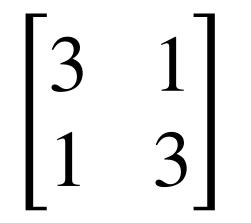
Fact. All orthogonally diagonalizable matrices

Orthogonal Diagonalizability and Symmetry

Theorem. A matrix is orthogonally diagonalizable if and only if it is symmetric. (We'll usually just use NumPy)

Practice Problem

Find an orthogonal diagonalization of $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$



Quadratic Forms

Quadratic Forms

Definition. A quadratic form is an function of variables $x_1, ..., x_n$ in which every term has degree two.

Examples:

Quadratic Forms and Symmetric Matrices

Fact. Every quadratic form can be represented as

where A is <u>symmetric</u>. Example:

 $\mathbf{x}^T A \mathbf{x}$

Example: Computing the Quadratic Form for a Matrix

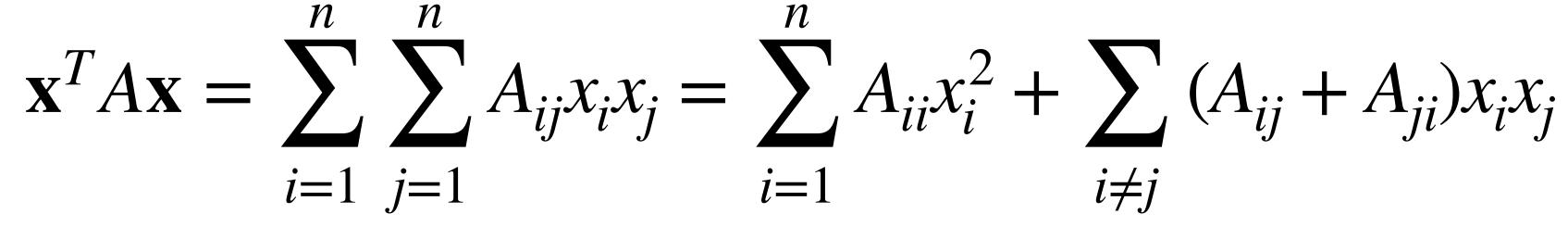


- $A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$
- This means, given a symmetric matrix A, we can

Quadratic forms and Symmetric Matrices (Again)

Furthermore, we can generally say

Verify:



A Slightly more Complicated Example

Let's expand $\mathbf{x}^T A \mathbf{x}$:

 $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 0 \\ -1 & 0 & 5 \end{bmatrix}$

Matrices from Quadratic Forms

$Q(\mathbf{x}) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$

We can also go in the other direction. Let's express this as $\mathbf{x}^T A \mathbf{x}$:

How To: Matrices of Quadratic Forms

symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Solution.

» if $Q(\mathbf{x})$ has the term

» if $Q(\mathbf{x})$ has the term

Problem. Given a quadratic form $Q(\mathbf{x})$, find the

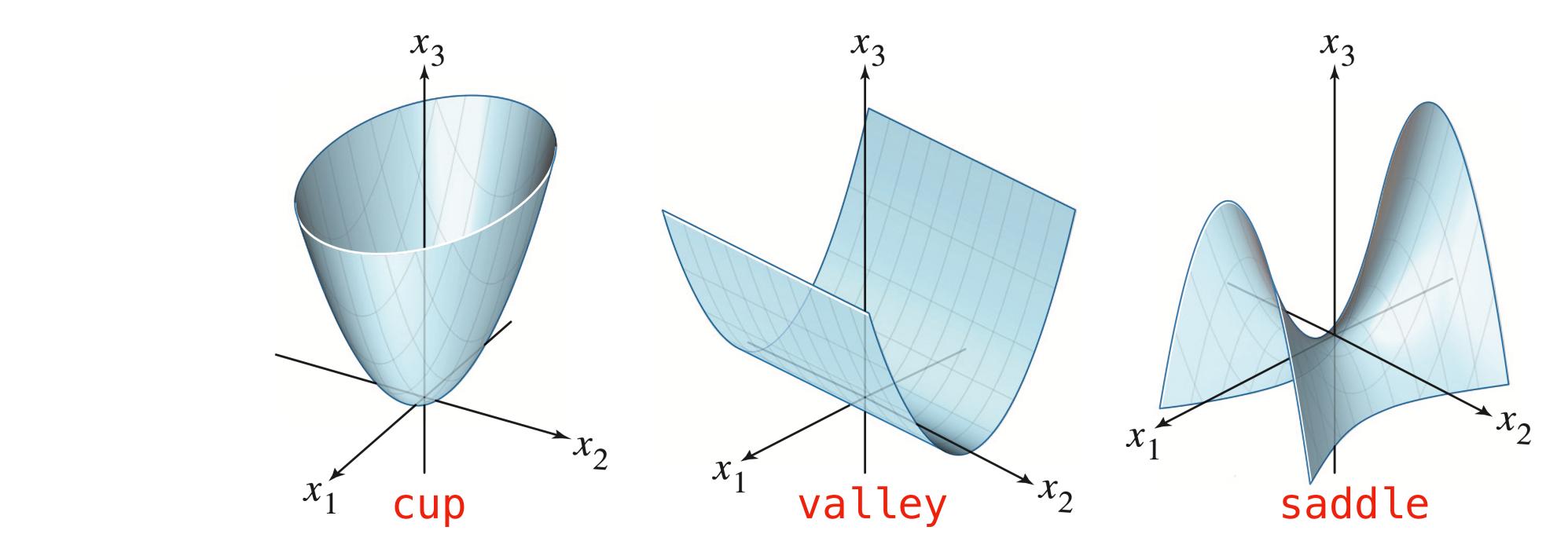
$$\alpha x_i^2$$
 then $A_{ii} = \alpha$
 $\alpha x_i x_j$, then $A_{ij} = A_{ji} = \frac{\alpha}{2}$

Practice Problem

Find the symmetric matrix A such that $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

 $Q(x_1, x_2, x_3, x_4) = x_1^2 + 3x_2^2 - 2x_3x_4 - 6x_4^2 + 7x_1x_3$

Shapes of of Quadratic Forms

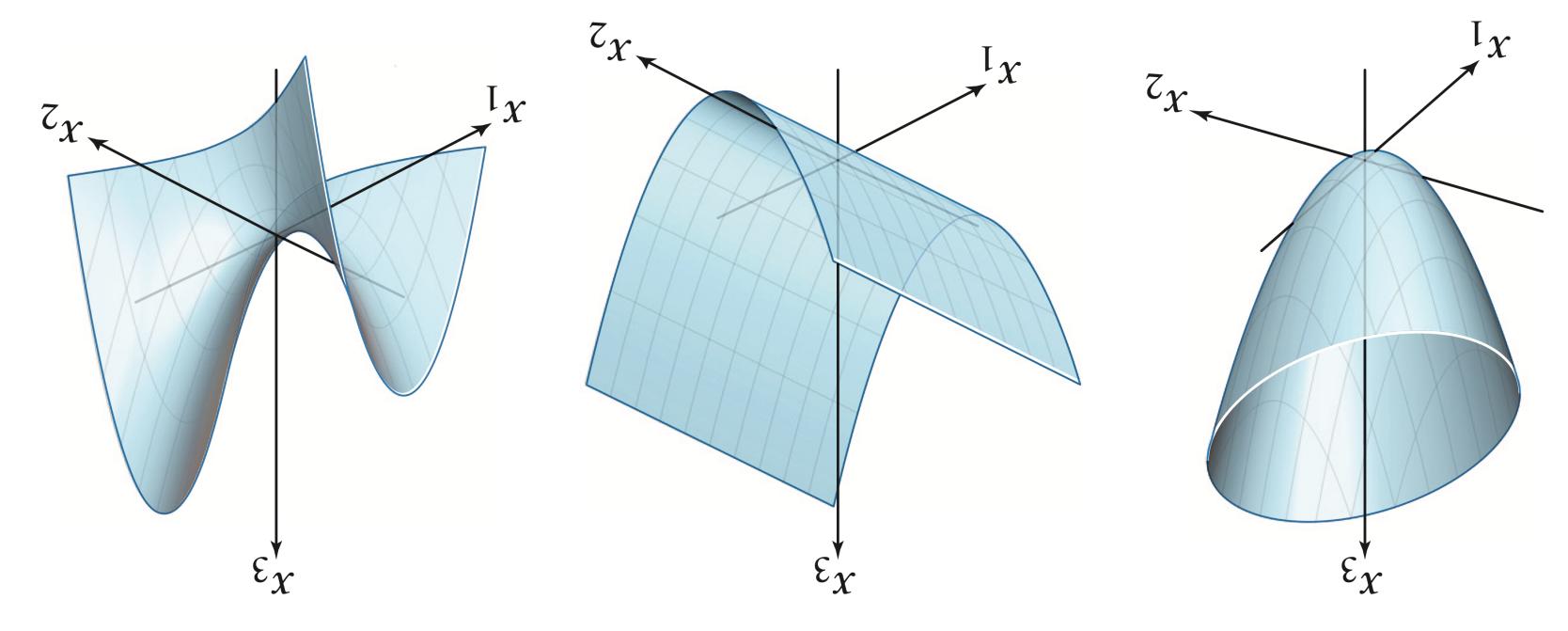


There are essentially three possible shapes (six if you include the negations).

Can we determine what shape it will be mathematically?

