Singular Value Decomposition Geometric Algorithms Lecture 26

CAS CS 132

Objectives

- (probably the most important matrix decomposition for computer science)
- 2. Talk very briefly about what to do after more linear algebra
- 3. Fill out course evals(!)

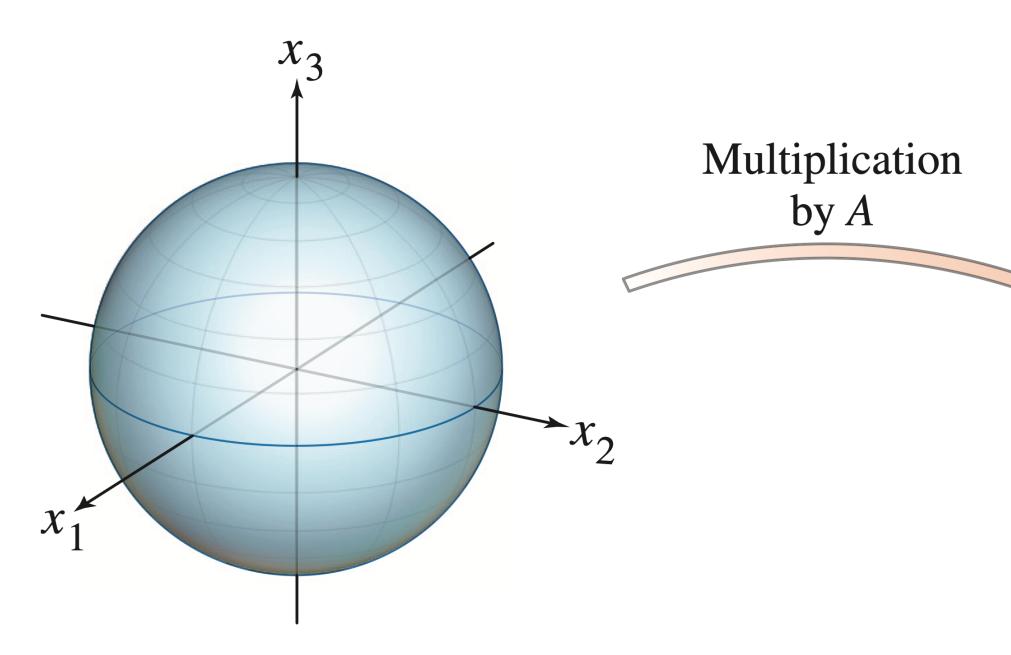
1. Introduce the singular value decomposition

this course if you want (or have to) to see

Motivation

Question

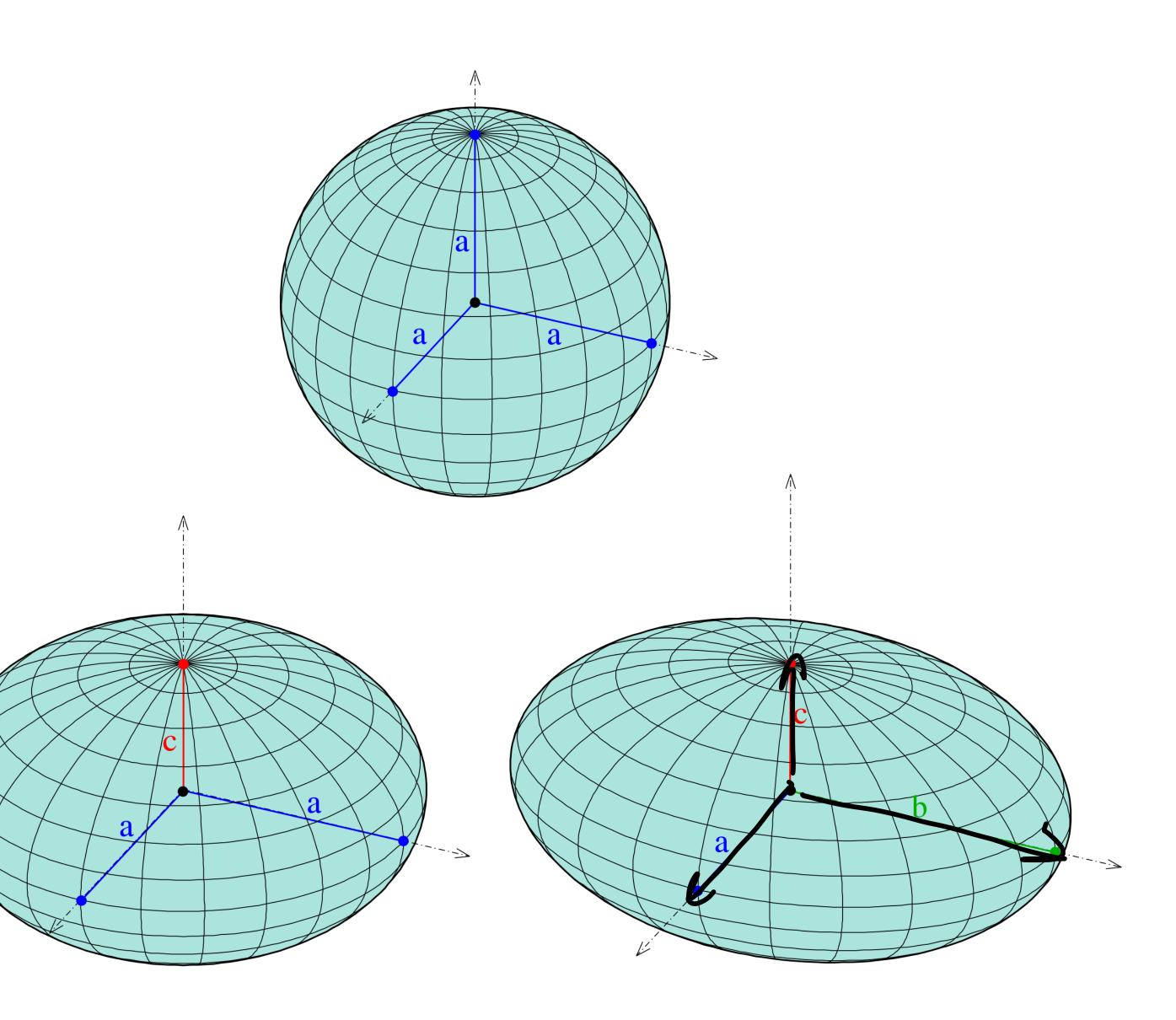
What shape is a the unit sphere after a linear transformation?

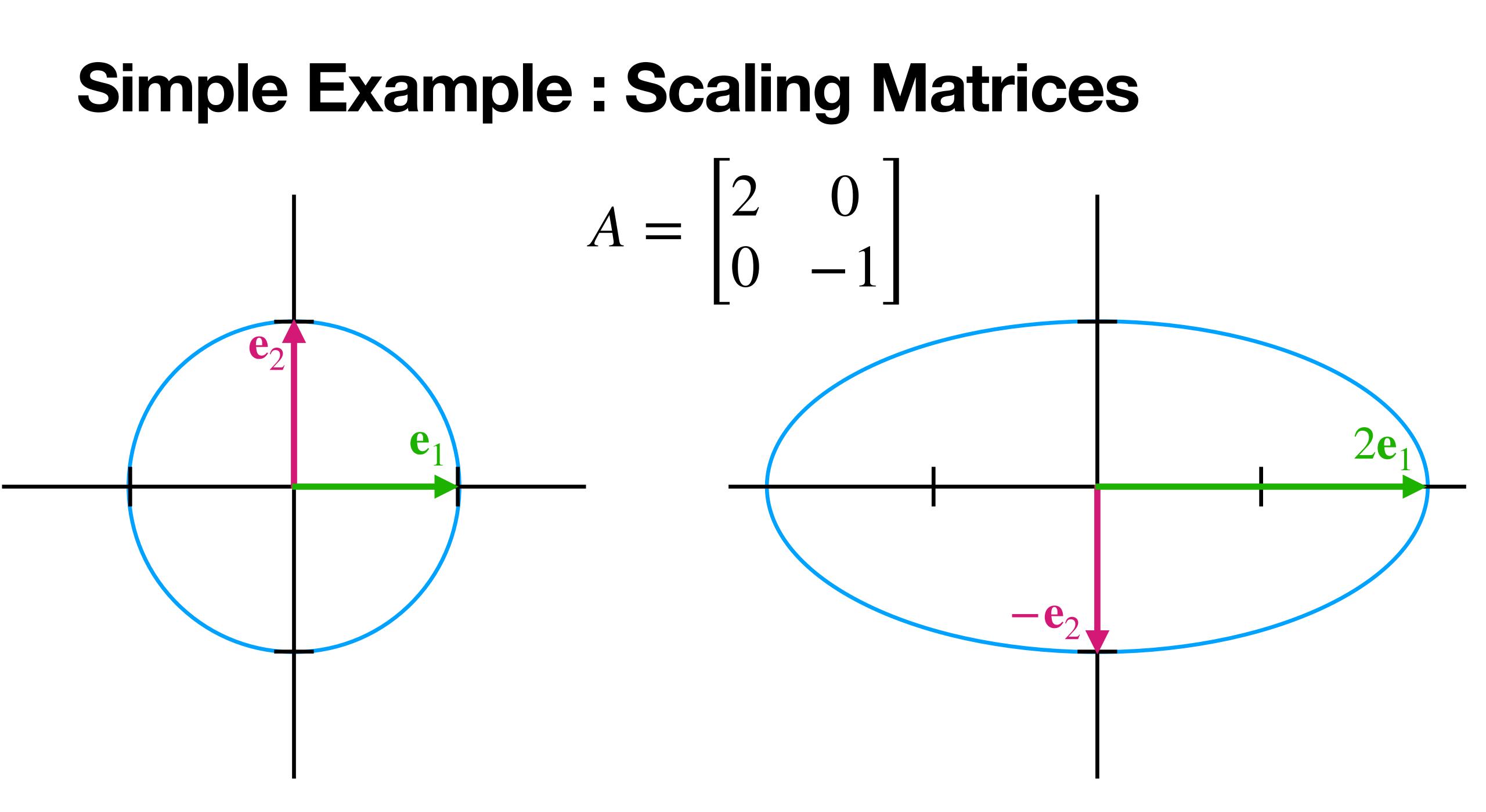


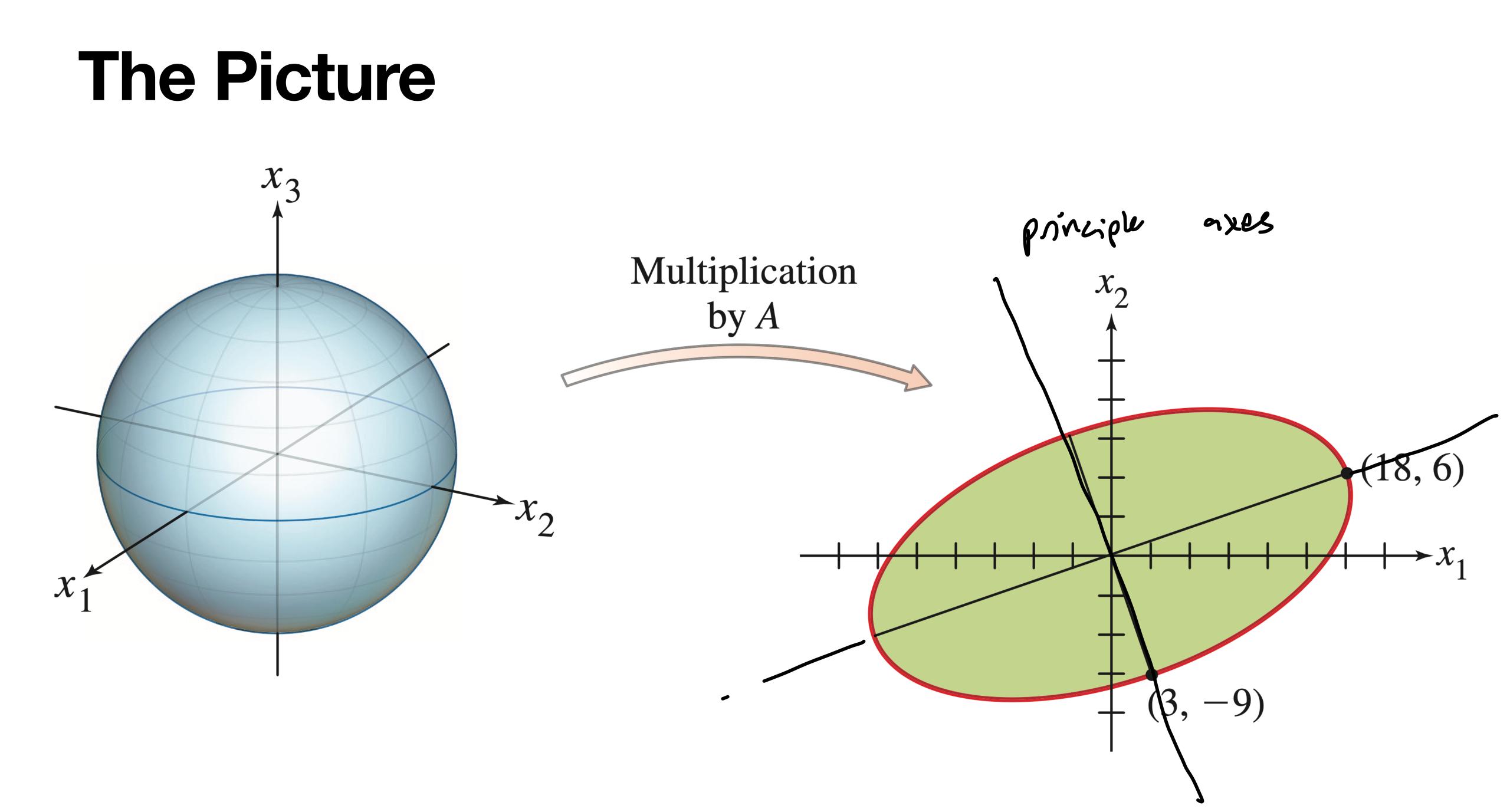
Ellipsoids

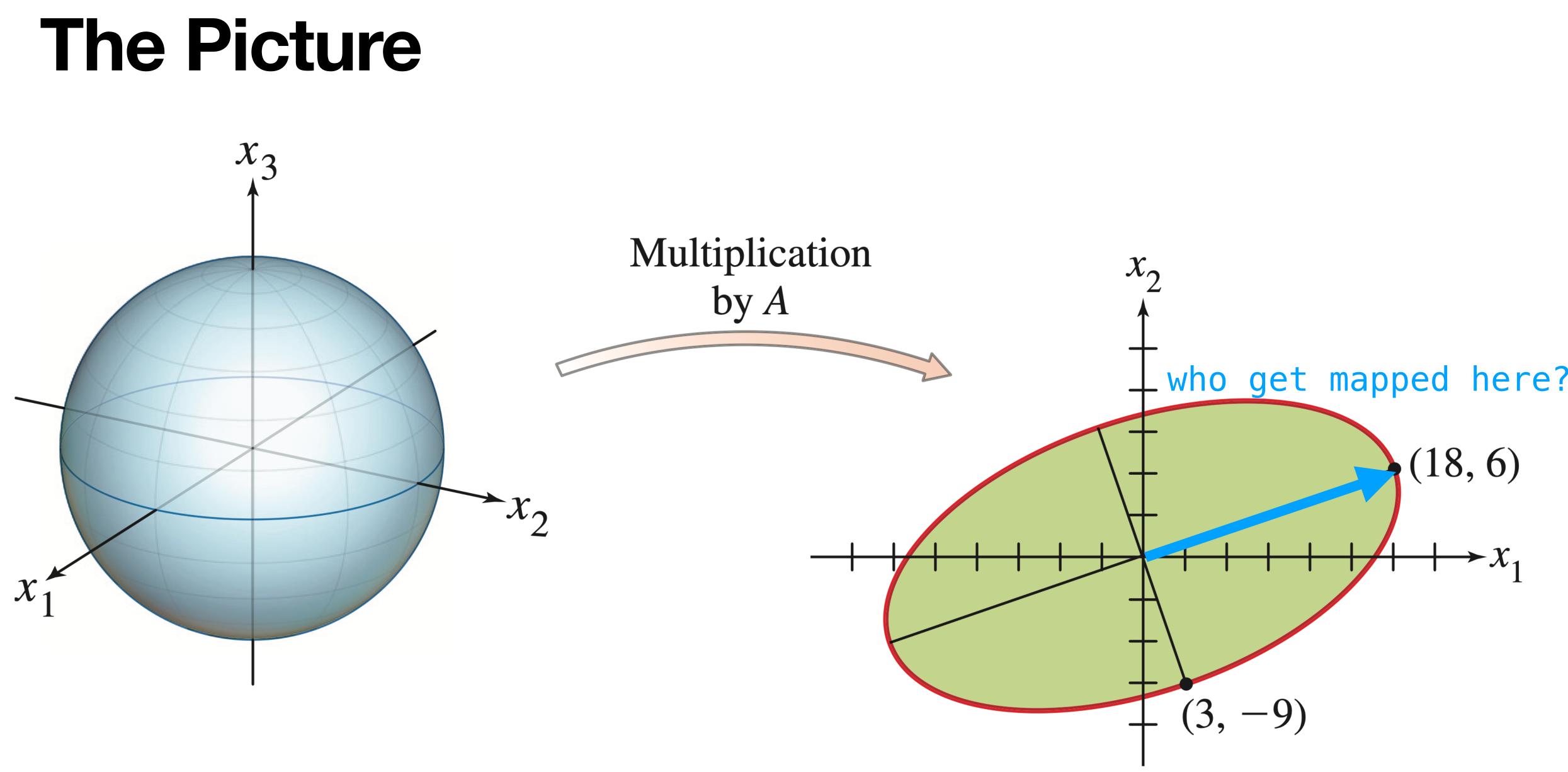
Ellipsoids are spheres "stretched" in orthogonal directions called the axes of symmetry or the principle axes.

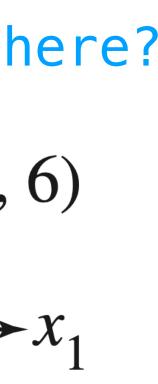
Linear transformations maps <u>spheres</u> to <u>ellipsoids</u>.