Linear Algebra and its Applications, Lay, Lay, McDonald

Shapes of of Quadratic Forms



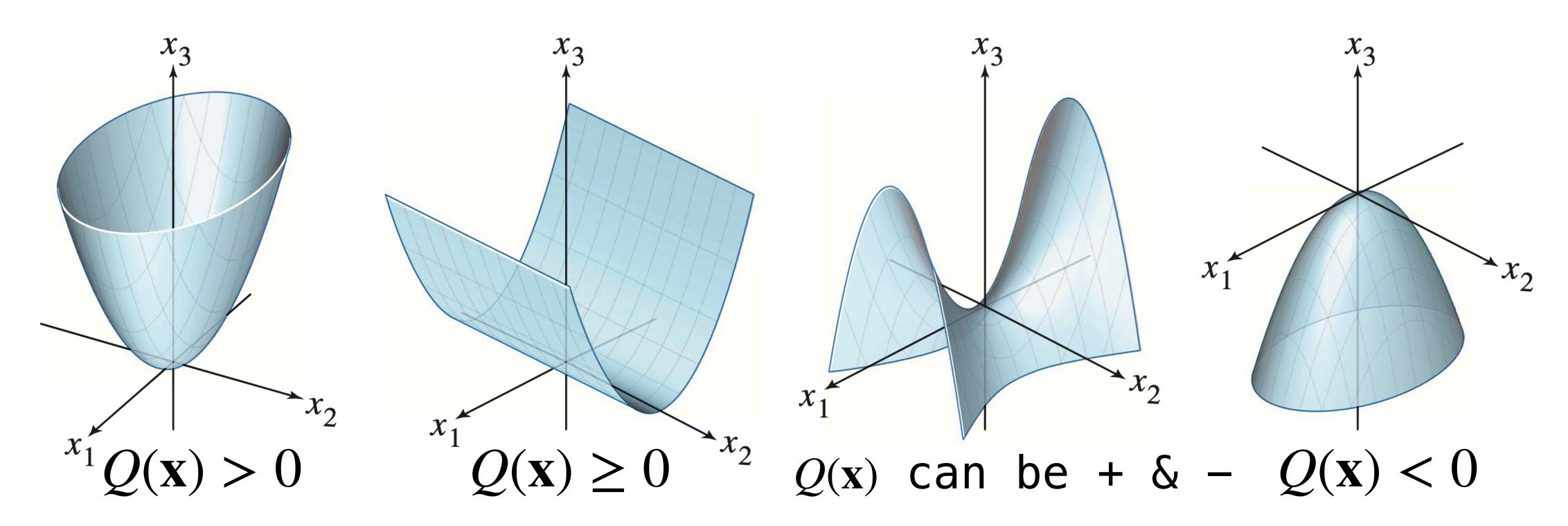
you include the negations).

Can we determine what shape it will be mathematically?

There are essentially three possible shapes (six if

Linear Algebra and its Applications, Lay, Lay, McDonald

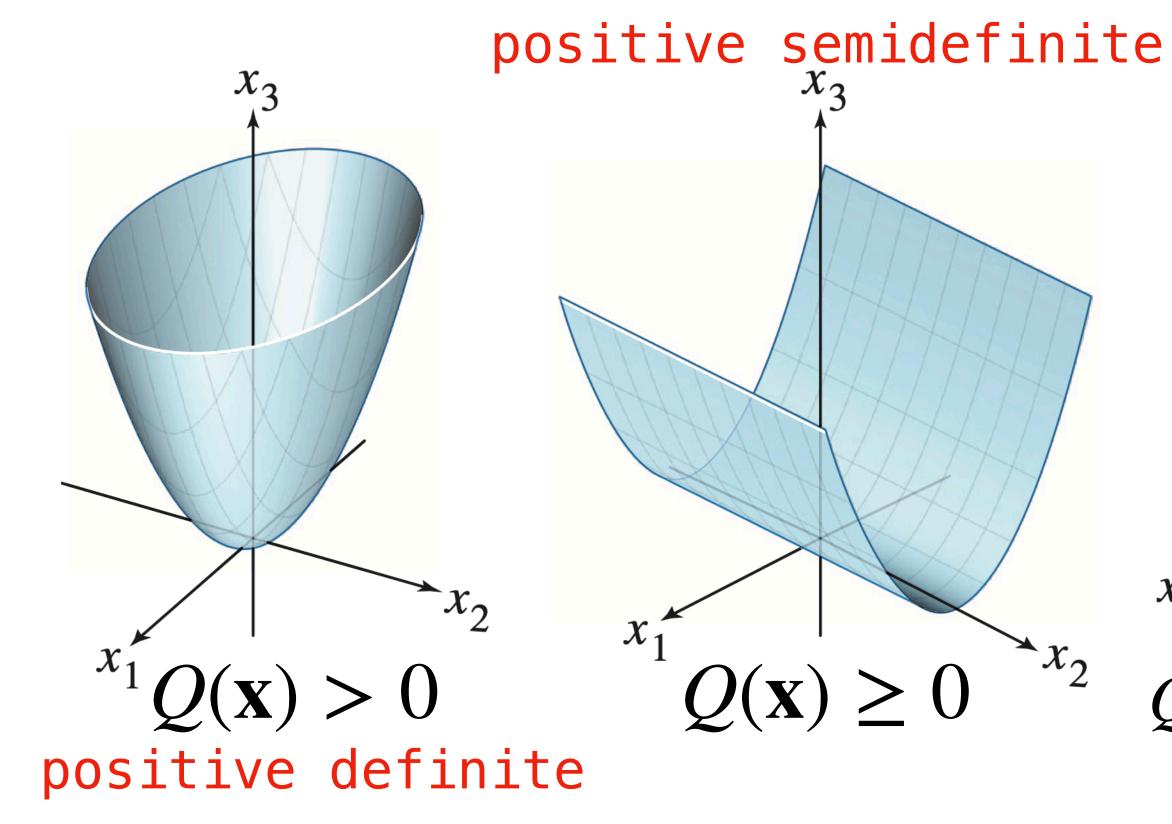
Definiteness



For $x \neq 0$, each of the a associated properties.

For $x \neq 0$, each of the above graphs satisfy the

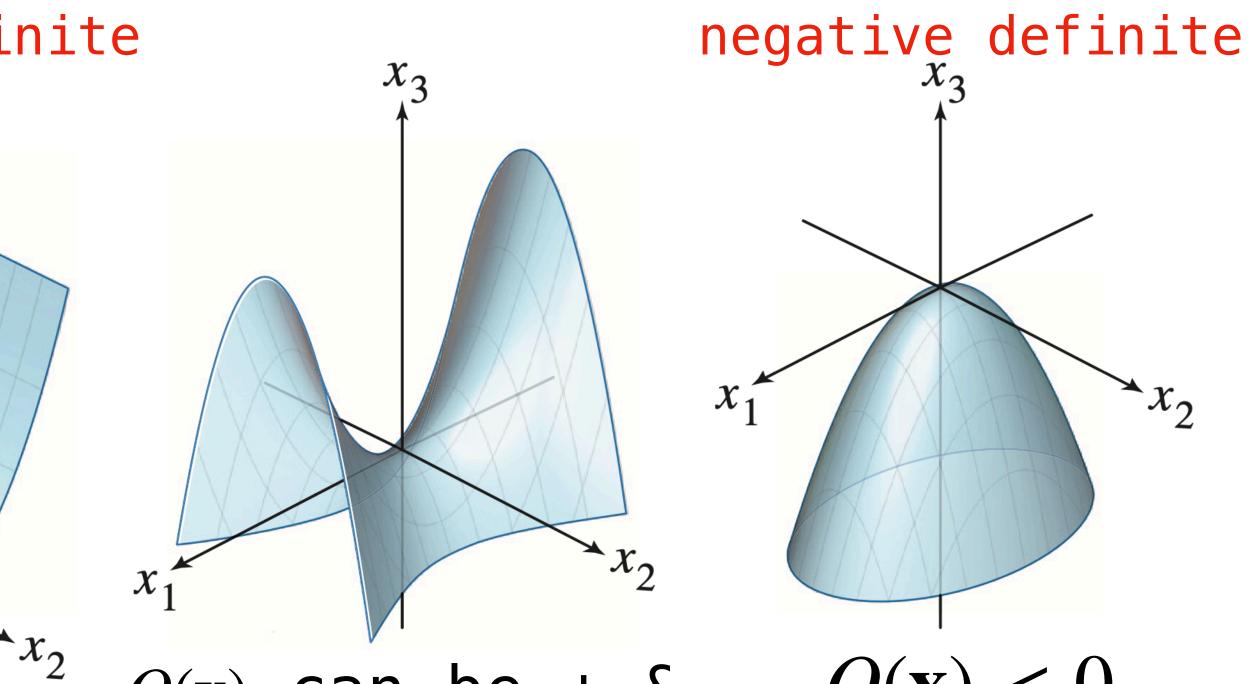
Definiteness



associated properties.

For $x \neq 0$, each of the above graphs satisfy the

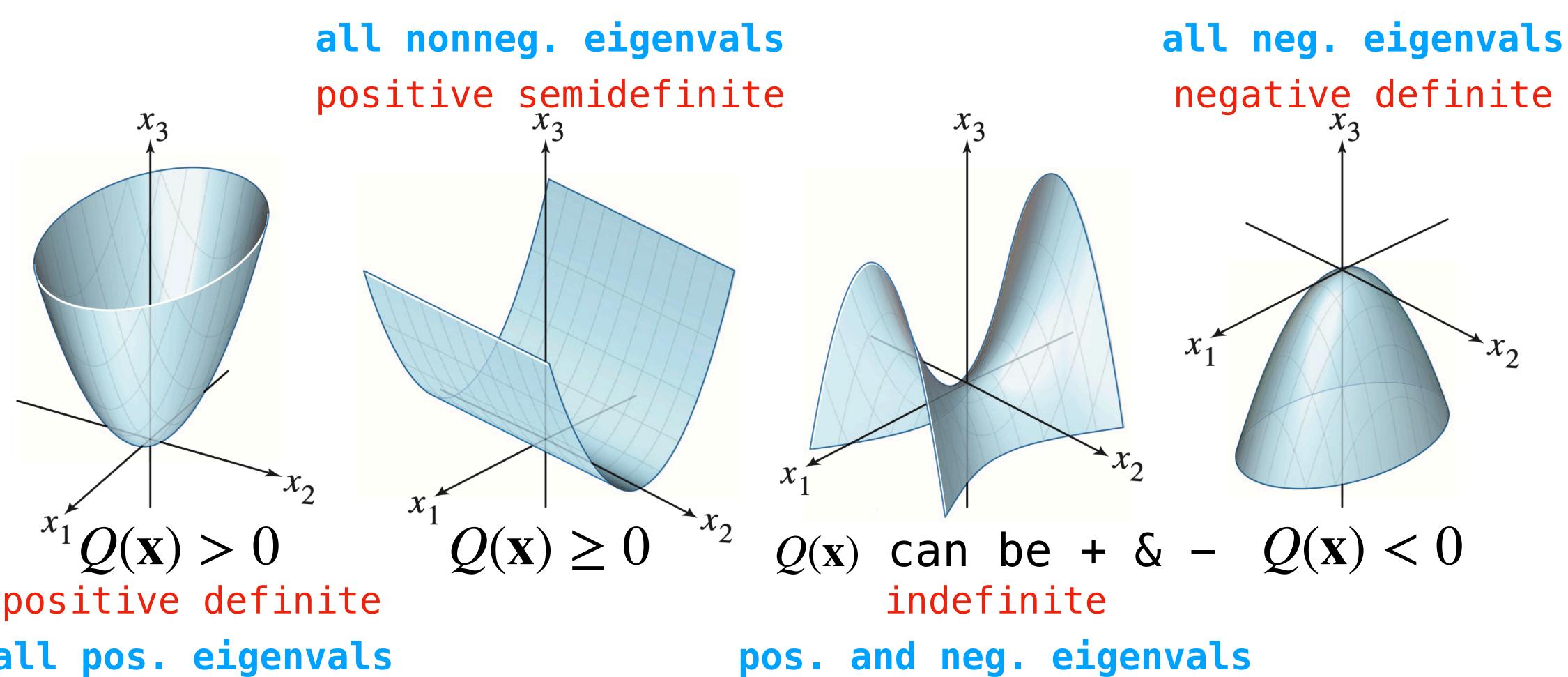
$Q(\mathbf{x})$ can be + & - $Q(\mathbf{x}) < 0$ indefinite



Definiteness and Eigenvectors

- **Theorem.** For a symmetric matrix A, the quadratic form $\mathbf{x}^T A \mathbf{x}$
- » positive definite \equiv all positive eigenvalues
- » **positive semidefinite** \equiv all <u>nonnegative</u> eigenvalues
- » indefinite \equiv positive and negative eigenvalues
- » **negative definite** \equiv all <u>negative</u> eigenvalues

Definiteness



all pos. eigenvals

Example

Let's determine which case this is:

 $Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$

Constrained Optimization

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the constrained minimization problem for fover X is the problem of determining

 $minf(\mathbf{v})$ $\mathbf{v} \in X$

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the constrained minimization problem for fover X is the problem of determining

(analogously for maximization)

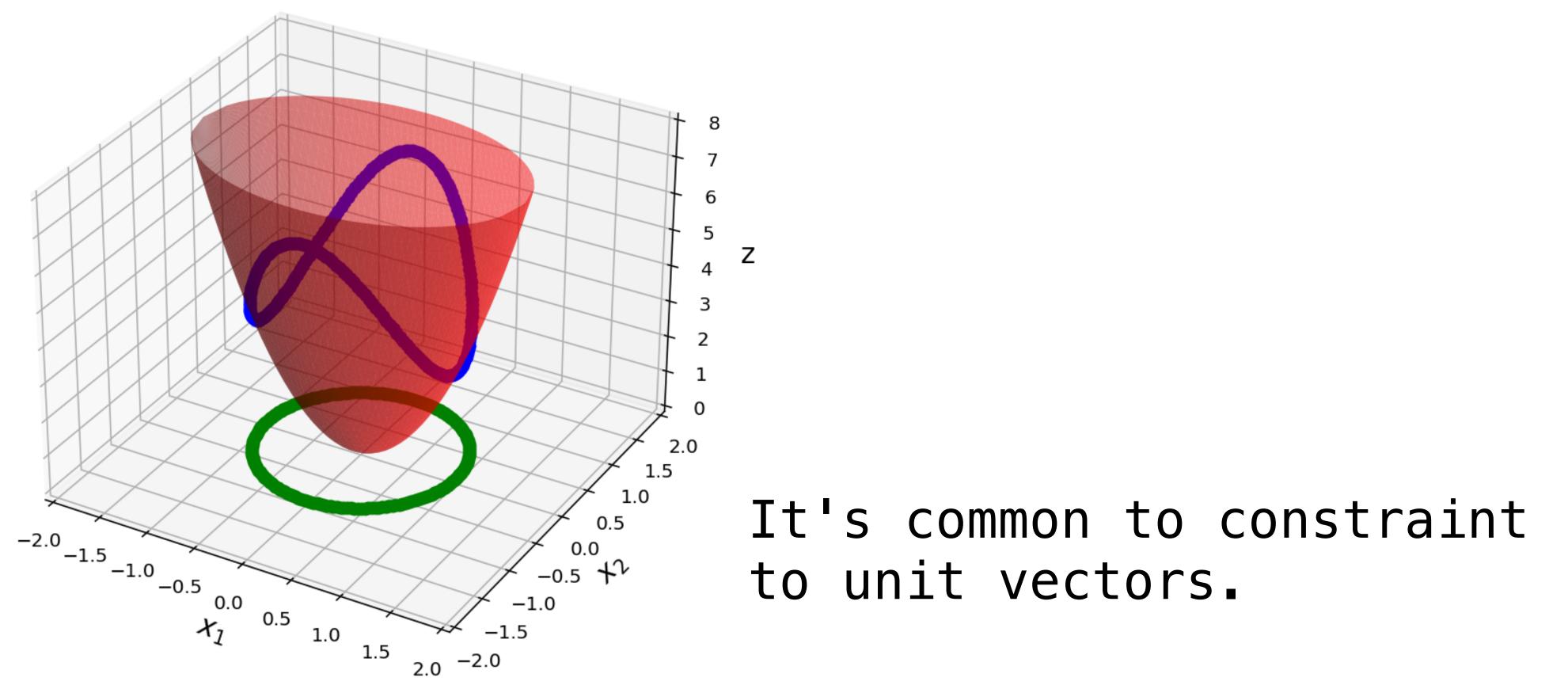
 $\min f(\mathbf{v})$ $\mathbf{v} \in X$

Given a function $f: \mathbb{R}^n \to \mathbb{R}$ and a set of vectors X from \mathbb{R}^n the constrained minimization problem for fover X is the problem of determining

(analogously for maximization) Find the smallest value of $f(\mathbf{v})$ subject to choosing a vector in X

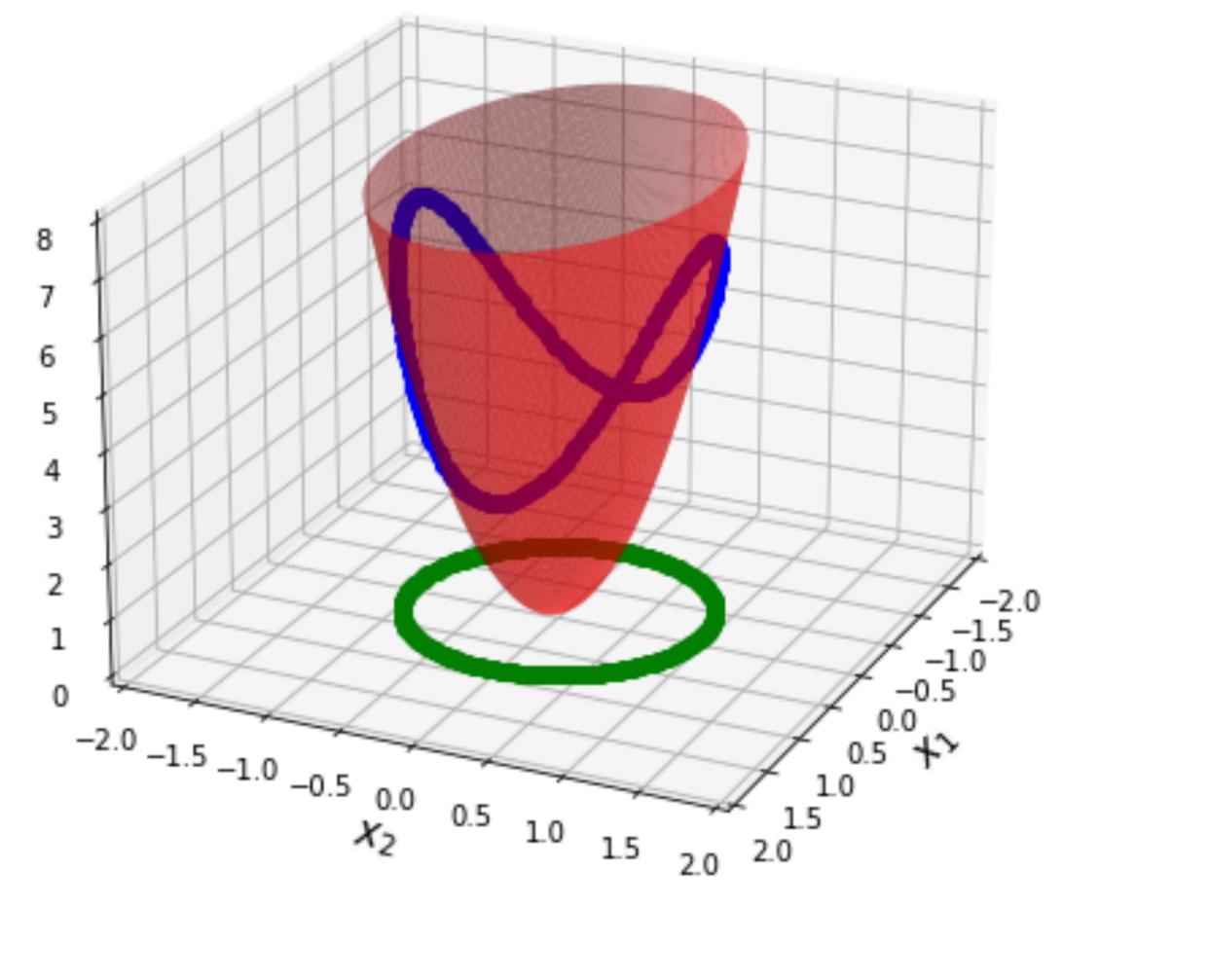
 $\min f(\mathbf{v})$ $\mathbf{v} \in X$

Constrained Optimization for Quadratic Forms and Unit Vectors mini/maximize $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\| = 1$