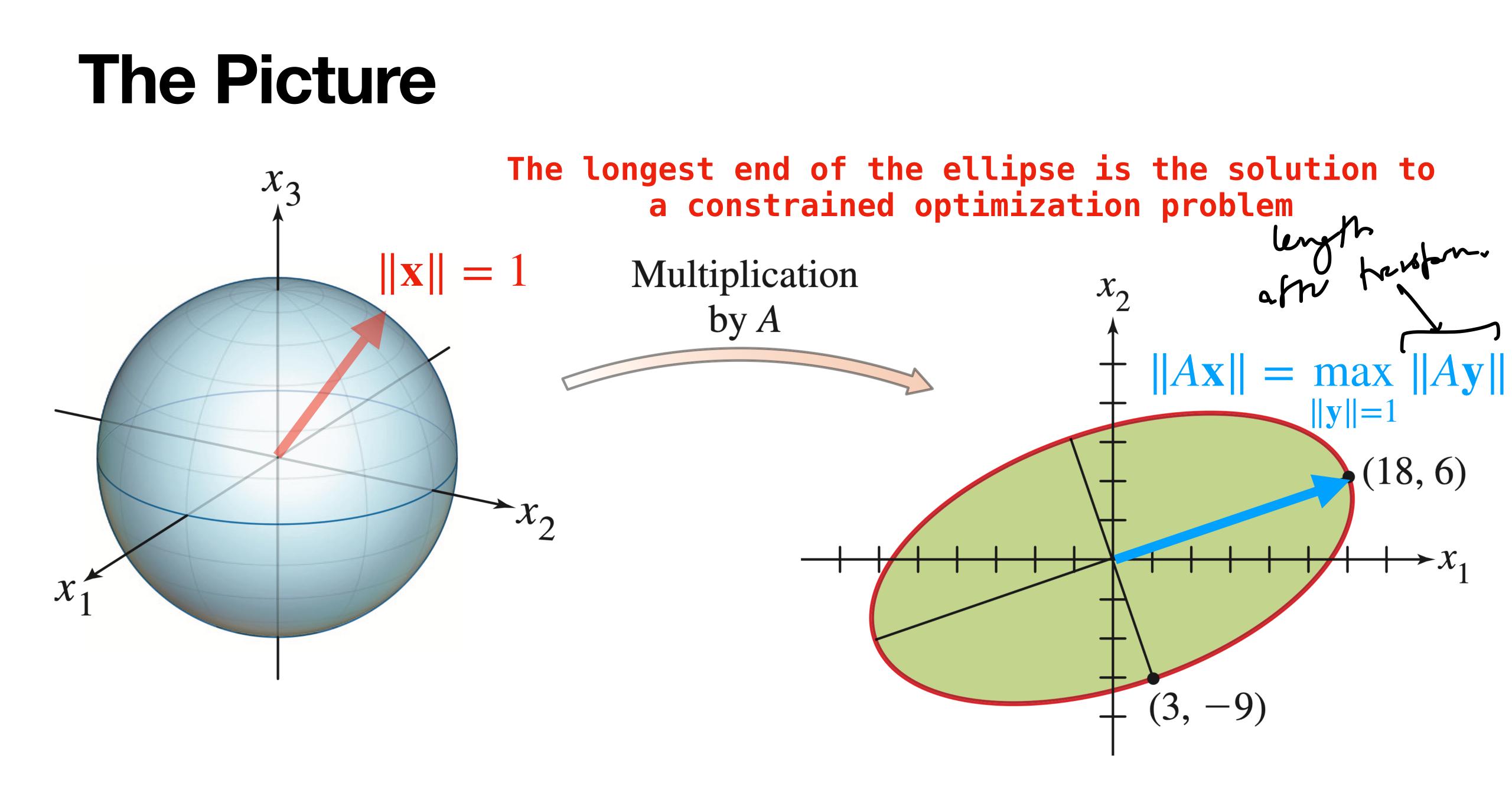




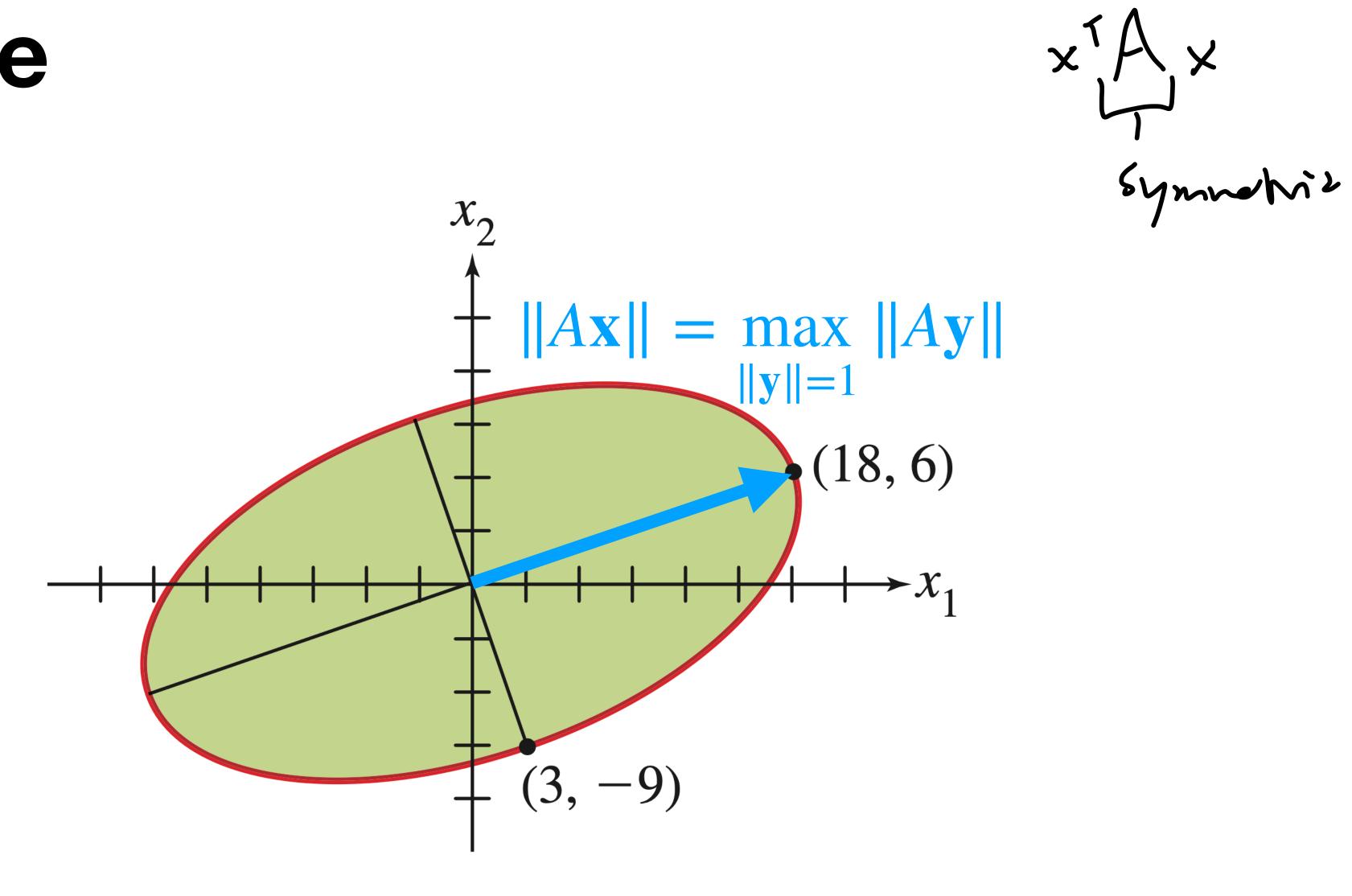






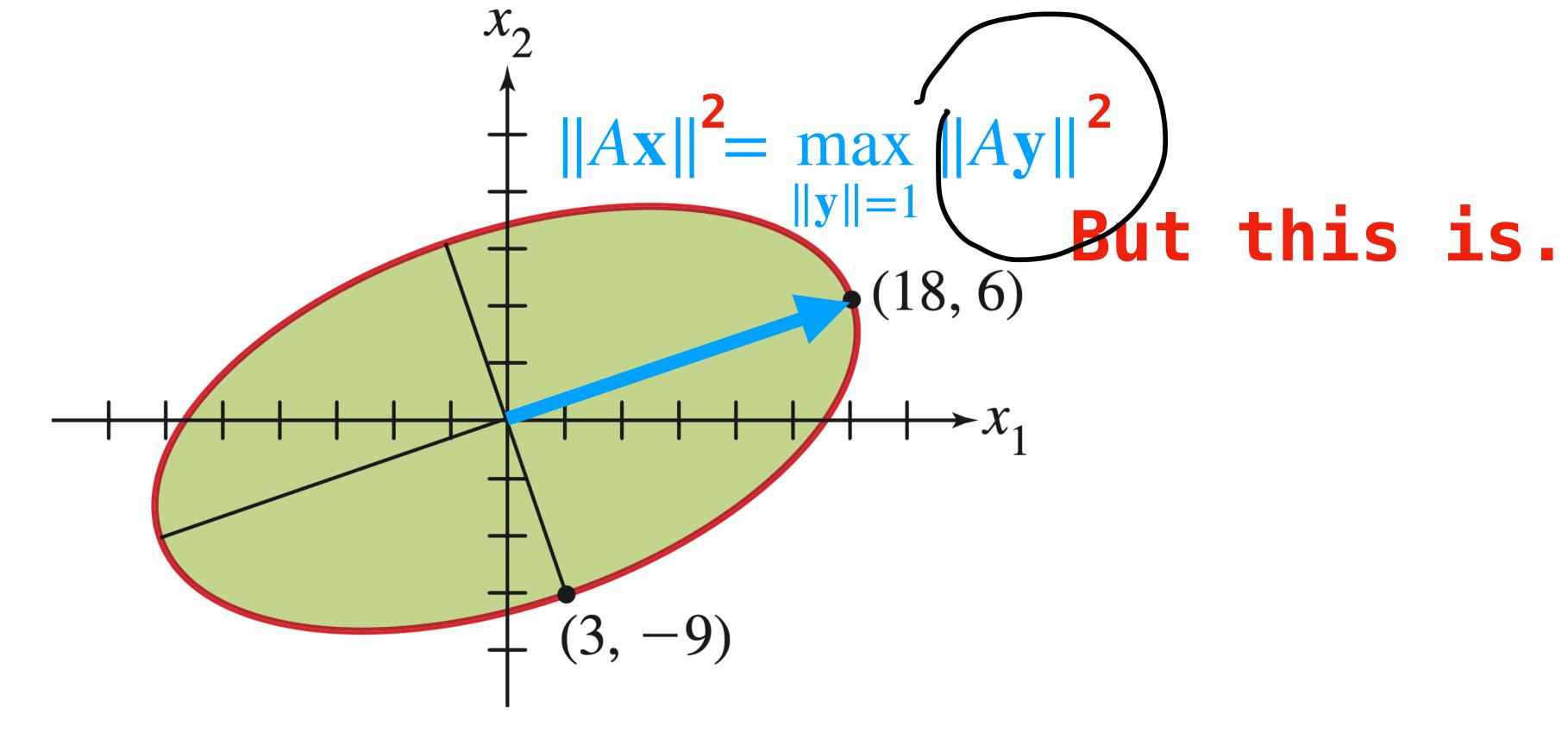


The Picture



This is not a quadratic form...

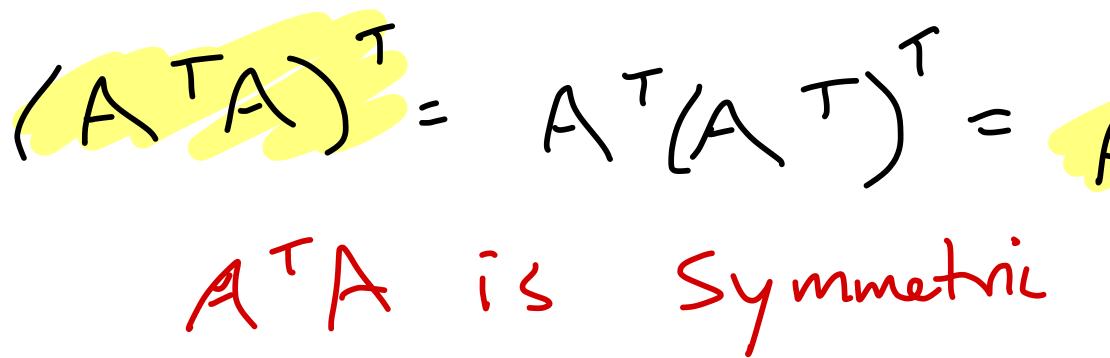
The Picture



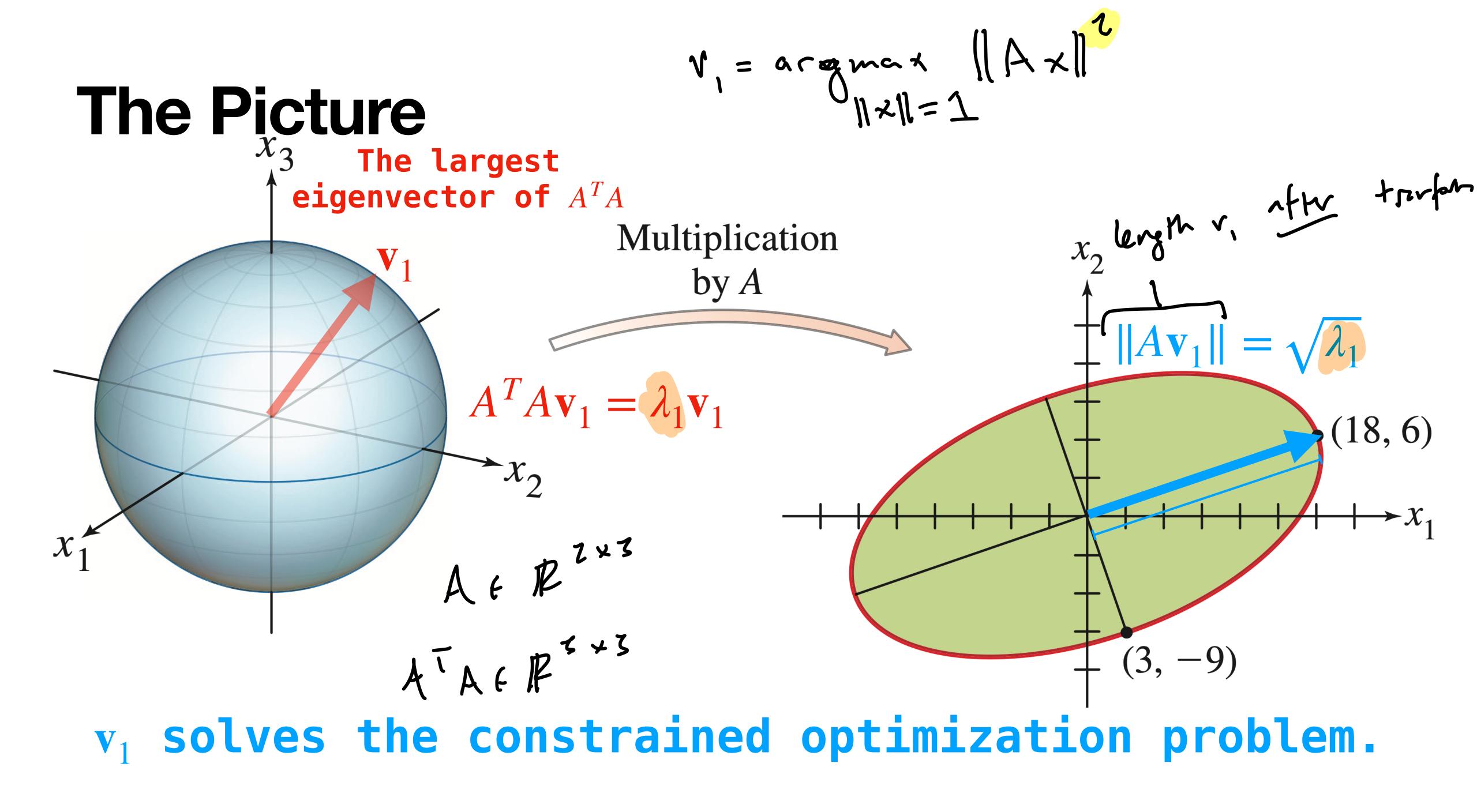
This is not a quadratic form...

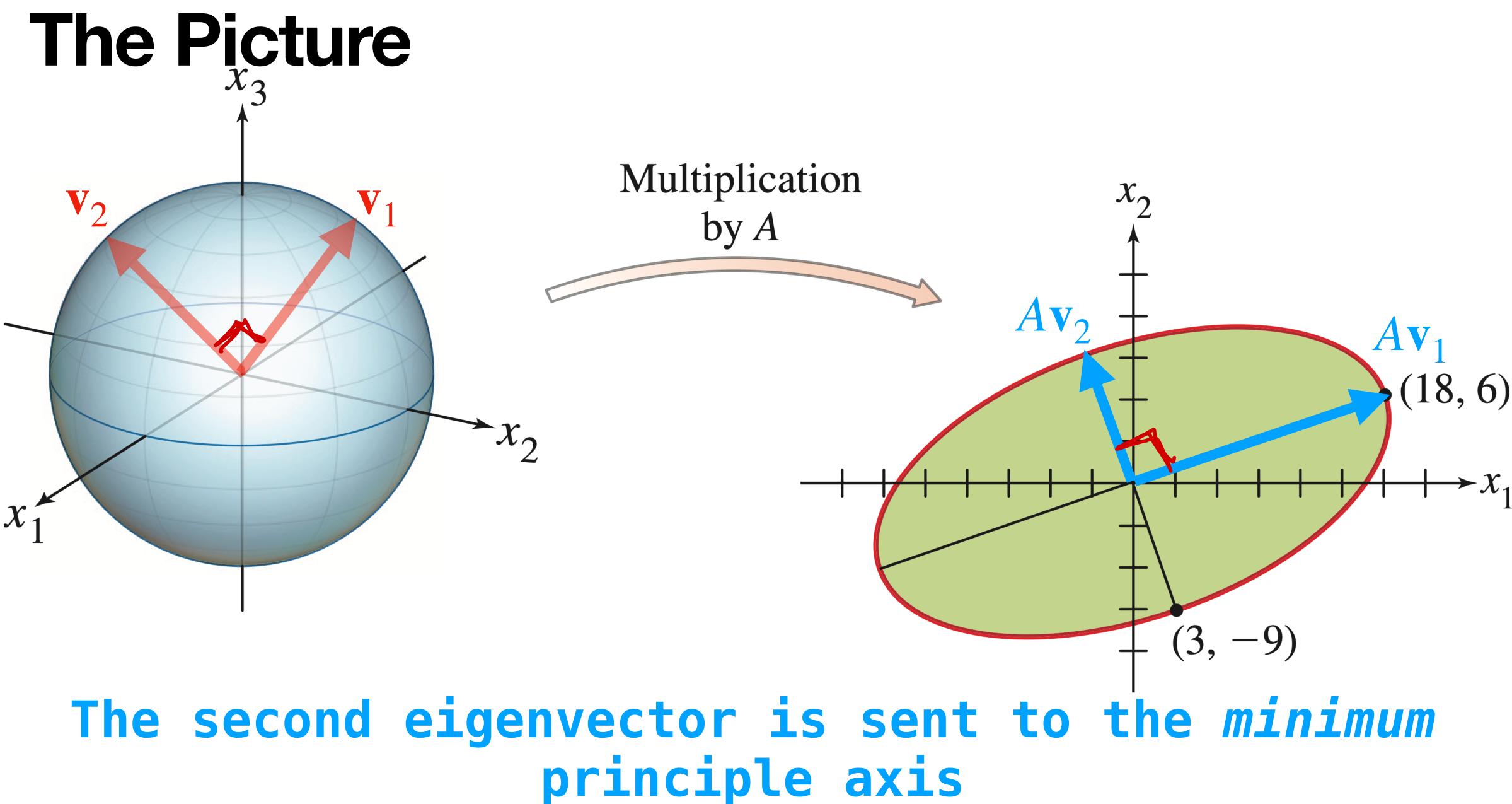
A Quadratic Form

What does $||A\mathbf{x}||^2$ look like?:



 $\|A_{x}\|^{2} = (A_{x}, A_{x}, 7)^{2} = (A_{x}, A_{x}, 7) = (A_{x}, A_{x}, 7)^{2}$ $= \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{T} \mathbf{A} \mathbf{x} = \mathbf{Q}(\mathbf{x}),$ (ATA) = A^T(A^T)^T = A^TA guadratic form





» It's symmetric

- » It's symmetric

othronom » So its orthogonally diagonalizable $A^{T}A = PDP^{T}$ di-gone l

- » It's symmetric
- » So its <u>orthogonally diagonalizable</u>

» There is an orthogonal basis of eigenvectors

- » It's symmetric
- » So its <u>orthogonally diagonalizable</u>
- » It's eigenvalues are nonnegative

» There is an orthogonal basis of eigenvectors

- » It's symmetric
- » So its <u>orthogonally diagonalizable</u>
- » It's eigenvalues are nonnegative
- » It's positive semidefinite

» There is an orthogonal basis of eigenvectors

Suppose $A^{T}A\vec{v} = \lambda \vec{v}$, then $v^{T}A^{T}Av = v^{T}\lambda v = \lambda v^{T}v$ $vorregenerer = \lambda \langle v, v \rangle$ $\|Av\|^{2} = \langle Av, Av \rangle = (Av)^{T}(Av)$ nonnegetie MVII

Singular Values

values of A are the n values

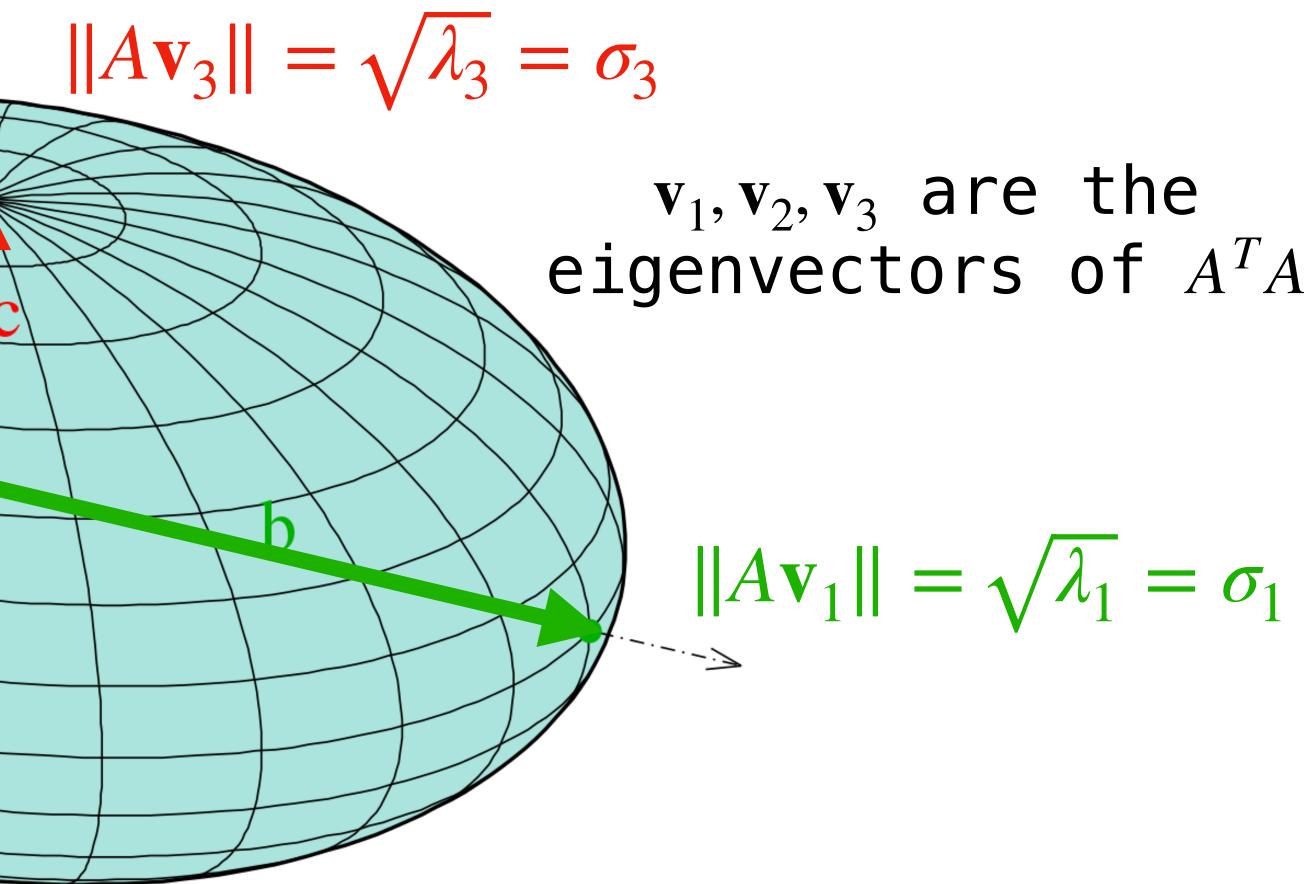
where $\sigma_i = \sqrt{\lambda_i}$ and λ_i is an eigenvalue of $A^T A$.

入; こつ

- **Definition.** For an $m \times n$ matrix A, the singular
 - $\sigma_1 \geq \sigma_2 \dots \geq \sigma_n \geq 0$

Another picture

$\|A\mathbf{v}_2\| = \sqrt{\lambda_2} = \sigma_2 \boldsymbol{\omega}$ The singular values are the <u>lengths</u> of the axes of symmetry of the ellipsoid after transforming the unit sphere.



https://commons.wikimedia.org/wiki/File:Ellipsoide.svg

<u>Every</u> $m \times n$ matrix transforms the unit *m*-sphere into an *n*-ellipsoid

So <u>every</u> $m \times n$ matrix has n singular values

What else can we say?

Let $\mathbf{v}_1, ..., \mathbf{v}_n$ be an **orthogonal** eigenbasis of \mathbb{R}^n for $A^T A$ and suppose A has r <u>nonzero</u> singular values symetric, orth. dieg. **Theorem.** $Av_1, ..., Av_r$ is an orthogonal basis of Col(A)

What else can we say?

Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be an **orthogonal** eigenbasis of \mathbb{R}^n

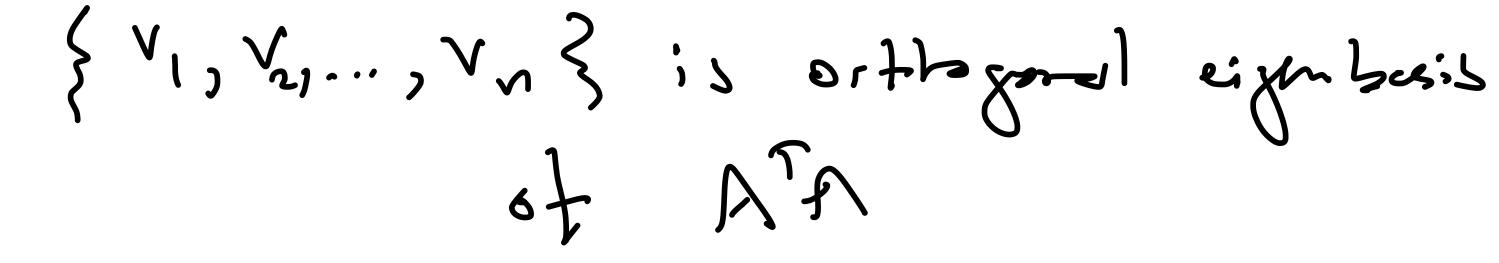
Theorem. $Av_1, ..., Av_r$ is an orthogonal basis of Col(A)

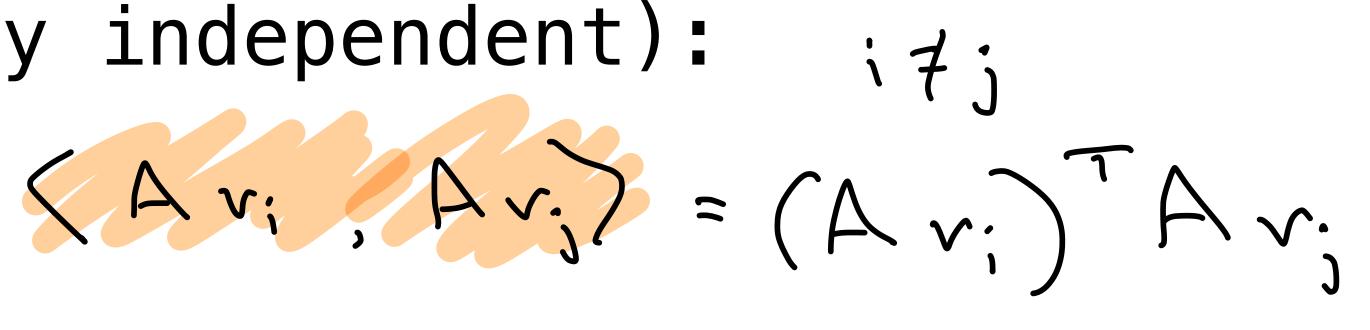
This is the most important theorem for SVD $Av_{k} = 0$ if $\lambda_{k} = 0$ since $||Av_{e}|| = |\lambda_{k}|$

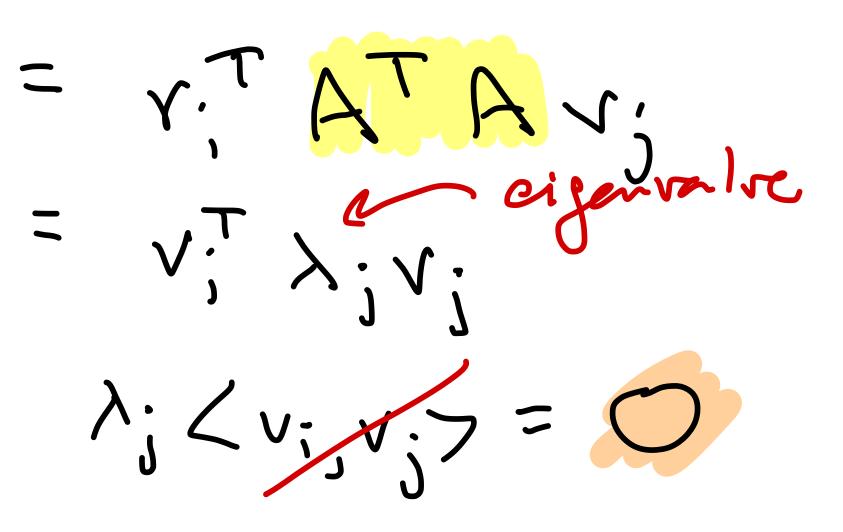
for $A^{T}A$ and suppose A has r <u>nonzero</u> singular values

Verifying it

Let's show Av_1, \ldots, Av_r are orthogonal (and linearly independent):





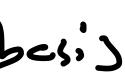


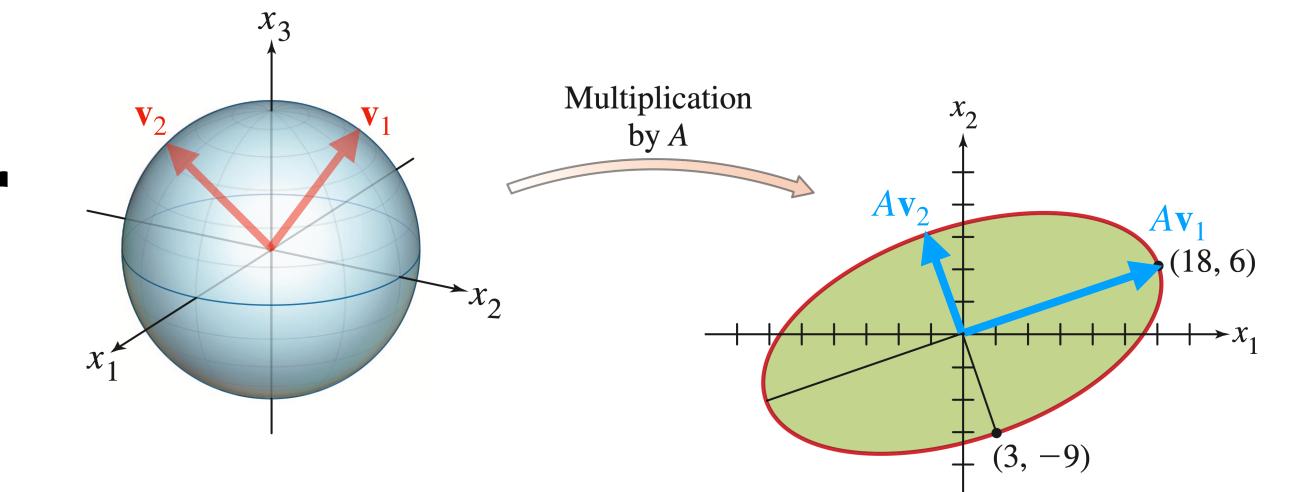
nzn AeR Verifying it

Let's show $Av_1, ..., Av_r$ span Col(A): $\vec{y} \in Col(A) \implies \text{Here is} \quad \vec{y} \leq st. \quad y = A \checkmark$

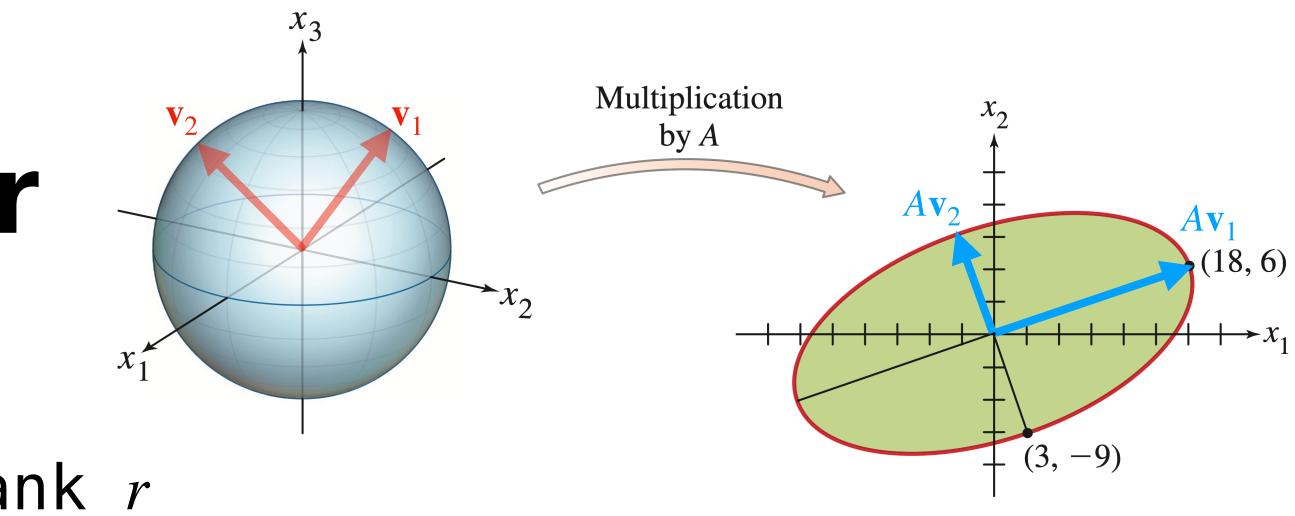
 $\frac{1}{2}$ v, ..., $\frac{1}{2}$ is ort. eig. besis

 $\hat{V} = \sum_{i=1}^{r} d_i V_i$ and $\hat{Y} = A\hat{v} = A\left(\sum_{i=1}^{r} d_i V_i\right) = \sum_{i=1}^{r} d_i Av_i$ $= \sum_{i=1}^{r} \alpha_i A_{V_i} + \sum_{i=1}^{r} \alpha_$ ひょう・・・・ よう

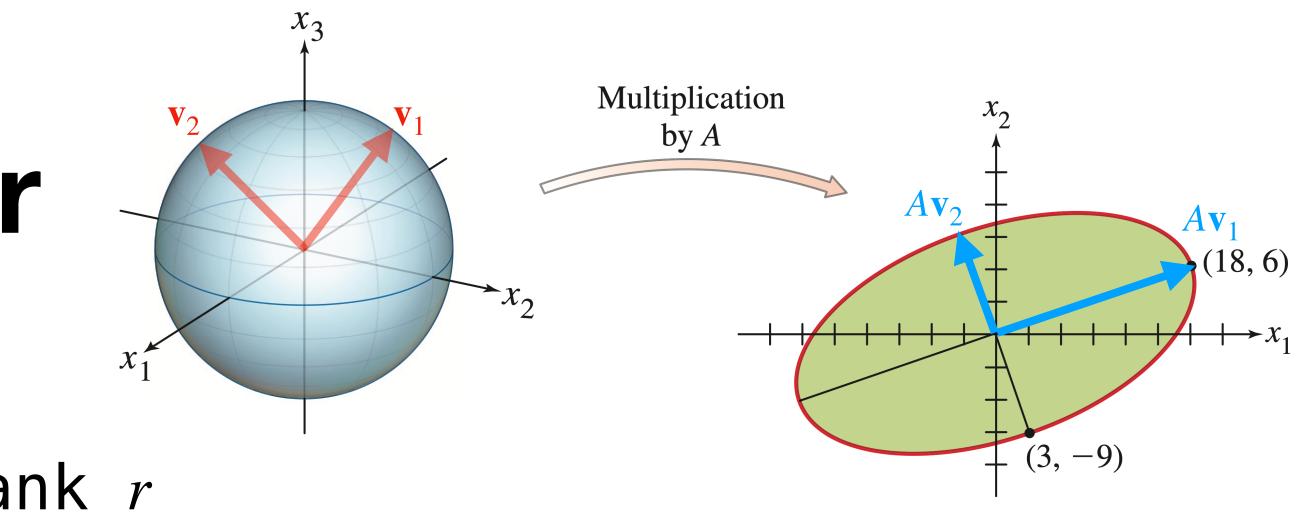




Let A be an $m \times n$ matrix of rank r

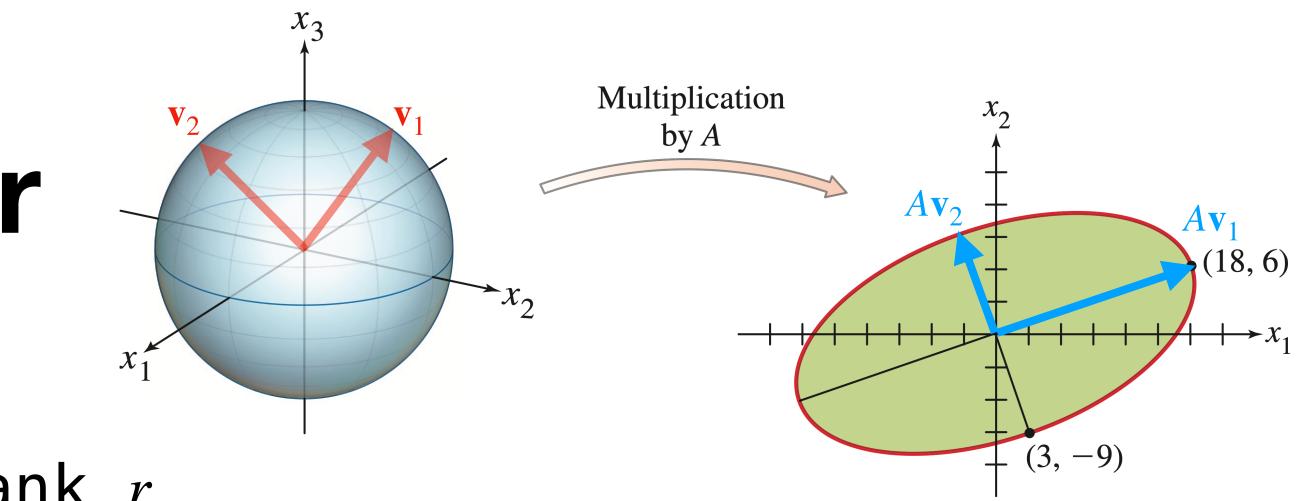


Let A be an $m \times n$ matrix of rank r What we know:



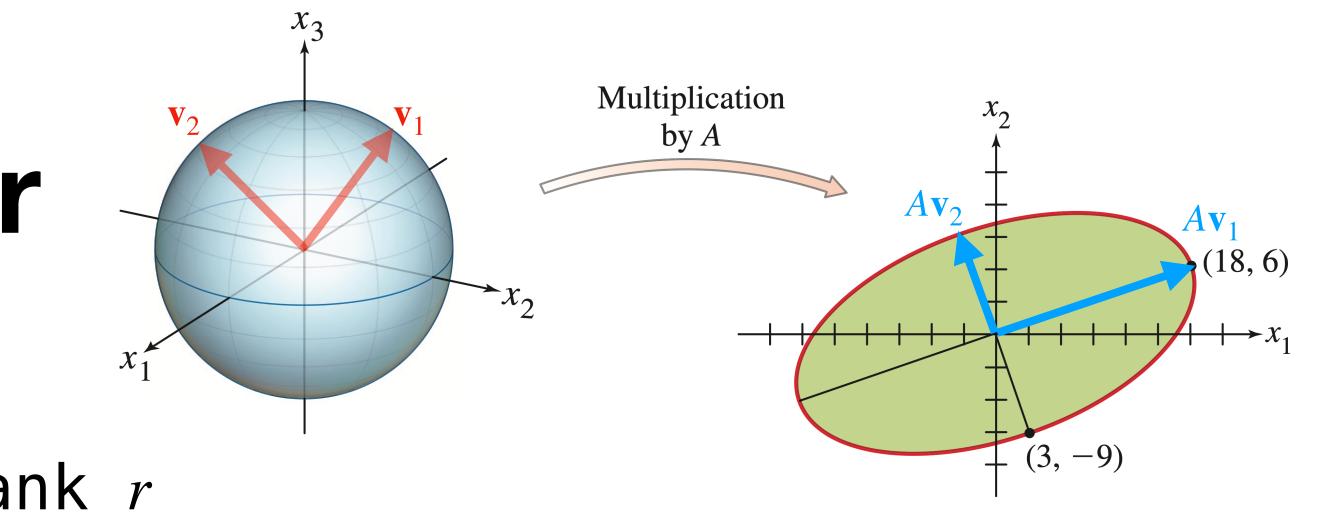
Let A be an $m \times n$ matrix of rank r What we know:

ezenser. of ATA » We can find orthonormal vectors $v_1, ..., v_n$ in \mathbb{R}^n such that $A\mathbf{v}_1, \dots, A\mathbf{v}_r$ in \mathbb{R}^m form an orthogonal basis for Col(A)

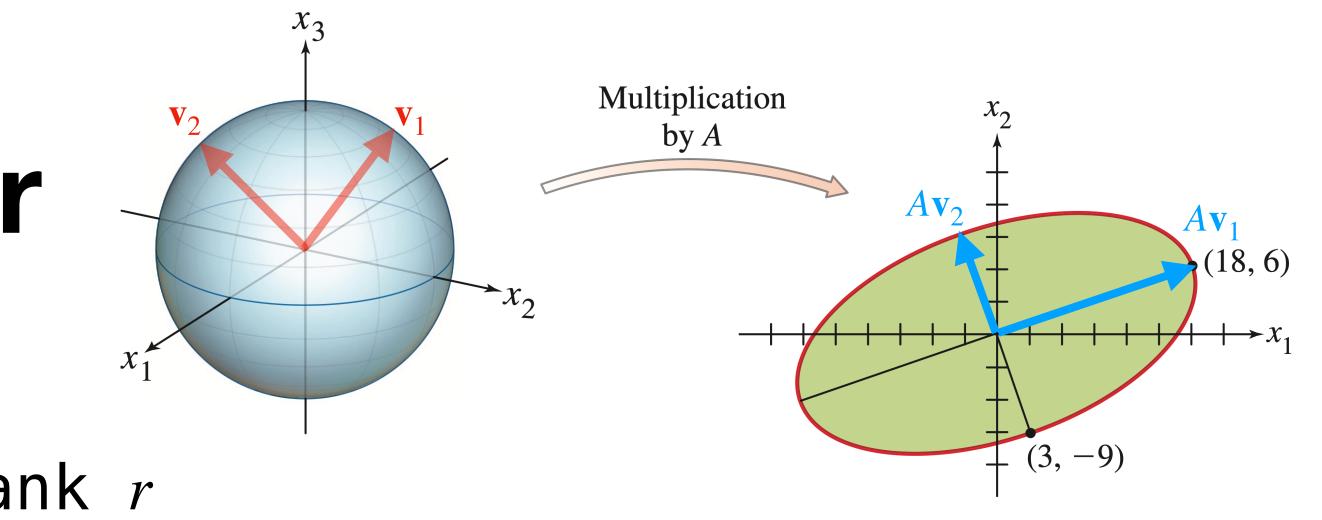


Let A be an $m \times n$ matrix of rank r What we know:

» We can find orthonormal vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ in \mathbb{R}^n such that $A\mathbf{v}_1, \dots, A\mathbf{v}_r$ in \mathbb{R}^m form an orthogonal basis for Col(A)» So if we take $\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$, we get an **orthonormal** basis of Col(A)



- Let A be an $m \times n$ matrix of rank r <u>What we know:</u>
- » We can find orthonormal vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ in \mathbb{R}^n such that $A\mathbf{v}_1, \dots, A\mathbf{v}_r$ in \mathbb{R}^m form an orthogonal basis for Col(A)
- \mathbb{R}^m (via Gram-Schmidt).



» So if we take $\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$, we get an **orthonormal** basis of Col(A)

» And we can extend this to $\mathbf{u}_1, \dots, \mathbf{u}_m$ an orthonormal basis of

Singular Value Decomposition



https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg

The Important Equality

$A\mathbf{v}_i = \|A\mathbf{v}_i\|\mathbf{u}_i = \sigma_i\mathbf{u}_i$

The Important Equality $A\mathbf{v}_i = \|A\mathbf{v}_i\|\mathbf{u}_i = \sigma_i\mathbf{u}_i$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$

The Important Equal $A\mathbf{v}_i = \|A\mathbf{v}_i\|\mathbf{u}_i = \sigma_i\mathbf{u}_i$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||Av_i||$

$$\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|}$$

- What happens when we write this in matrix form?

The Important Equality $A[\mathbf{v}_1 \ldots \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ldots \sigma_n \mathbf{u}_n]$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$.

The Important Equality $A[\mathbf{v}_1 \ldots \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ldots \sigma_n \mathbf{u}_n]$

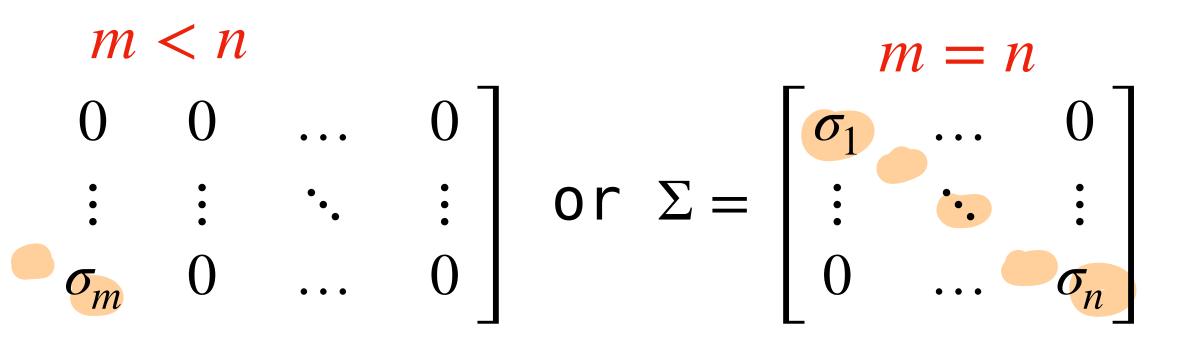
Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$. Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and

The Important Equality

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||Av_i||$. Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and

m > n $\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ \vdots & \ddots & \vdots \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$

$A[\mathbf{v}_1 \dots \mathbf{v}_n] = [\boldsymbol{\sigma}_1 \mathbf{u}_1 \dots \boldsymbol{\sigma}_n \mathbf{u}_n]$



The Important Equality $A[\mathbf{v}_1 \dots \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \dots \sigma_n \mathbf{u}_n]$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||Av_i||$. Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and $\begin{array}{c|c} m > n \\ \hline \sigma_1 & \dots & 0 \end{array}$

$$\Sigma = \begin{vmatrix} \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{vmatrix} \quad \text{or } \Sigma = \begin{bmatrix} \sigma_1 & \dots \\ \vdots & \ddots \\ 0 & \dots \\ 0 & \dots \end{vmatrix}$$

remember: U is orthonormal

m < n $\begin{bmatrix} 0 & \dots & \sigma_n \end{bmatrix}$ $\sigma_m \quad 0 \quad \dots \quad 0$

The Important Equality $AV = U\Sigma$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$. Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and m > n

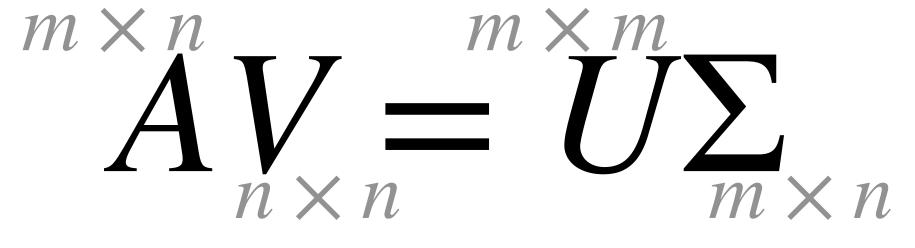
 $\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$

- remember: U is orthonormal

The Important Equality

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$. Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and m > n

 $\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$



- remember: U is orthonormal

The Important Equality $AVV^{I} = U\Sigma V^{I}$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$. Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and m > n

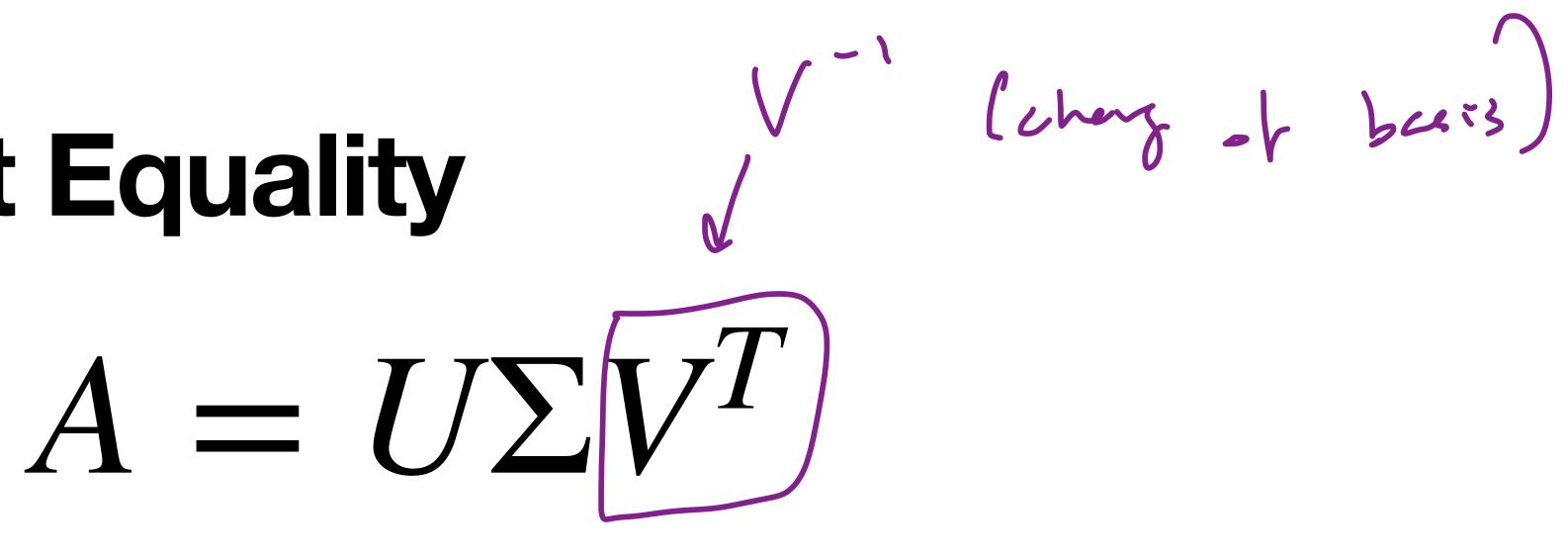
 $\Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_m & 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n \end{bmatrix}$

- remember: U is orthonormal

The Important Equality

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||Av_i||$. Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and m > n $\Gamma_{-} \qquad \cap \overline{1}$

$$\Sigma = \begin{bmatrix} \sigma_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{n} \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_{1} & \dots \\ \vdots & \ddots \\ 0 & \dots \end{bmatrix}$$



- remember: U is orthonormal
 - m < nm = n $\begin{bmatrix} 0 & \dots & \sigma_n \end{bmatrix}$ $\sigma_m \quad 0 \quad \dots \quad 0$

The Important Equality singular value decomposition $A = U\Sigma V^T$

Remember that $\sigma_i = \sqrt{\lambda_i}$ is the singular value, which is the length $||A\mathbf{v}_i||$. Let's take $V = [\mathbf{v}_1 \dots \mathbf{v}_n]$ and $U = [\mathbf{u}_1 \dots \mathbf{u}_m]$ and m > n $\lceil \sigma_1 \rangle = 0 \rceil$

$$\Sigma = \begin{bmatrix} \sigma_1 & \cdots & \sigma_n \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_n \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \text{ or } \Sigma = \begin{bmatrix} \sigma_1 & \cdots \\ \vdots & \ddots \\ 0 & \cdots \\ 0 & \cdots \end{bmatrix}$$

- remember: U is orthonormal
 - m < nm = n $\sigma_m \quad 0 \quad \dots \quad 0 \quad 0 \quad \dots \quad \sigma_n$

Singular Value Decomposition

Theorem. For a $m \times n$ matrix A, there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

where diagonal entries* of Σ are $\sigma_1, \ldots, \sigma_n$ the singular values of A.

* these are diagonal entries in a <u>non-square</u> matrix.

 $m \times m$ $n \times n$ $A = U \Sigma V^T$

Singular Value Decomposition

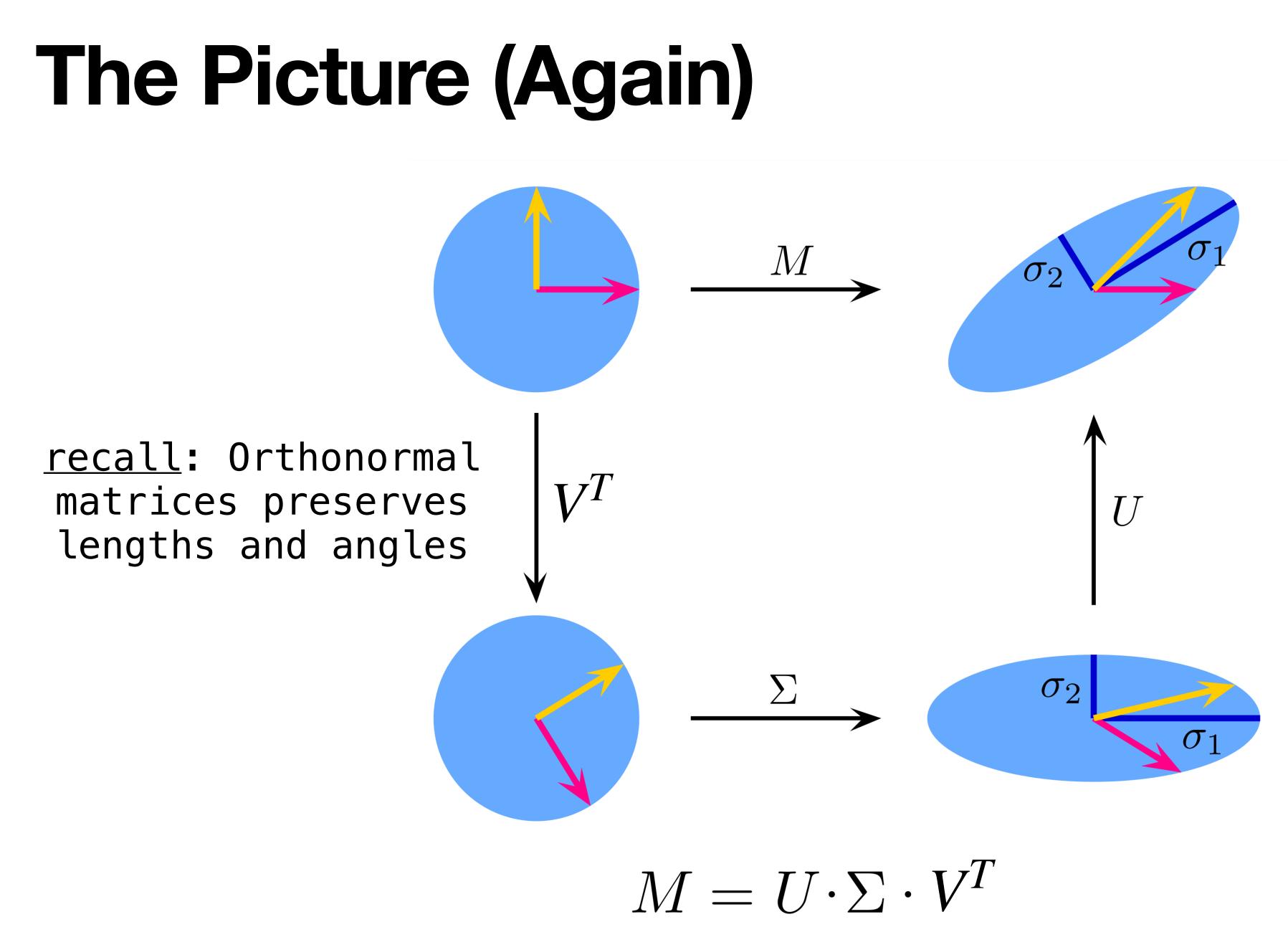
Theorem. For a $m \times n$ matrix A, there are orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that

where diagonal entries* of Σ are $\sigma_1, \ldots, \sigma_n$ the singular values of A.