Example: $3x_1^2 + 7x_2^2$

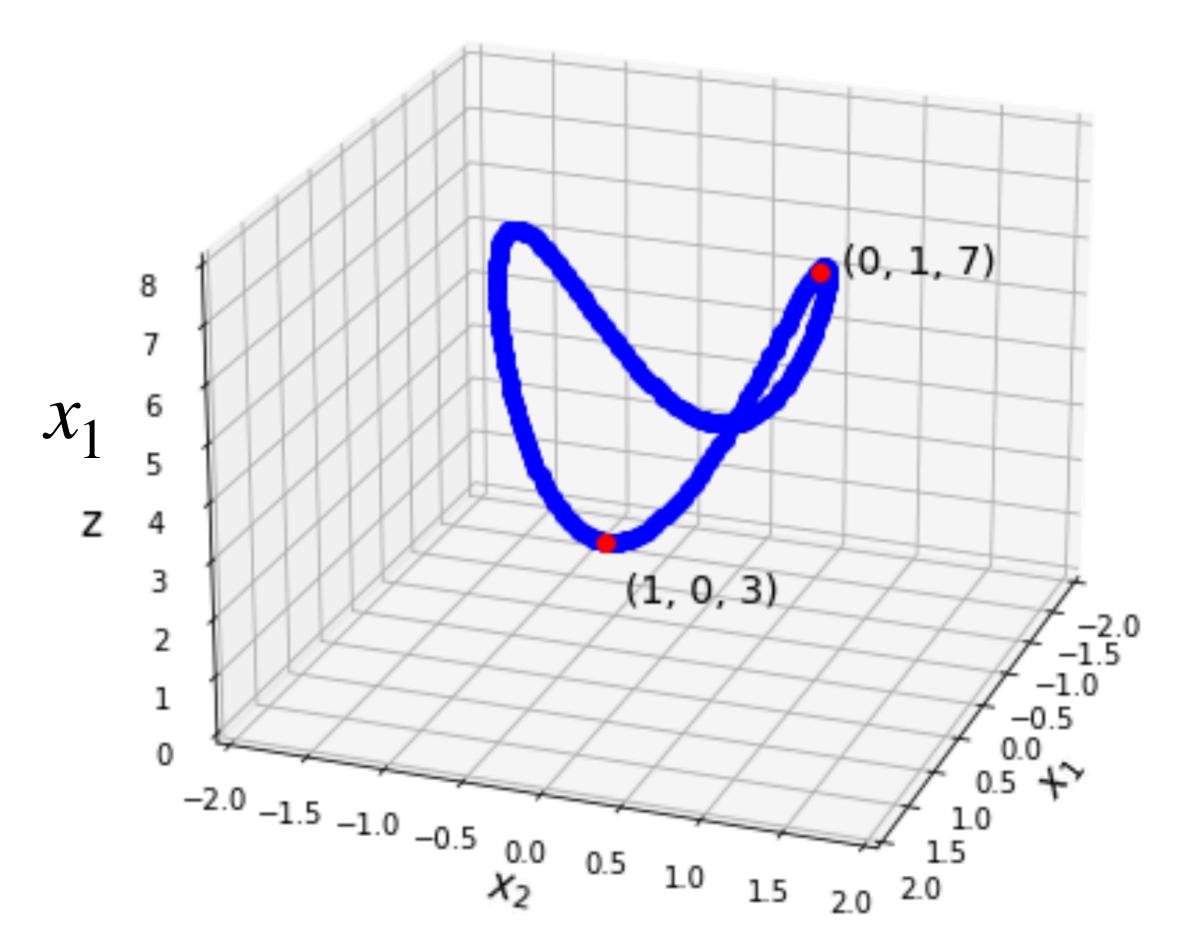
What are the min/max values?:



Z

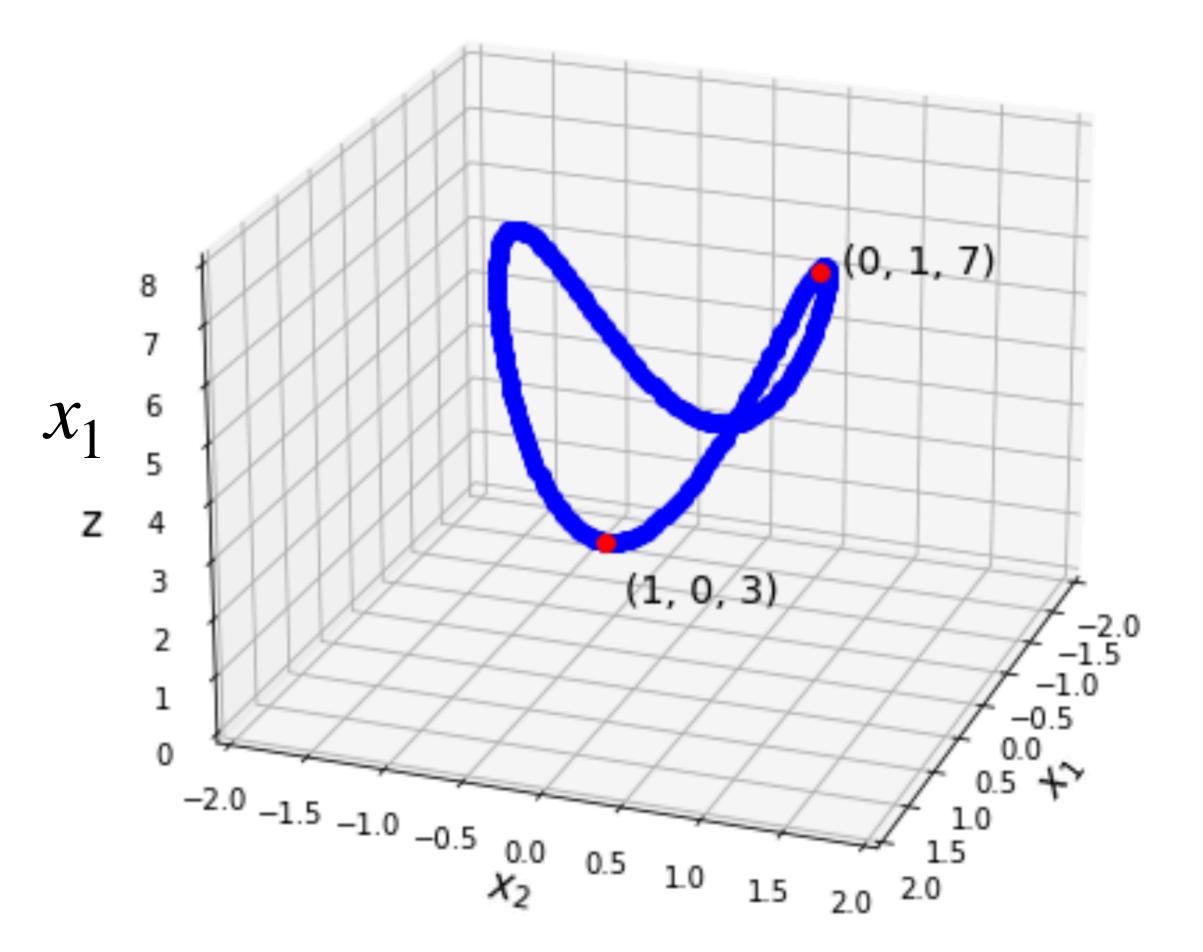
Example: $3x_1^2 + 7x_2^2$

The minimum and maximum values are attained when the "weight" of the vector is distributed all on x_1 or x_2 .



Example: $3x_1^2 + 7x_2^2$

What is the matrix?:



Constrained Optimization and Eigenvalues

eigenvalue λ_1 and smallest eigenvalue λ_n

 $\max \mathbf{x}^T A \mathbf{x} = \lambda_1$ $\|\mathbf{x}\| = 1$

No matter the shape of A, this will hold.

Theorem. For a symmetric matrix A, with largest

$$\min_{\|\mathbf{x}\|=1} \mathbf{x}^T A \mathbf{x} = \lambda_n$$

Problem. Find the maximum to $\|\mathbf{x}\| = 1$.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject

to ||x|| = 1.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject

to $||\mathbf{x}|| = 1$.

Solution. Find the largest eigenvalue of A, this will be the maximum value.

(Use NumPy)

Problem. Find the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject

Practice Problem

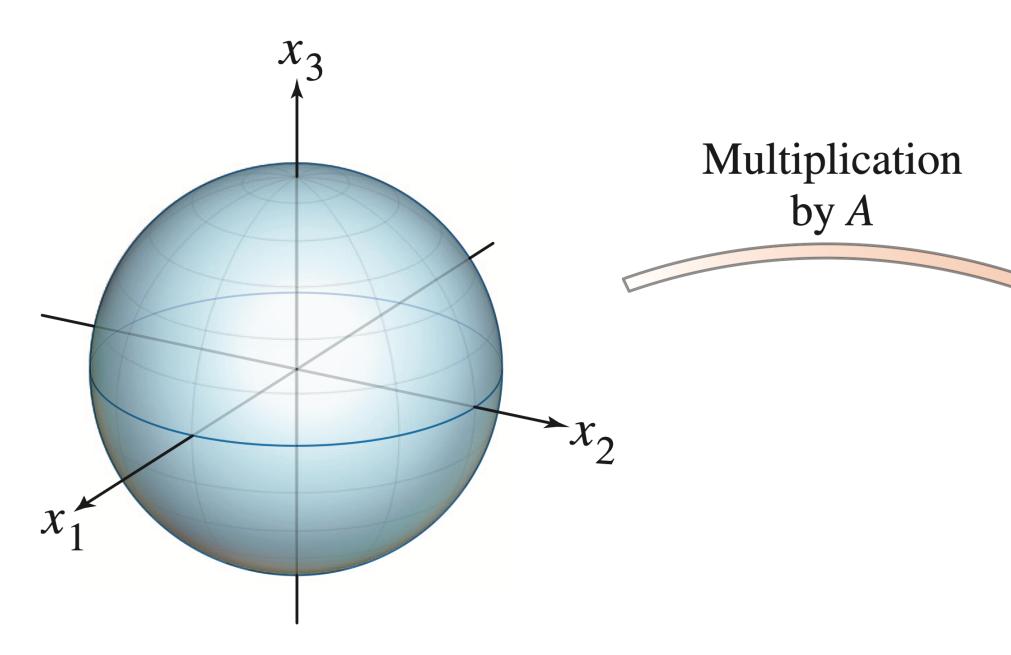
Find the maximum value of $Q(\mathbf{x})$ subject to $\|\mathbf{x}\| = 1$

 $Q(x_1, x_2, x_3) = 3x_1^2 + x_2^2 + 4x_2x_3 + x_3^2$

Singular Value Decomposition (Looking Ahead)

Question

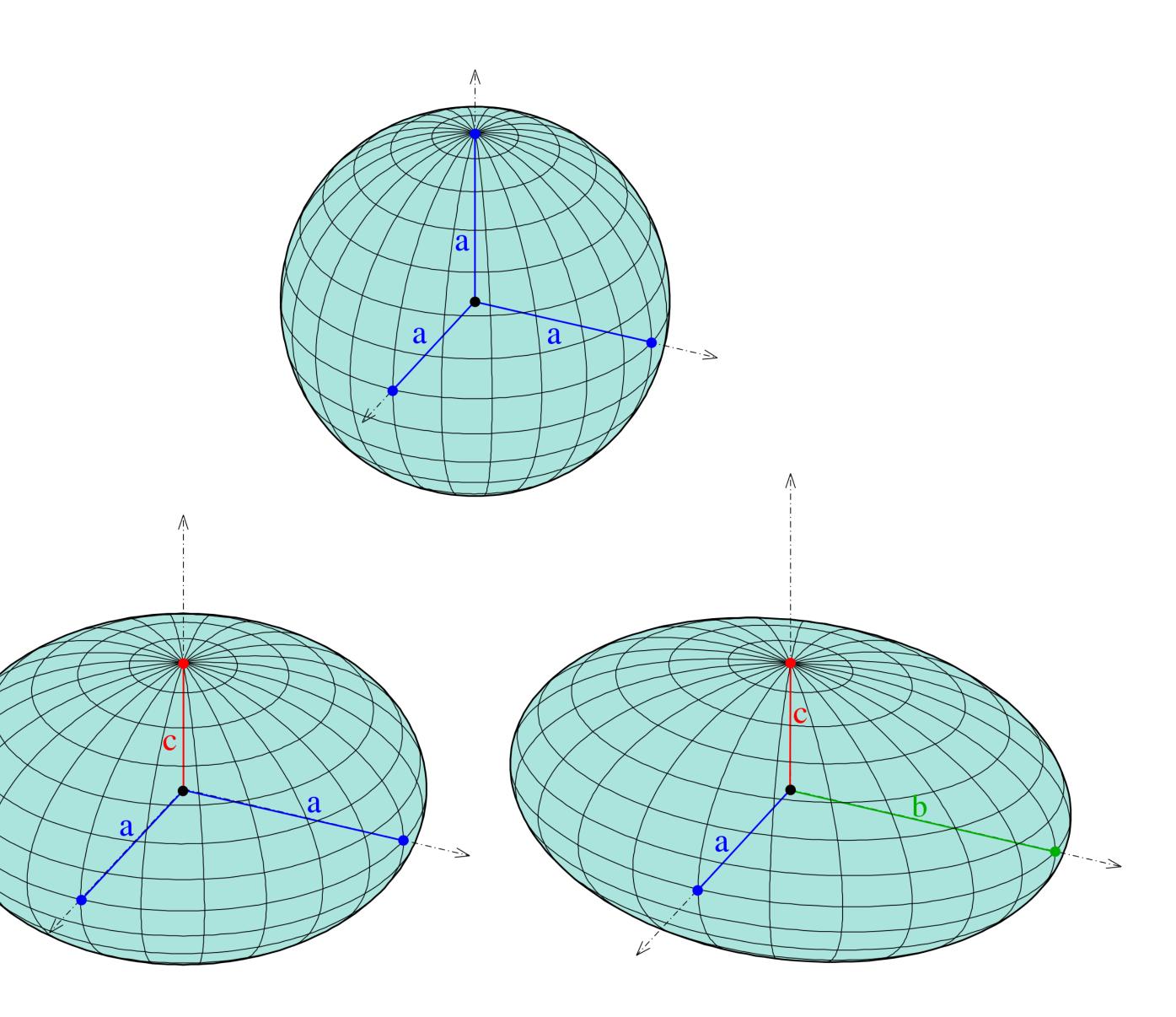
What shape is a the unit sphere after a linear transformation?