* these are diagonal entries in a <u>non-square</u> matrix.

left singular vectors right singular vectors

 $n \times n$ $m \times m$ $A = U \sum V^T$



https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg

How To: Finding a SVD

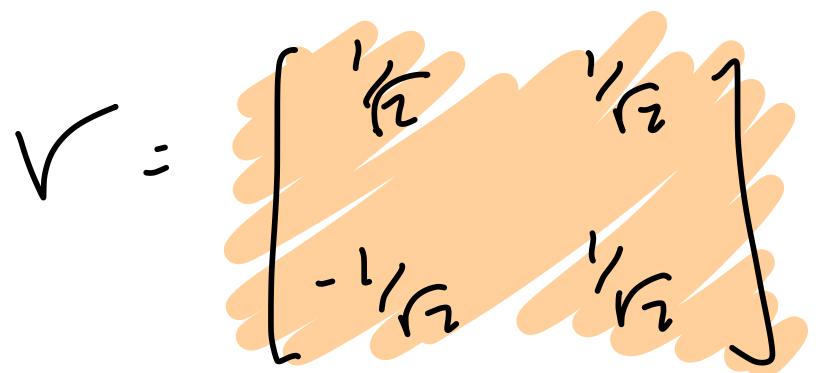
Step 1: Set up Σ

eigenvalues of $A^T A$ (or $A A^T$): $A^{T}A^{=} \begin{bmatrix} 1 & -7 & 7 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 9 - 9 \\ -9 & 9 \end{bmatrix}$ $\begin{bmatrix} -9 & 9 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} -7 & 2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} -9 & 9 \\ -9 & 9 \end{bmatrix}$

At
$$\mathbb{R}^{n \times n}$$
 then $\mathbb{Z} \times \mathbb{R}^{n \times n} \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -1 \end{bmatrix}$

The singular values are the square roots of the $det(A - \lambda I) = (\lambda - q)^{2} - 8I = \lambda^{2} - 8\lambda = \lambda(\lambda - 18) \quad \lambda = 0, 18$

Step 2: Set up V

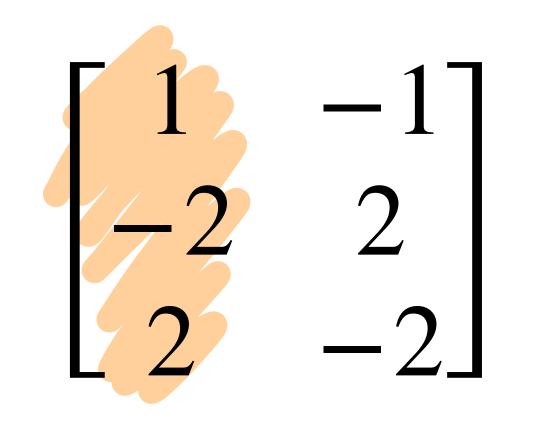


 $\begin{vmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{vmatrix}$ Find an orthonormal eigenbasis for $A^T A$: $A^{T}A = \begin{bmatrix} G & -G \\ -g & G \end{bmatrix} A^{T}A - 18T = \begin{bmatrix} -G & -g \\ -g & -g \end{bmatrix} \wedge \begin{bmatrix} I & I \\ 0 \end{bmatrix} \begin{bmatrix} I \\ I \\ I \end{bmatrix} \begin{bmatrix} I'_{A} \\ -I'_{A} \end{bmatrix}$ $A^{T}A - O J \land \begin{pmatrix} I - I \\ 0 & 0 \end{pmatrix} \vec{v}_{1} = \begin{pmatrix} i \\ i \\ i \\ i \end{pmatrix} \min_{i}$ ||(-',]||

Step 3: Set up U (Part 1)

If $\mathbf{v}_1, \dots, \mathbf{v}_n$ is an eigenbasis of \mathbb{R}^n (in decreasing order of made the first r columns of U:

$$\vec{u}_{1} = \frac{A\vec{v}_{1}}{\|A\vec{v}_{1}\|} \qquad A\left[-1\right] = \\ \|A\vec{v}_{1}\| \\ \vec{u}_{1} = \left\{\begin{array}{c} 1/3\\ -1/3\\ -1/3\\ 2/3\end{array}\right\} = \left\{\begin{array}{c} -2\\ -2\\ 1\\ -2\\ 2\end{array}\right\} \\ \left\|\left(-2\\ 2\end{array}\right)\right\|$$

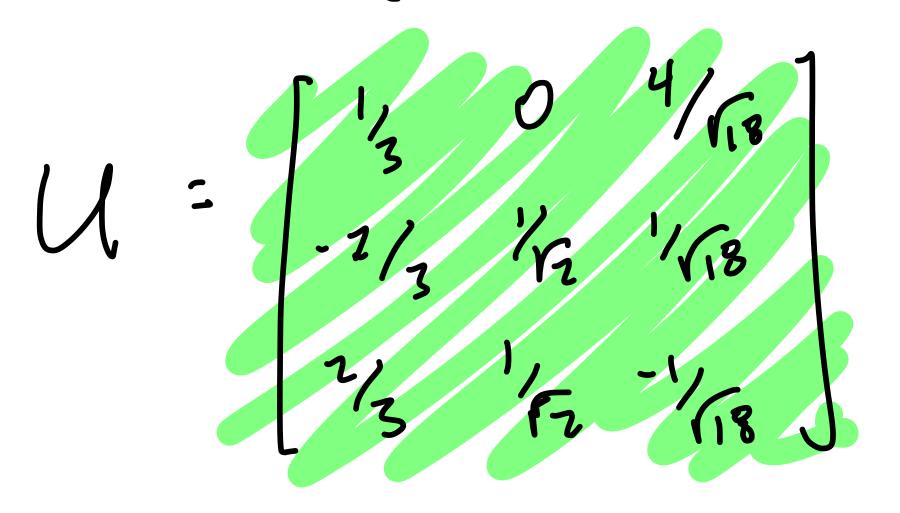


eigenvalue), then Av_1, \dots, Av_r is an eigenbasis of Col(A) (where r is the rank of A). These vectors can be normalized and

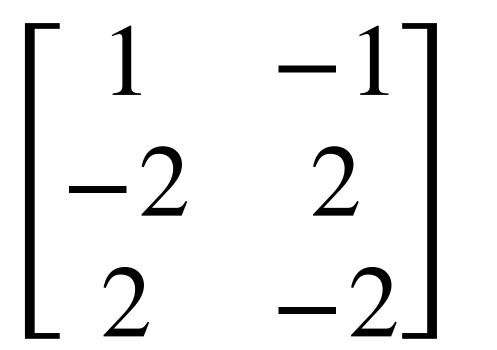
$$\begin{bmatrix} 2 \\ -4 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -2 \\ -2 \\ -2 \end{bmatrix}$$

Step 4: Set up U (Part 2)

If m > r, then extend $\mathbf{u}_1, \dots, \mathbf{u}_r$ until it has m orthonormal vectors: $u_{1} = \frac{1}{3} \begin{bmatrix} 1\\ -2 \end{bmatrix}$

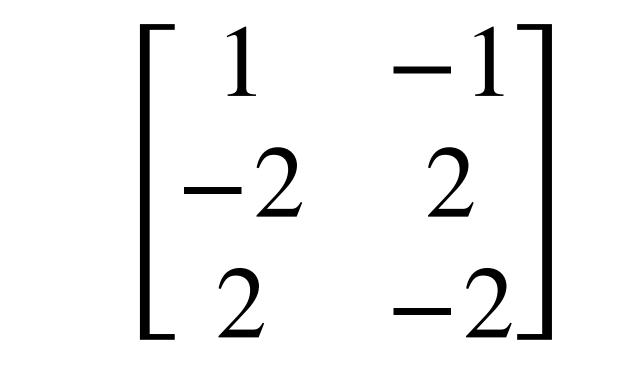


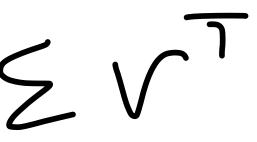
 $\left(\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \left(\begin{array}{c} x \\ +1 \\ +1 \end{bmatrix} \right) = x - 2y + 2z = 0$



Step 5: Put everything together

A=UEVT





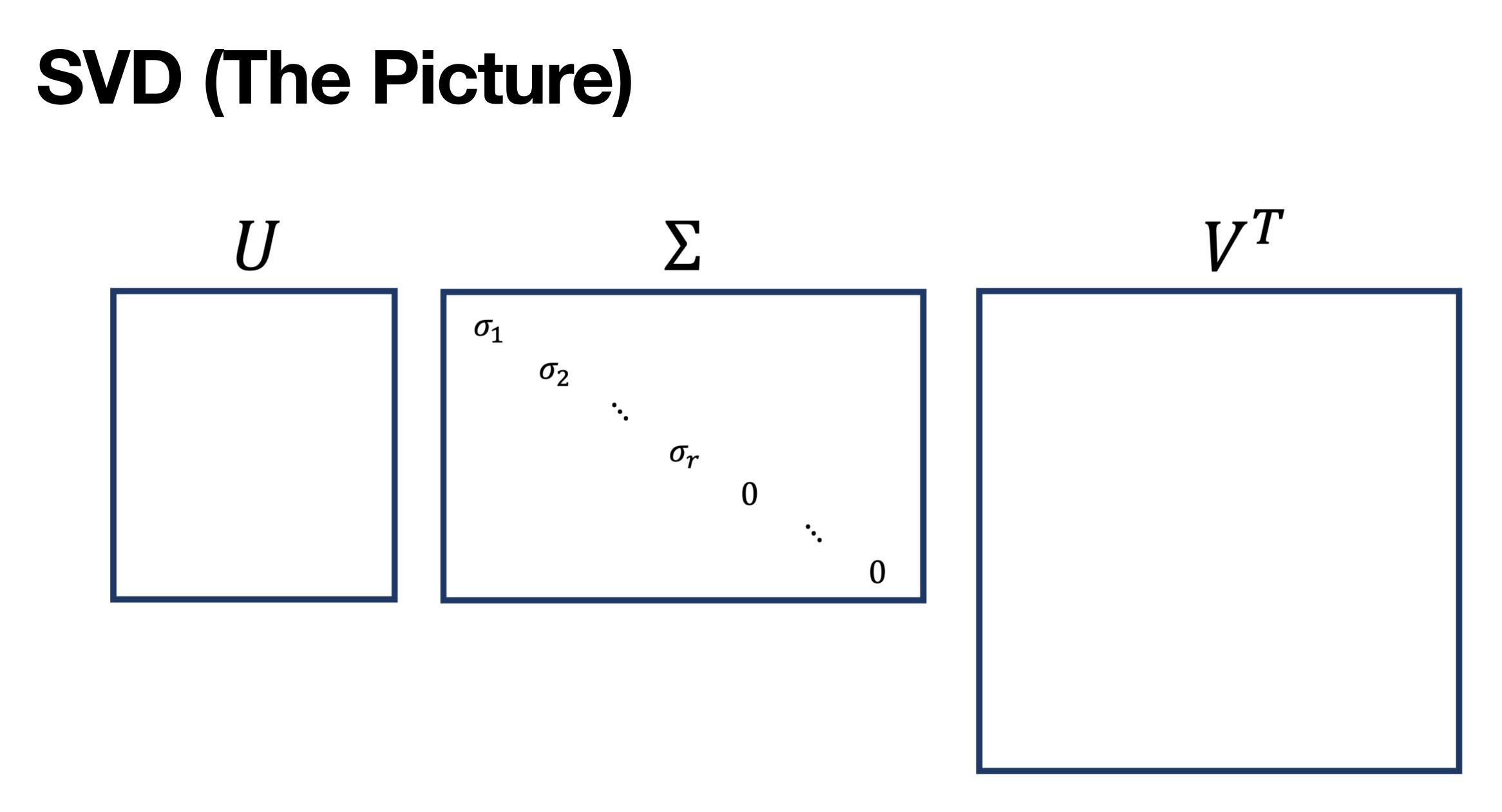
SVD in NumPy

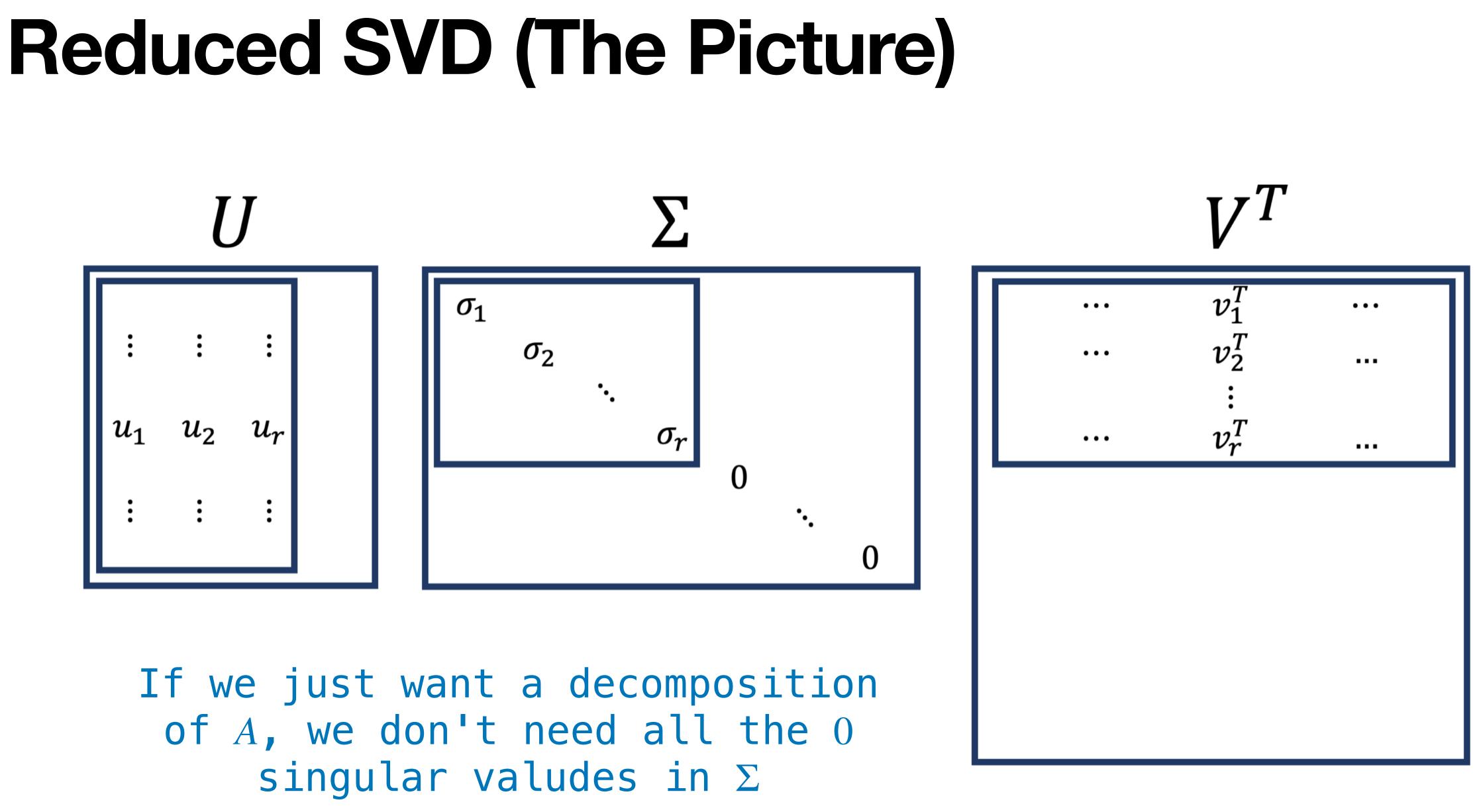
In reality, we will almost never build SVDs by hand. We can use:

Let's do a quick demo...

numpy.linalg.svd

Pseudoinverses





The Reduced SVD

<u>Theorem.</u> For every matrix A of rank r, there is an orthonormal matrix $U \in \mathbb{R}^{m \times r}$, a diagonal matrix $\Sigma \in \mathbb{R}^{r \times r}$ with **positive** entries on the diagonal, and an orthonormal matrix $V \in \mathbb{R}^{n \times r}$ such that

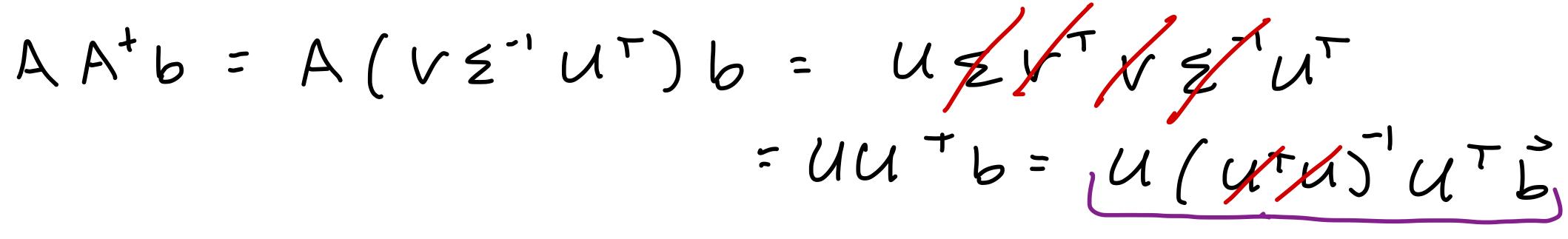
 $A = U\Sigma V^T$

The Pseudoinverse

Definition. Given a reduced SVD $A = U\Sigma V^T$, the pseudoinverse of A is $A^+ = V\Sigma^{-1}U^T$

<u>Theorem.</u> A⁺b is the minimum length least squares solution of Ax = b

(in Python we have numpy.linalg.pinv) prj Collar



linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector *x* that approximately solves the equation **a** @ x = b. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of *a* can be less than, equal to, or greater than its number of linearly independent columns). If *a* is square and of full rank, then *x* (but for round-off error) is the "exact" solution of the equation. Else, *x* minimizes the Euclidean 2-norm ||b - ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If *b* is two-dimensional, the least-squares solution is calculated for each of the *K* columns of *b*.

rcond : float. optional

[source]

linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector *x* that approximately solves the equation **a** (a = b. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of *a* can be less than, equal to, or greater than its number of linearly independent columns). If *a* is square and of full rank, then *x* (but for round-off error) is the "exact" solution of the equation. Else, *x* minimizes the Euclidean 2-norm ||b - ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If *b* is two-dimensional, the least-squares solution is calculated for each of the *K* columns of *b*.

rcond : float. optional

[source]

NumPy chooses the shortest vector

linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation $a \neq x = b$. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm ||b - ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If b is two-dimensional, the least-squares solution is calculated for each of the K columns of b.

rcond : float. optional

[source]

NumPy chooses the shortest vector (why?...)

linalg.lstsq(a, b, rcond='warn')

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equation $a \neq x = b$. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than, equal to, or greater than its number of linearly independent columns). If a is square and of full rank, then x (but for round-off error) is the "exact" solution of the equation. Else, x minimizes the Euclidean 2-norm ||b - ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is returned.