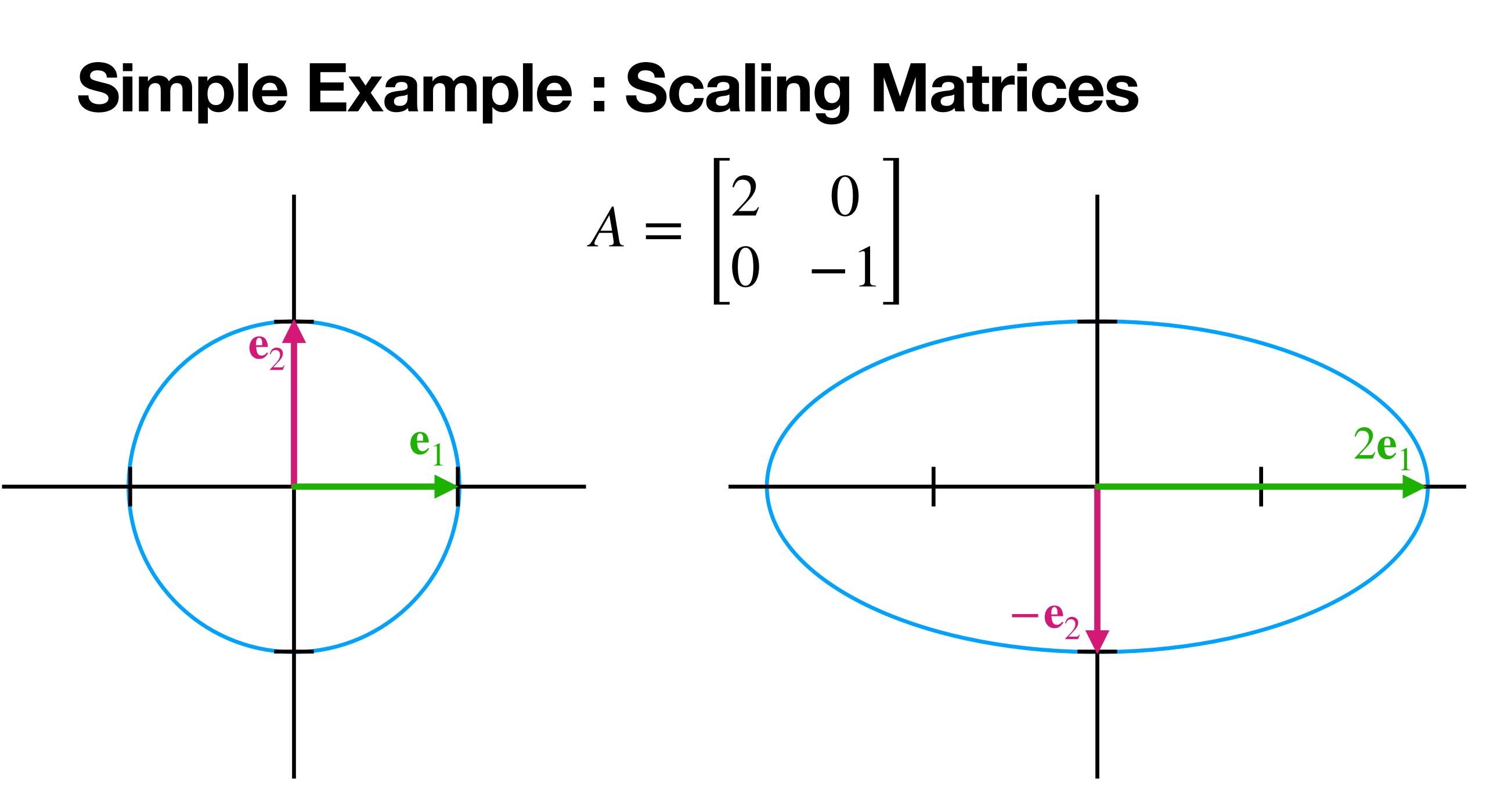


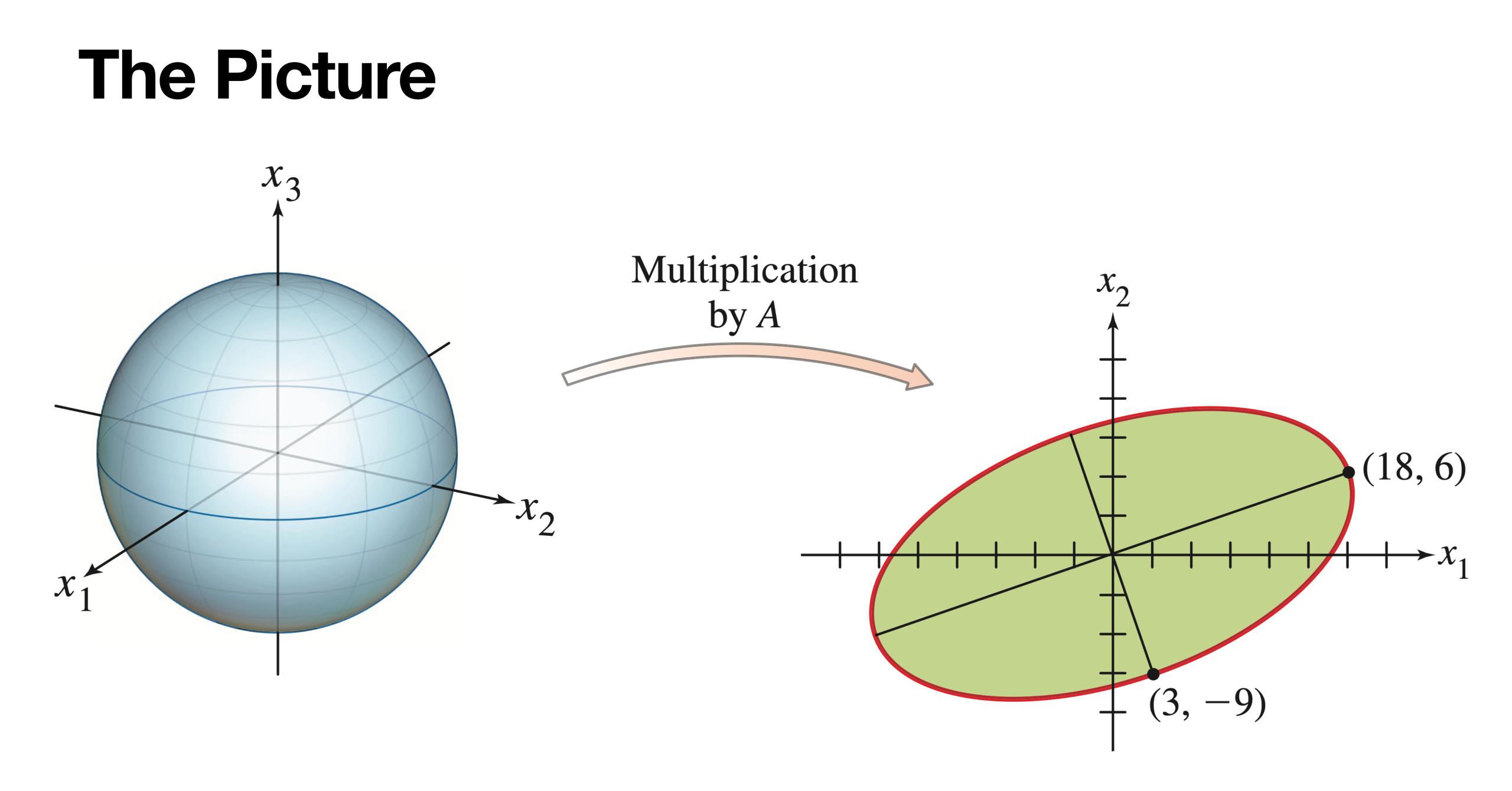
Ellipsoids

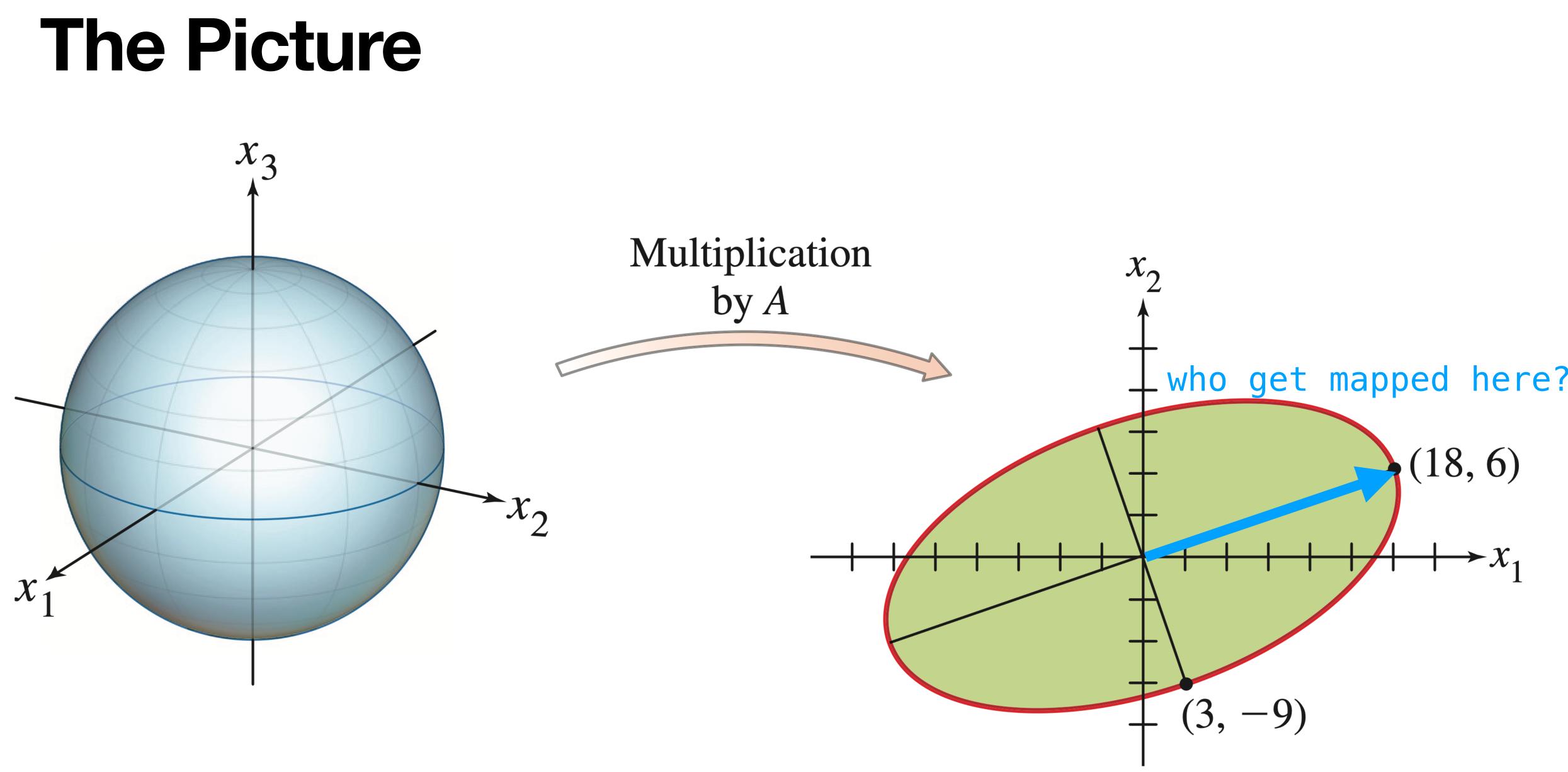
Ellipsoids are spheres "stretched" in orthogonal directions called the axes of symmetry or the principle axes.

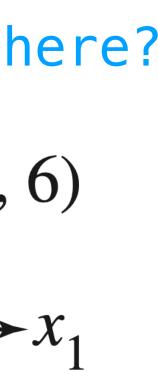
Linear transformations maps <u>spheres</u> to <u>ellipsoids</u>.

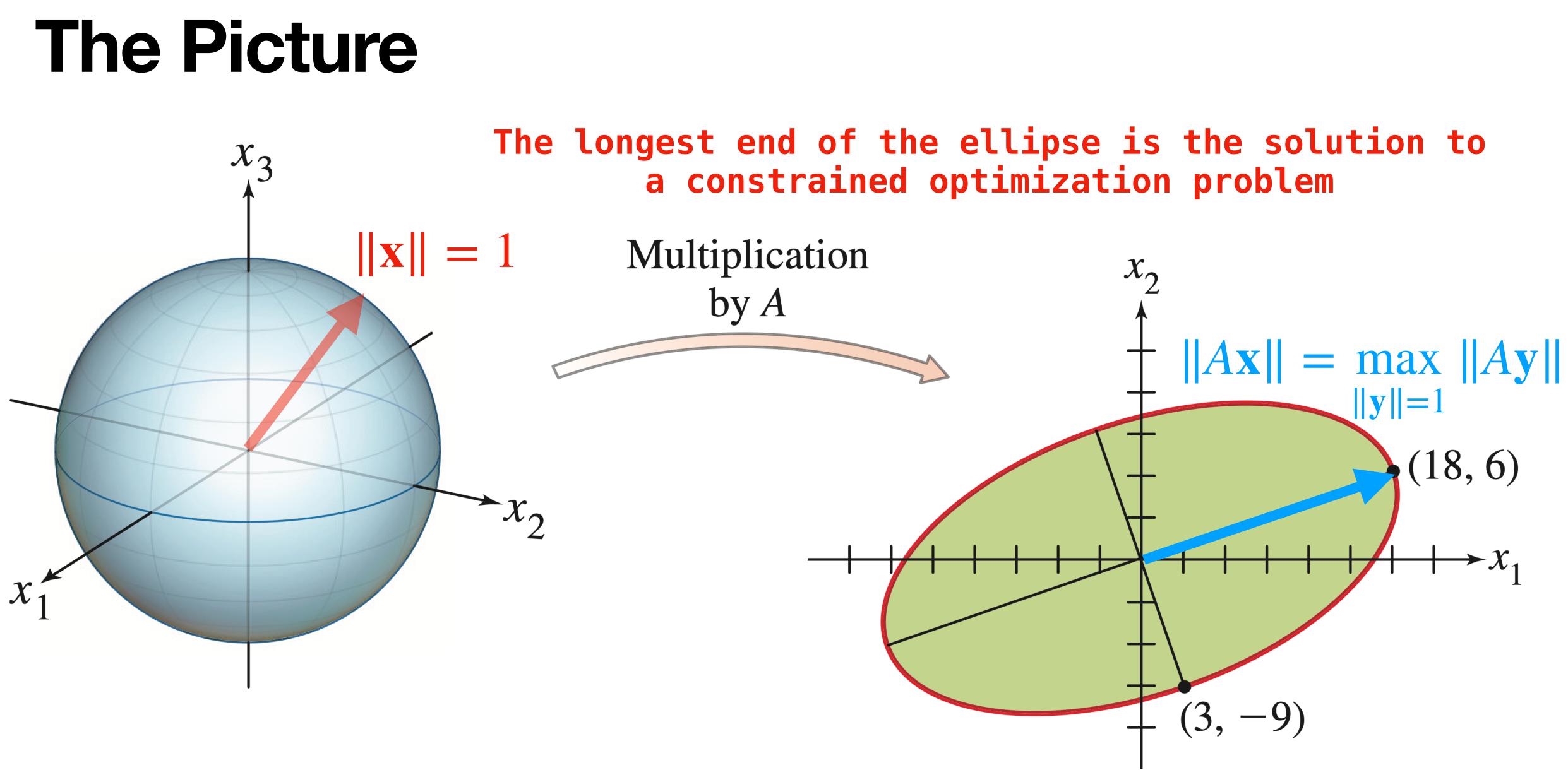




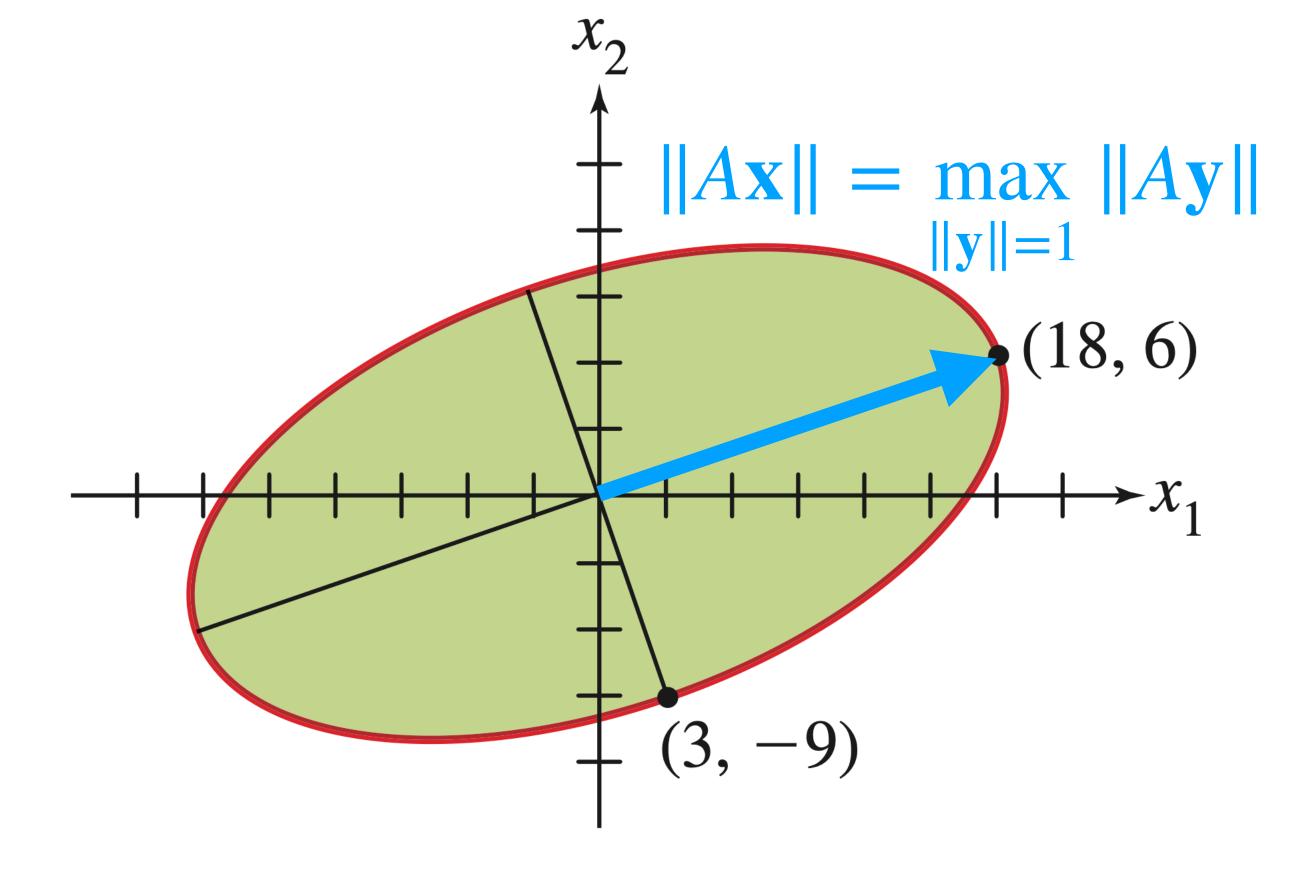






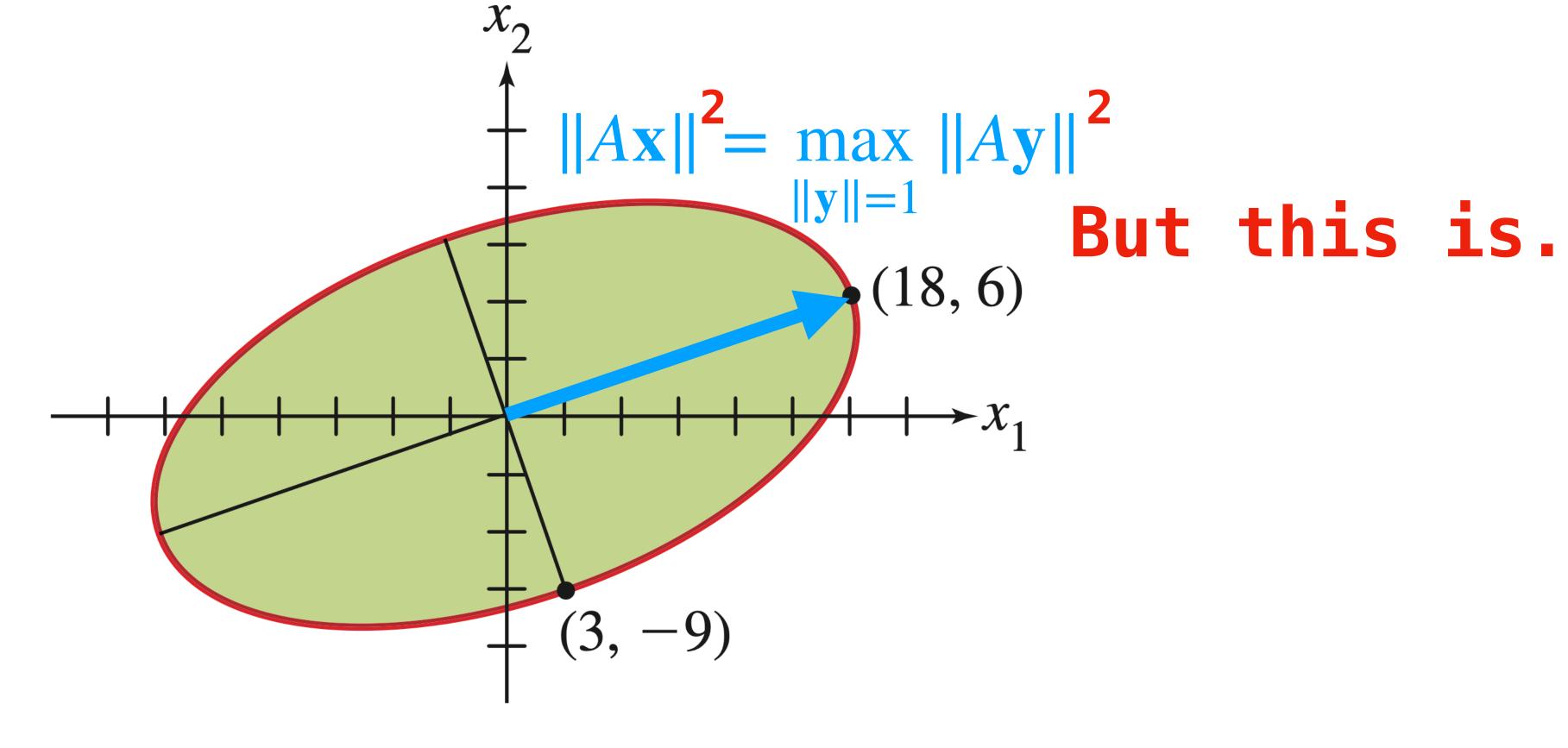


The Picture



This is not a quadratic form...