Parameters: a : (M, N) array_like

"Coefficient" matrix.

b : {(M,), (M, K)} array_like

Ordinate or "dependent variable" values. If b is two-dimensional, the least-squares solution is calculated for each of the K columns of b.

rcond : float. optional

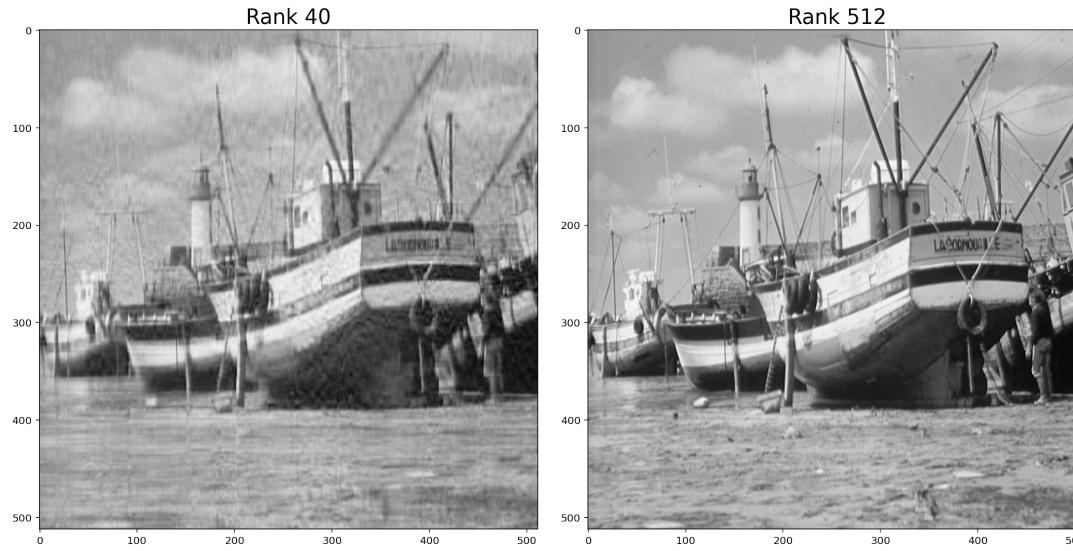
[source]

NumPy chooses the shortest vector (why?...)

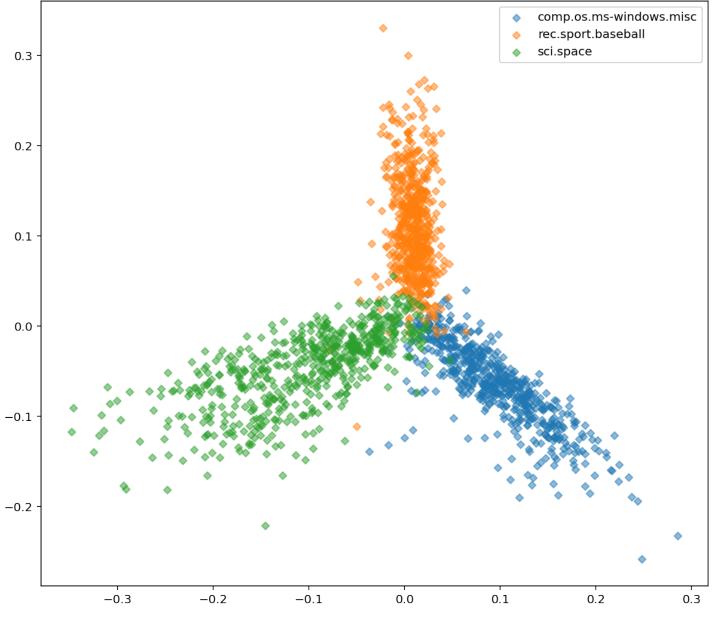
because they use SVD!

What's next? A couple final thoughts

image compression

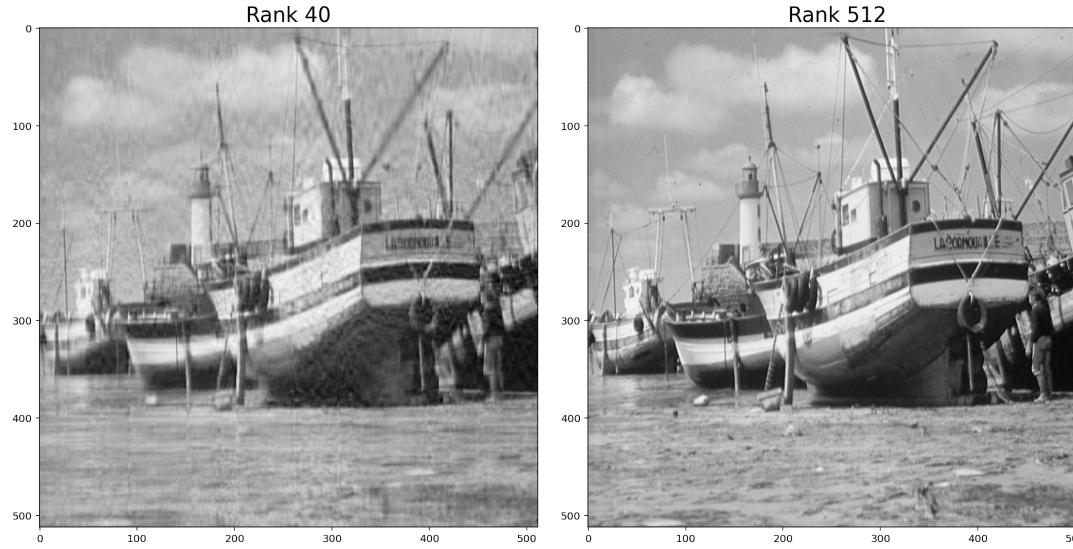


2D PCA Visualization Labeled with Document Source

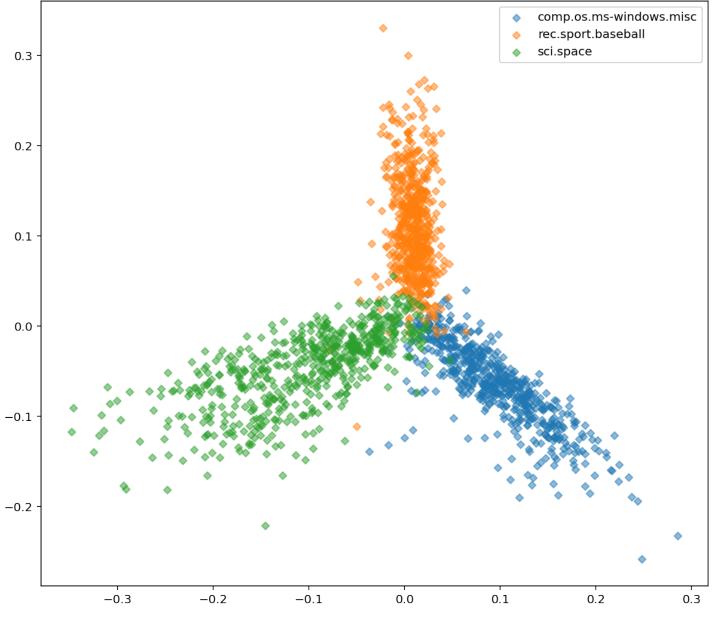


• Reduced SVD, pseudoinverses and least squares

image compression

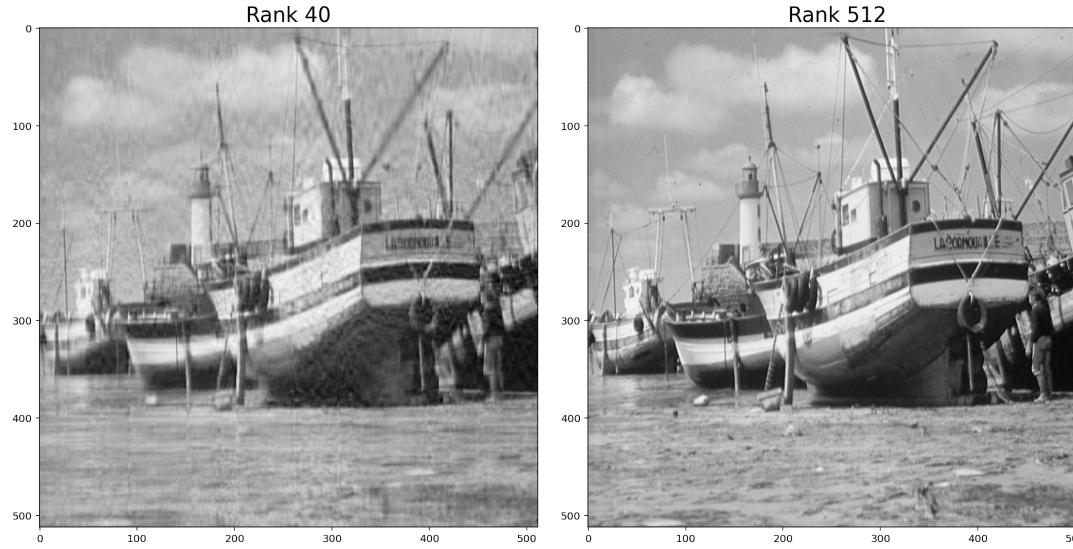


2D PCA Visualization Labeled with Document Source

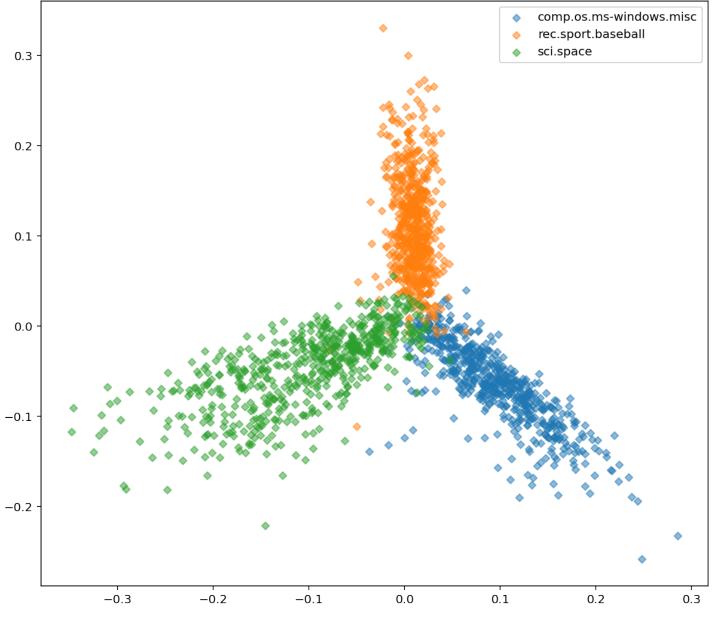


- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V\Sigma^{-1}U^T$, then $A^+\mathbf{b}$ is a least squares solution of minimum length

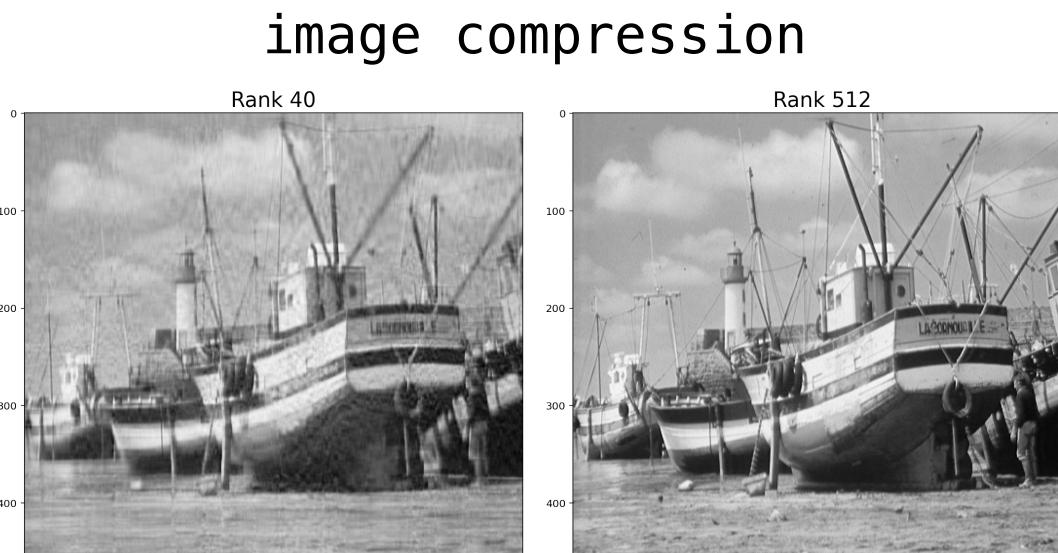
image compression



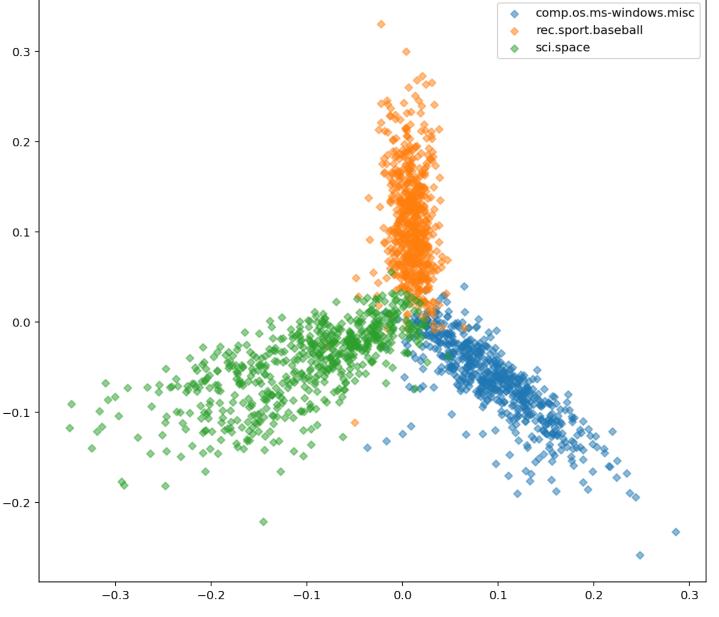
2D PCA Visualization Labeled with Document Source



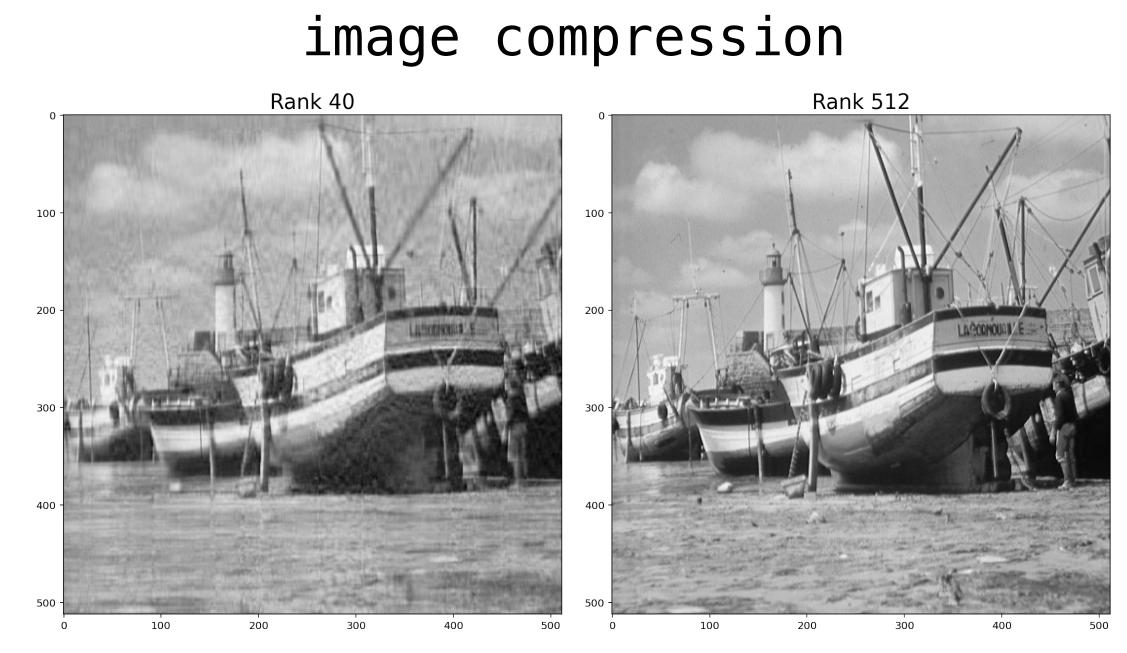
- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V\Sigma^{-1}U^T$, then $A^+\mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression



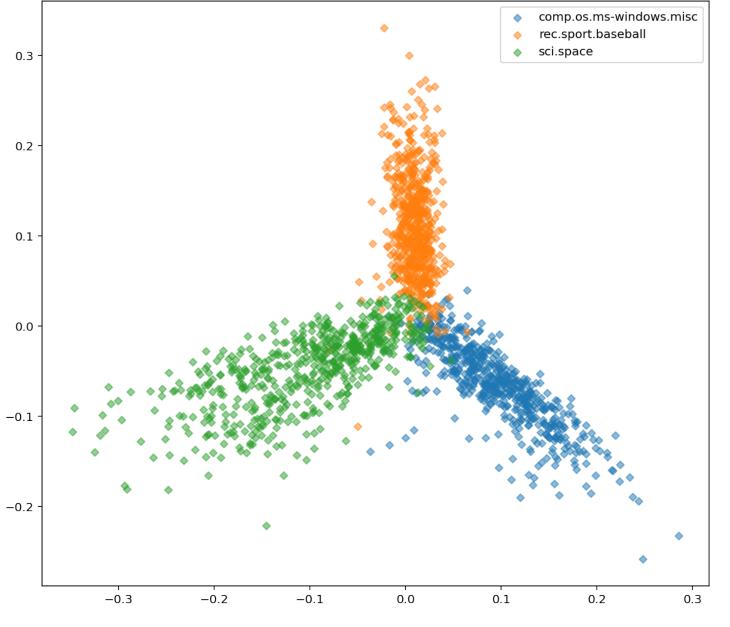
2D PCA Visualization Labeled with Document Source



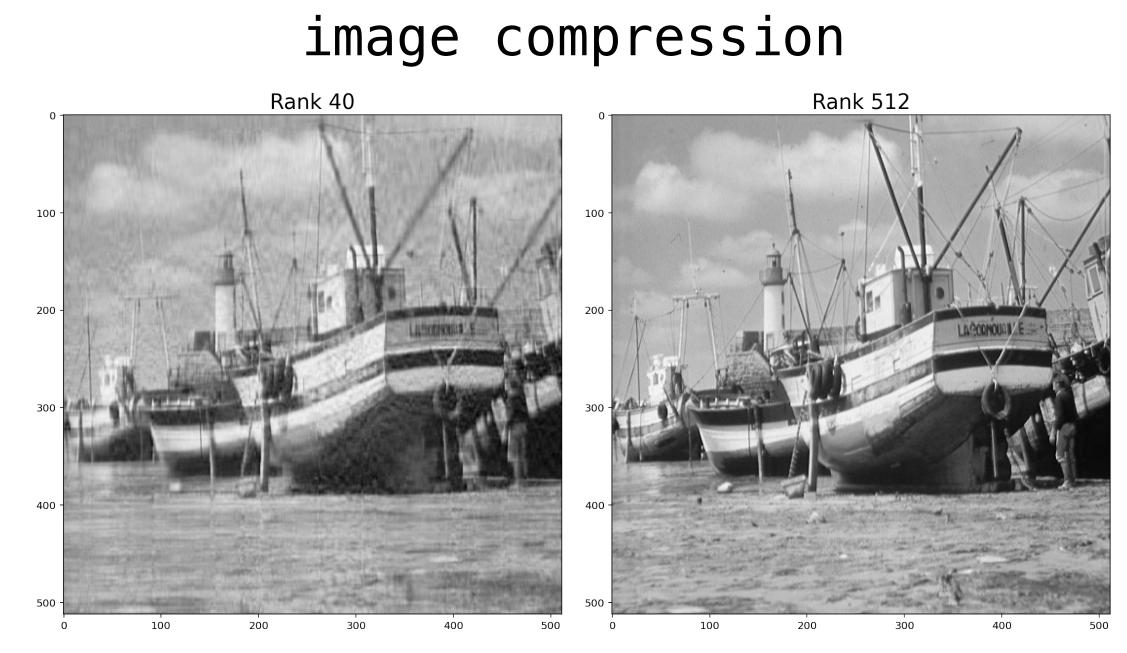
- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V\Sigma^{-1}U^T$, then $A^+\mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A_{\bullet}



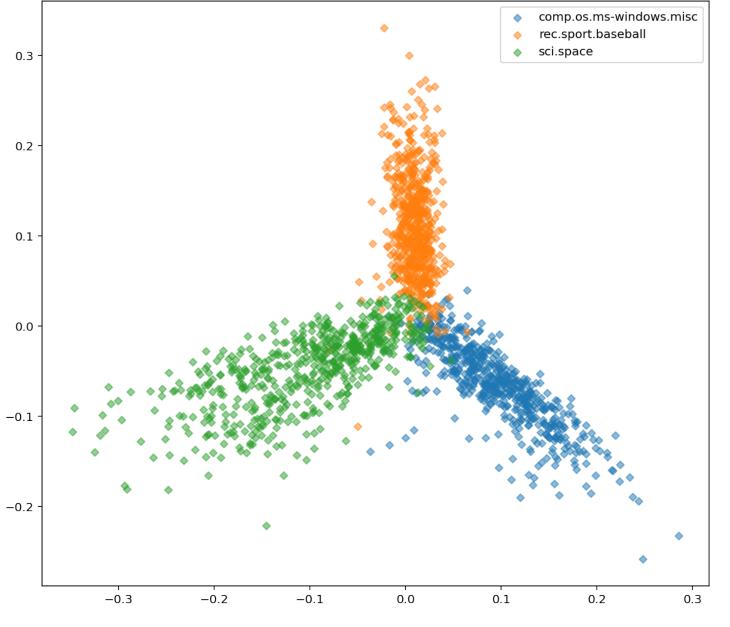
2D PCA Visualization Labeled with Document Source



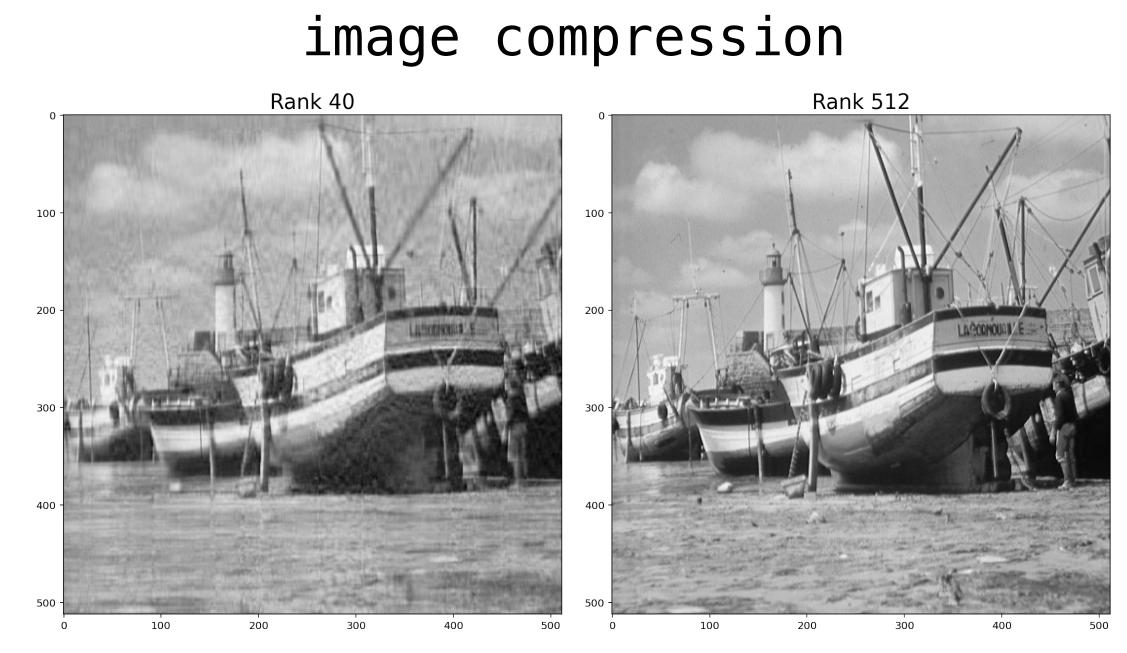
- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V\Sigma^{-1}U^T$, then $A^+\mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A_{\bullet}
 - This is used for image compression



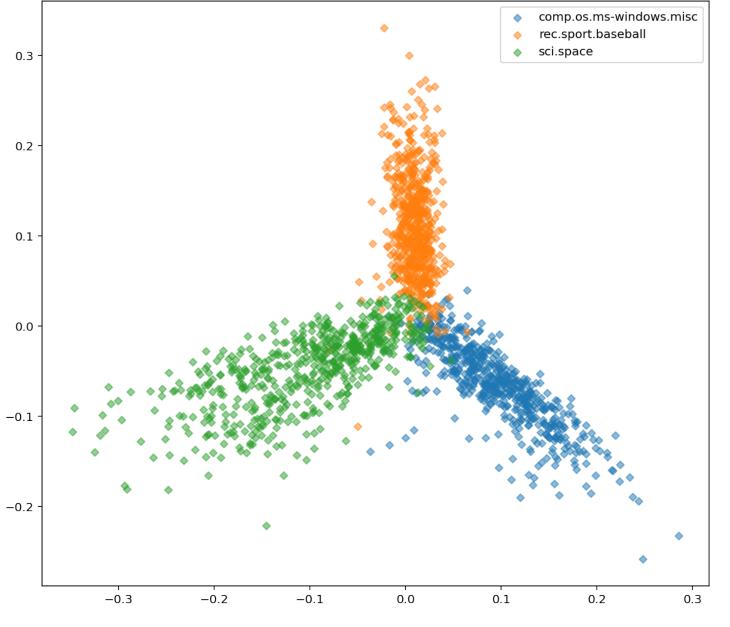
2D PCA Visualization Labeled with Document Source



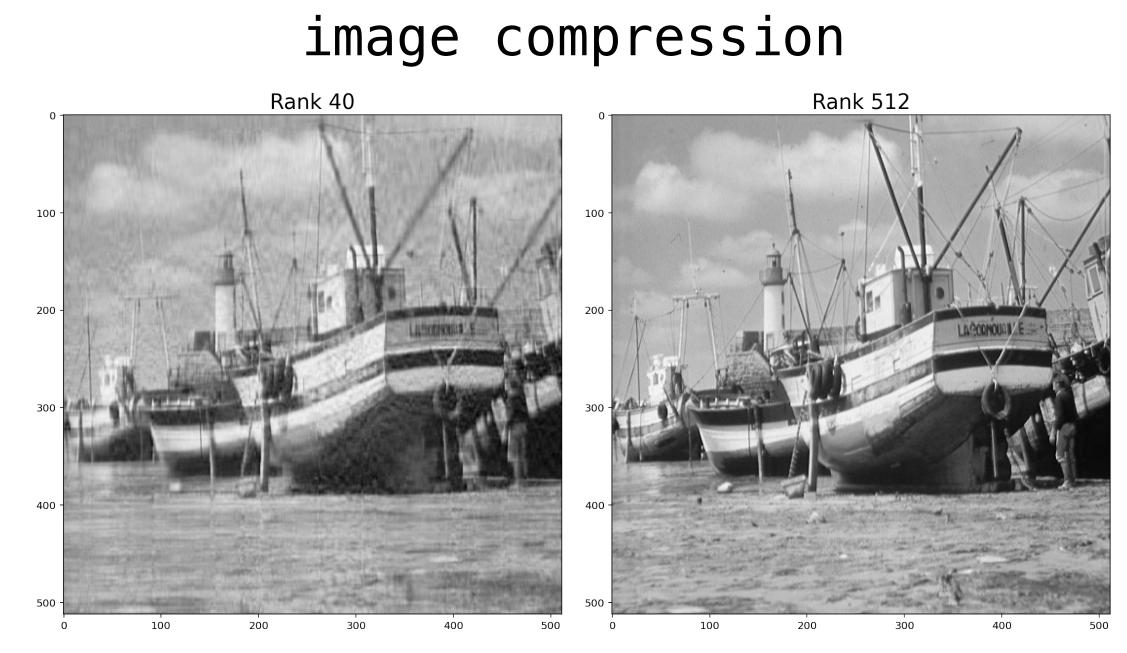
- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V\Sigma^{-1}U^T$, then $A^+\mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A.
 - This is used for image compression
- Principle Component Analysis



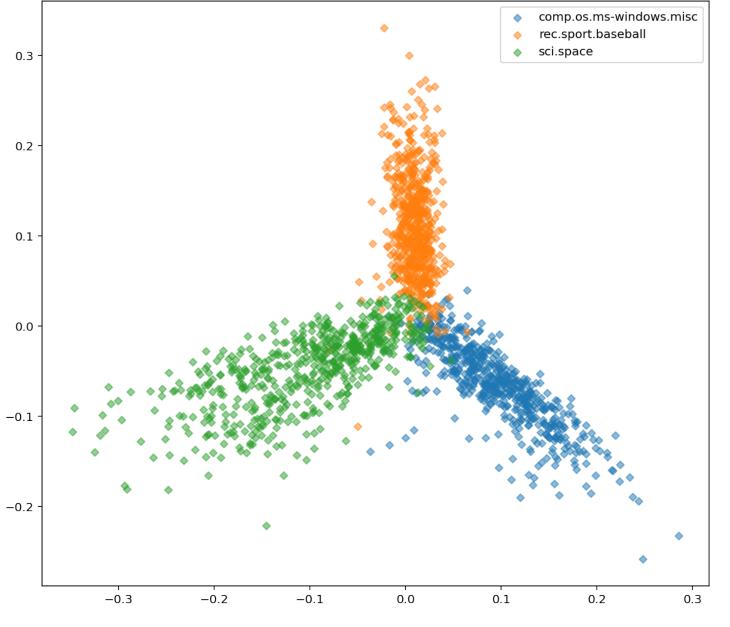
2D PCA Visualization Labeled with Document Source



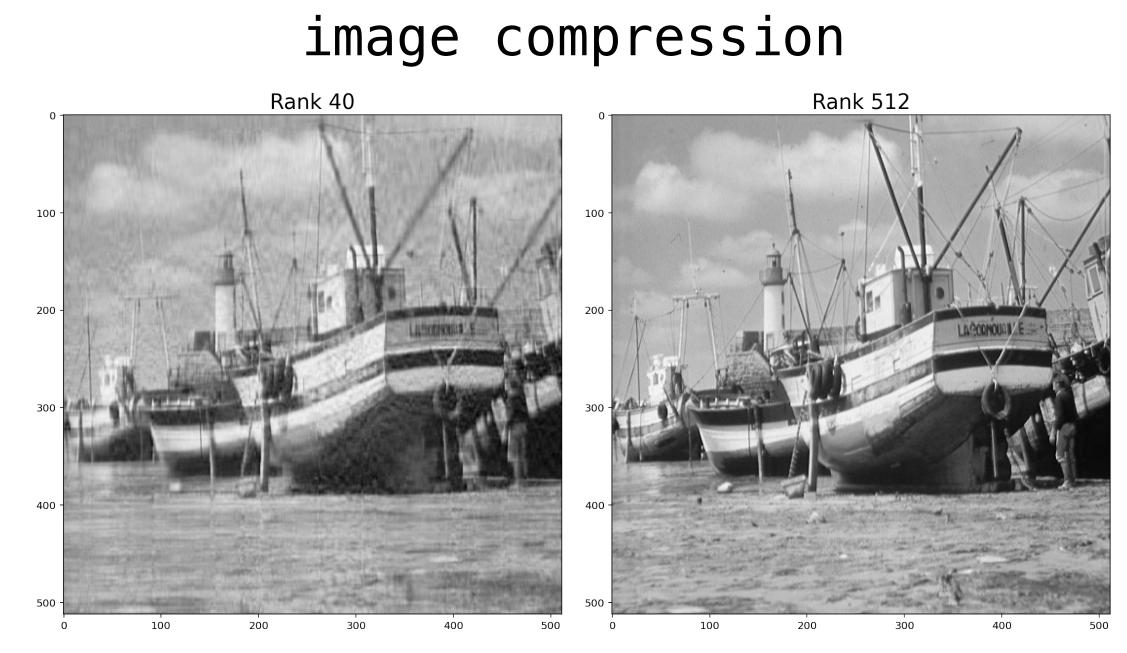
- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V\Sigma^{-1}U^T$, then $A^+\mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A.
 - This is used for image compression
- Principle Component Analysis
 - Large singular vectors are "most affected."



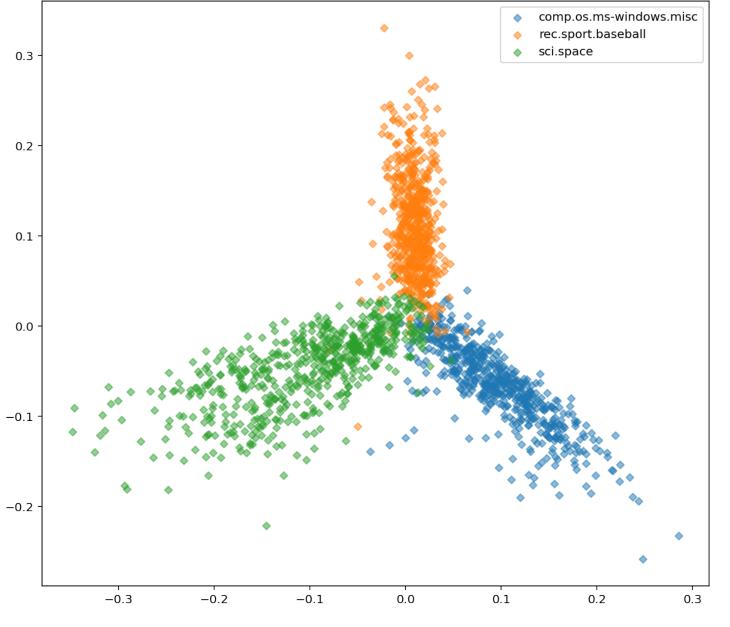
2D PCA Visualization Labeled with Document Source

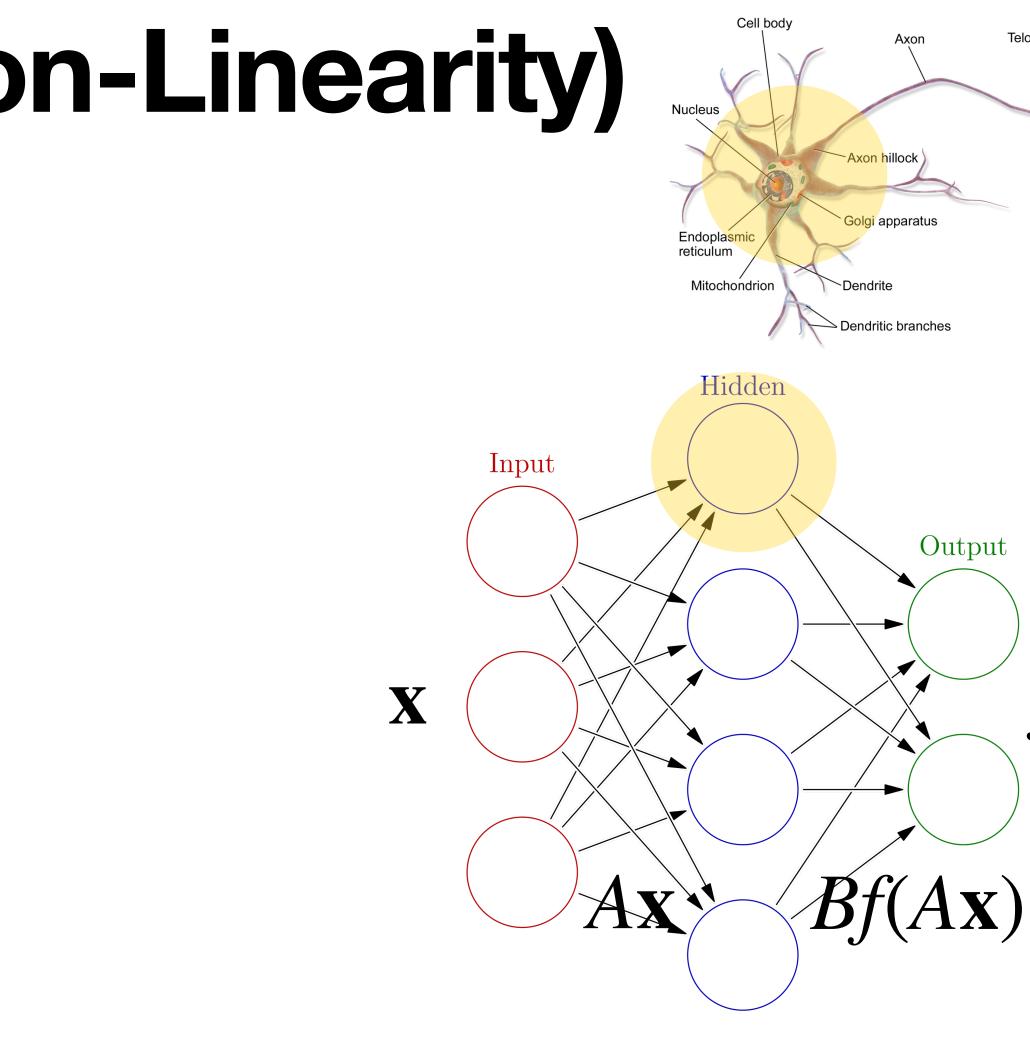


- Reduced SVD, pseudoinverses and least squares
 - If $A^+ = V\Sigma^{-1}U^T$, then $A^+\mathbf{b}$ is a least squares solution of minimum length
- Low Rank Approximation and Data Compression
 - Replacing small singular values with zero in Σ gives a good approximation to A.
 - This is used for image compression
- Principle Component Analysis
 - Large singular vectors are "most affected."
 - These are good vectors to look at for classifying data