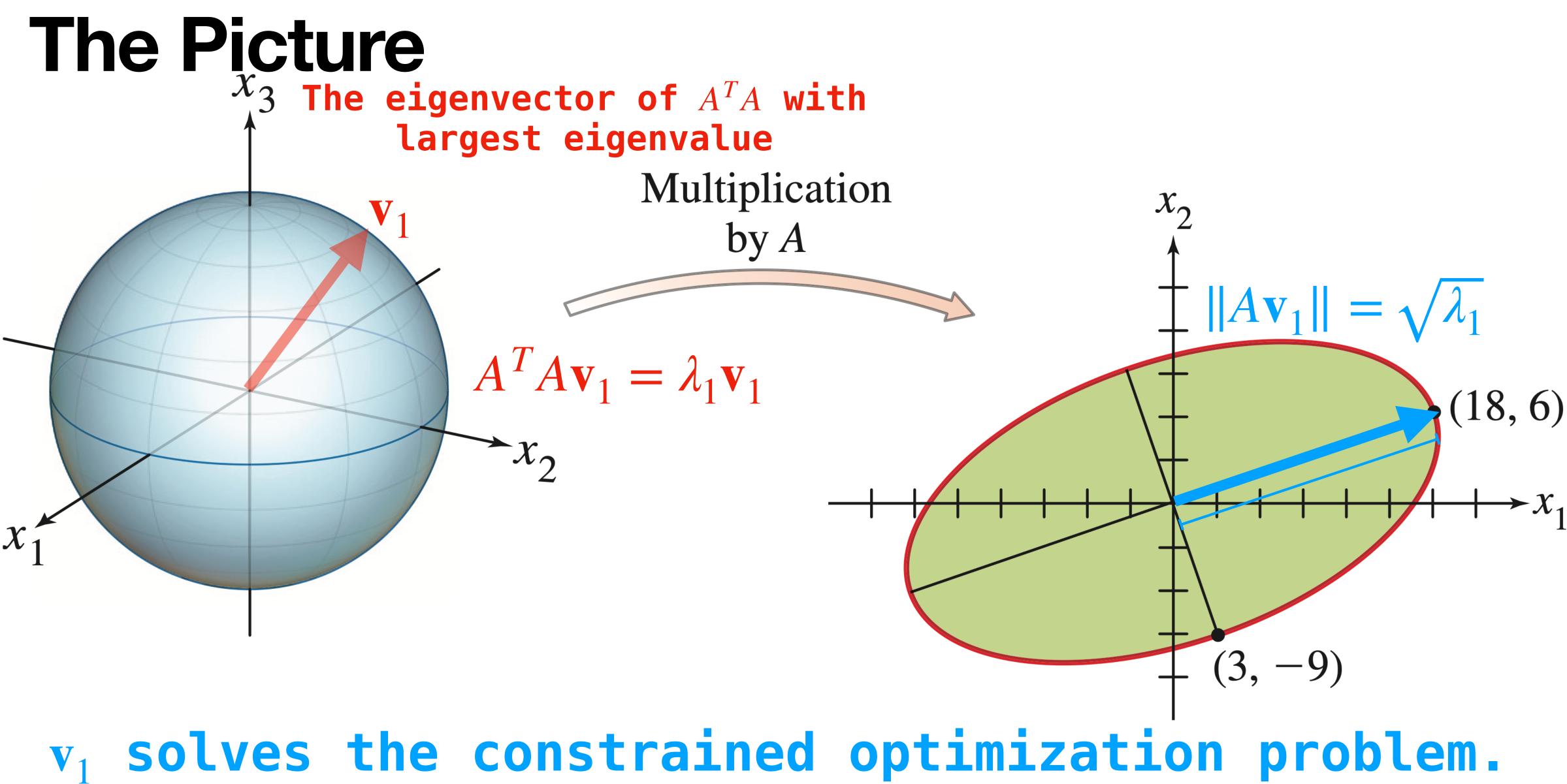
The Picture

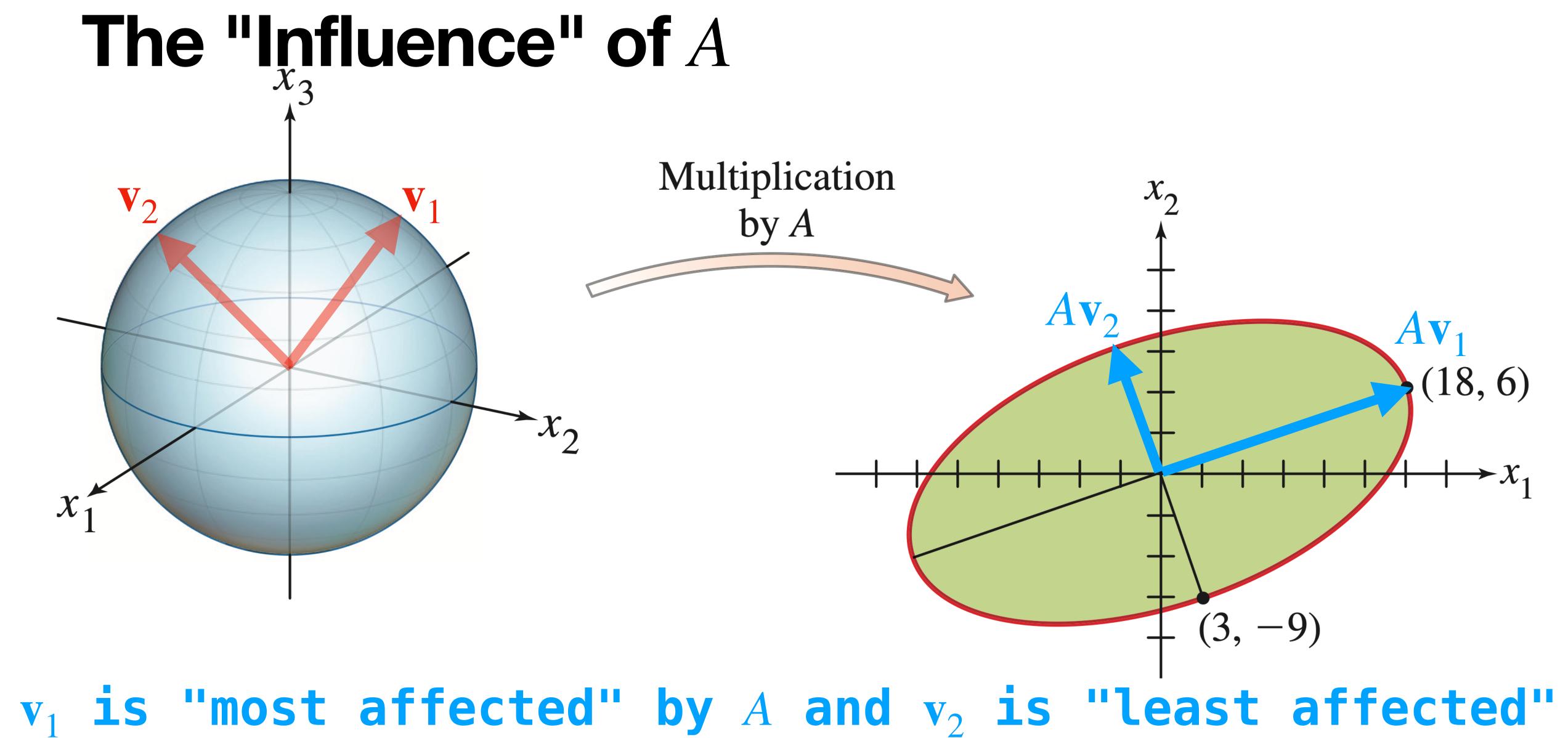


This is not a quadratic form...

A Quadratic Form

What does $||A\mathbf{x}||^2$ look like?:





» It's symmetric.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.

» There is an orthogonal basis of eigenvectors.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.
- » It's eigenvalues are nonnegative.

» There is an orthogonal basis of eigenvectors.

- » It's symmetric.
- » So its <u>orthogonally diagonalizable</u>.
- » It's eigenvalues are nonnegative.
- » It's positive semidefinite.

» There is an orthogonal basis of eigenvectors.

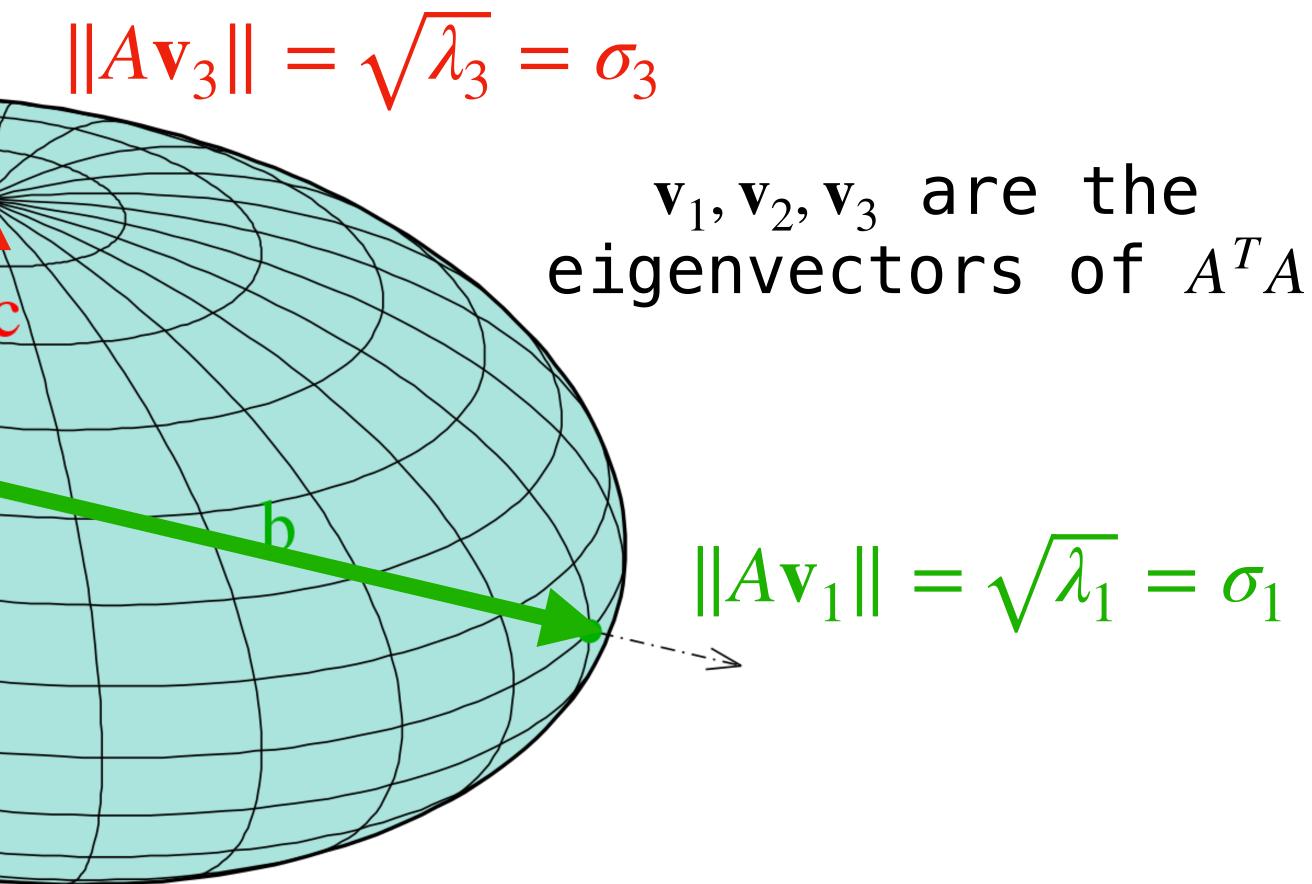
Singular Values

values of A are the n values where $\sigma_i = \sqrt{\lambda_i}$ and λ_i is an eigenvalue of $A^T A$.

- **Definition.** For an $m \times n$ matrix A, the singular
 - $\sigma_1 \geq \sigma_2 \dots \geq \sigma_n \geq 0$

Another picture

$\|A\mathbf{v}_2\| = \sqrt{\lambda_2} = \sigma_2 \boldsymbol{\omega}$ The singular values are the <u>lengths</u> of the axes of symmetry of the ellipsoid after transforming the unit sphere.



https://commons.wikimedia.org/wiki/File:Ellipsoide.svg

<u>Every</u> $m \times n$ matrix transforms the unit *m*-sphere into an *n*-ellipsoid.

So <u>every</u> $m \times n$ matrix has n singular values.