2D PCA Visualization Labeled with Document Source



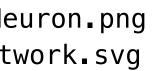


 $f(A\mathbf{x})$

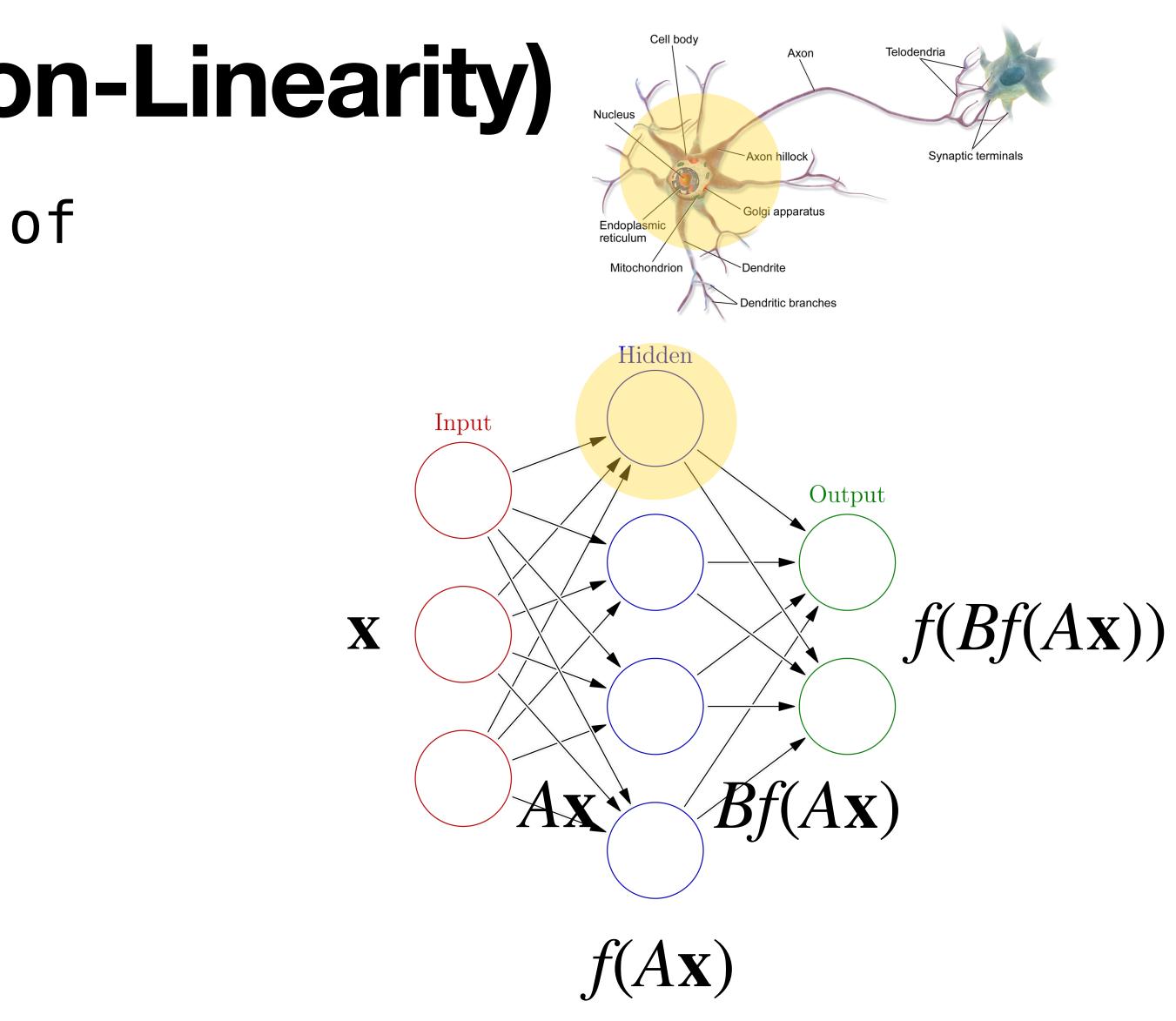
https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg

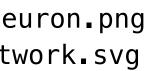
Telodendria

Synaptic terminals



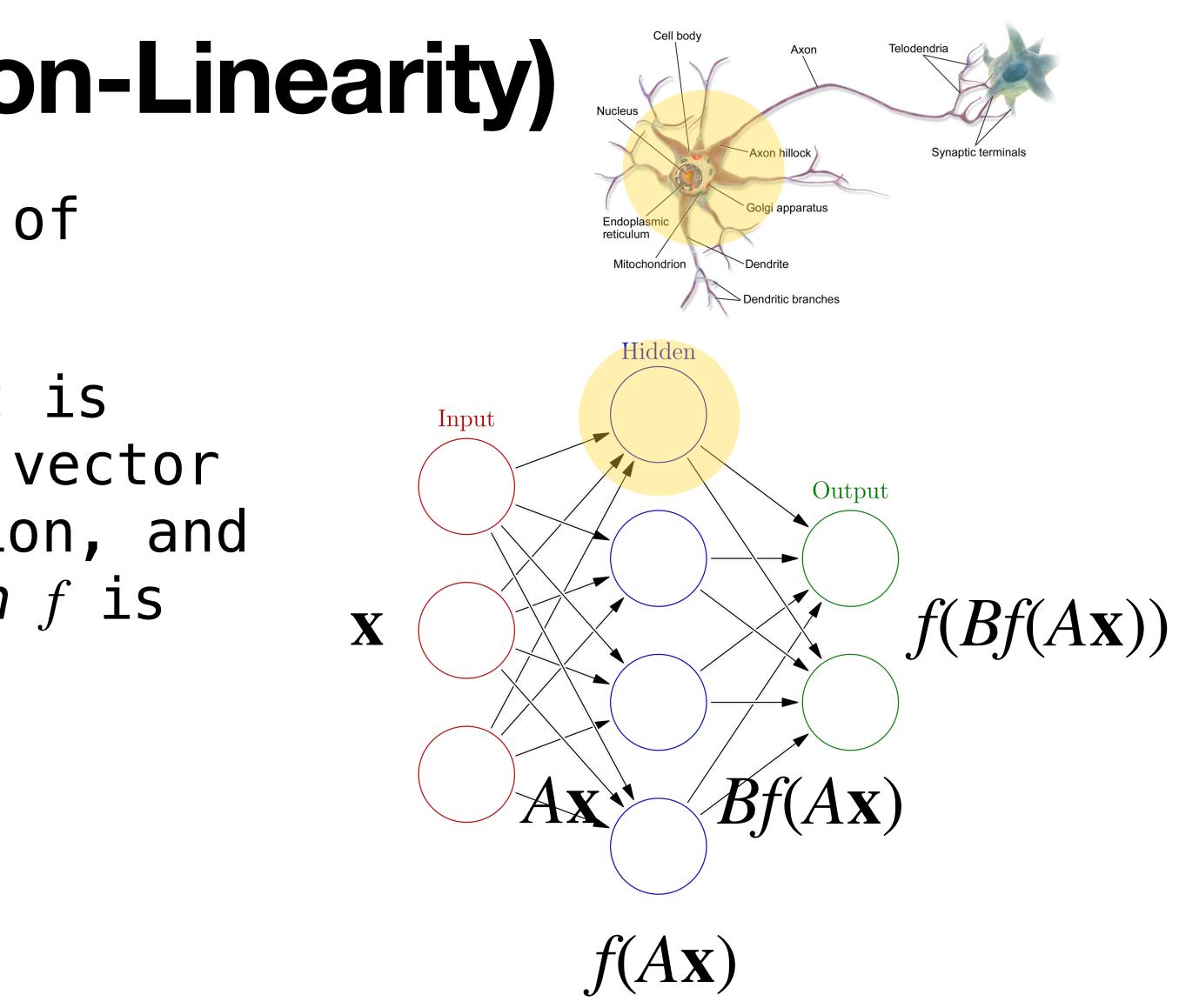
Neural networks are models of artificial neurons bundles.

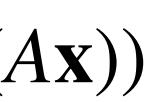


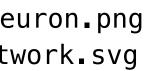


Neural networks are models of artificial neurons bundles.

Given an input vector x, it is transformed into a *hidden* vector Ax by a linear transformation, and then an activation function f is applied to the result.



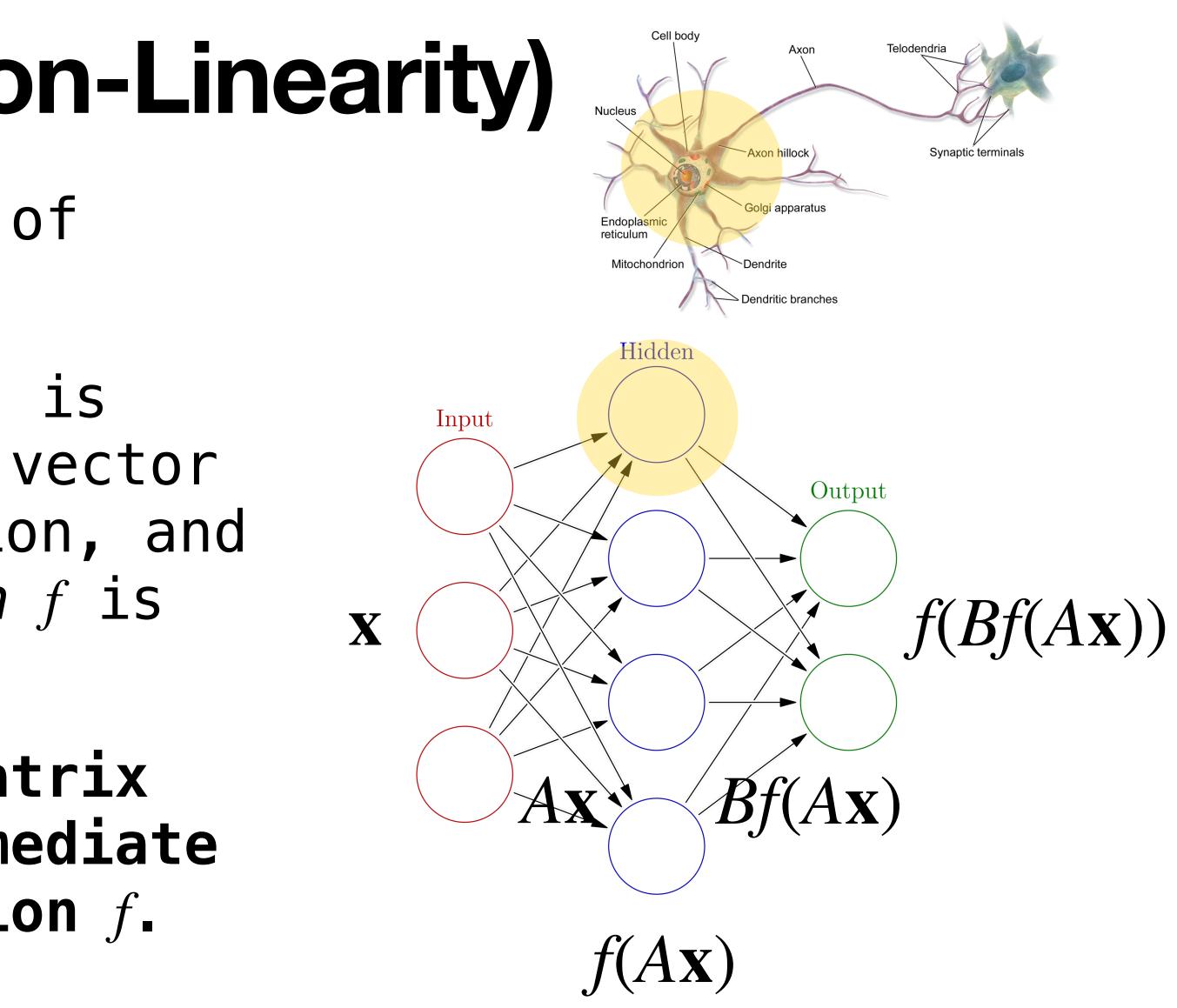


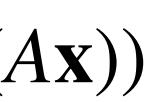


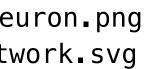
Neural networks are models of artificial neurons bundles.

Given an input vector x, it is transformed into a *hidden* vector Ax by a linear transformation, and then an activation function f is applied to the result.

Neural networks are just matrix multiplications with intermediate calls to a nonlinear function f.





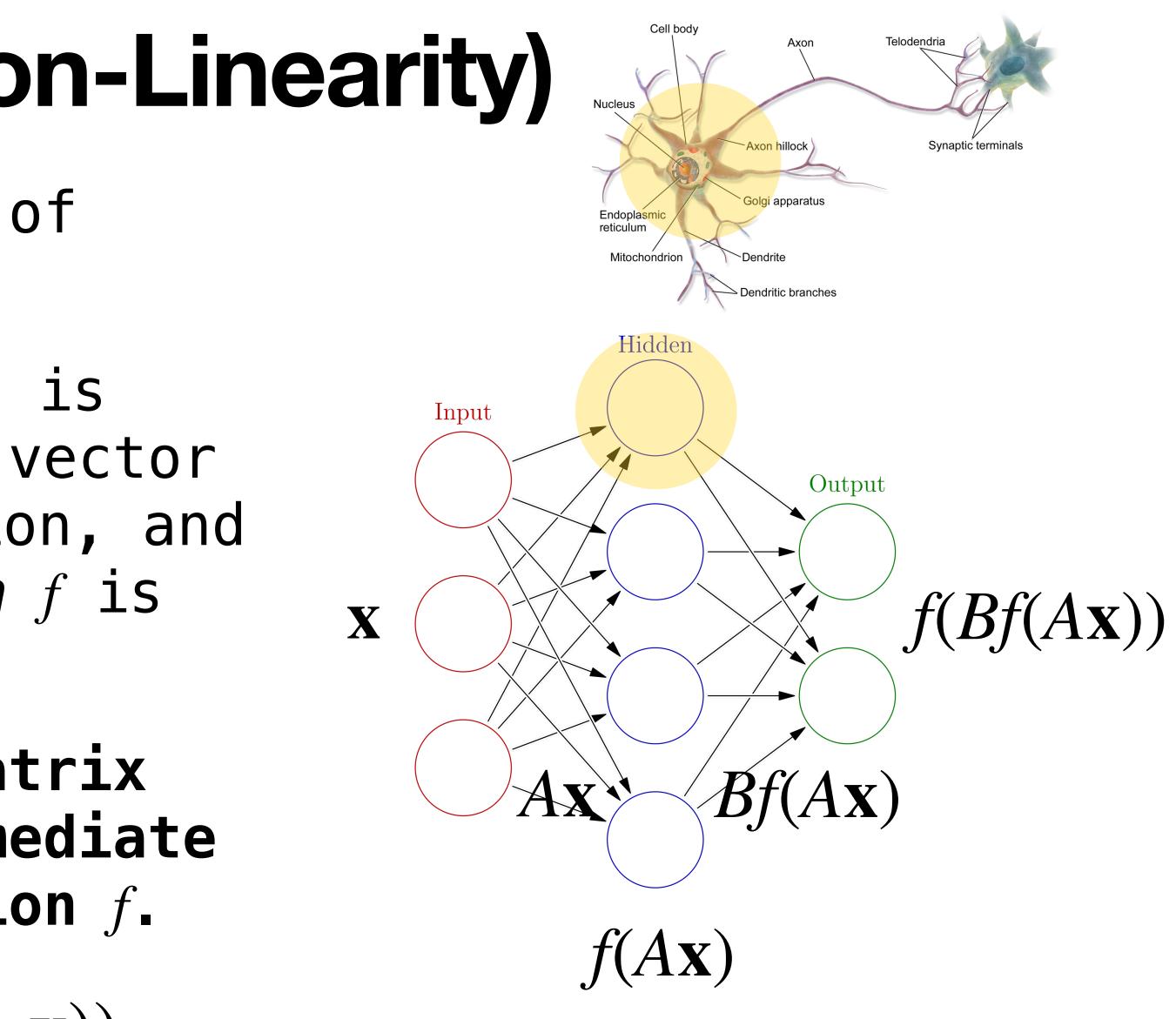


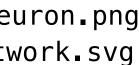
Neural networks are models of artificial neurons bundles.

Given an input vector x, it is transformed into a *hidden* vector Ax by a linear transformation, and then an activation function f is applied to the result.

Neural networks are just matrix multiplications with intermediate calls to a nonlinear function f.

 $\mathsf{NN}(\mathbf{x}) = f(A_k(f(A_{k-1}\dots f(A_1\mathbf{x}))))$

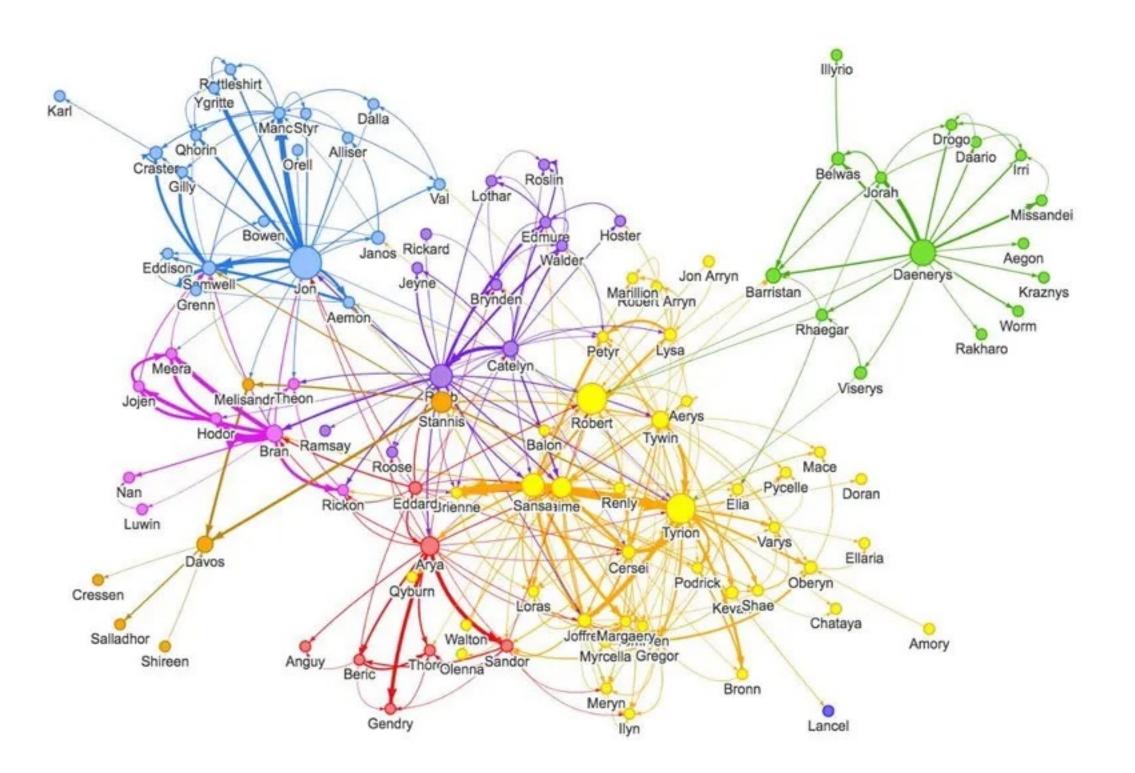




Spectral/Algebraic Graph Theory

Graphs can be viewed as matrices.

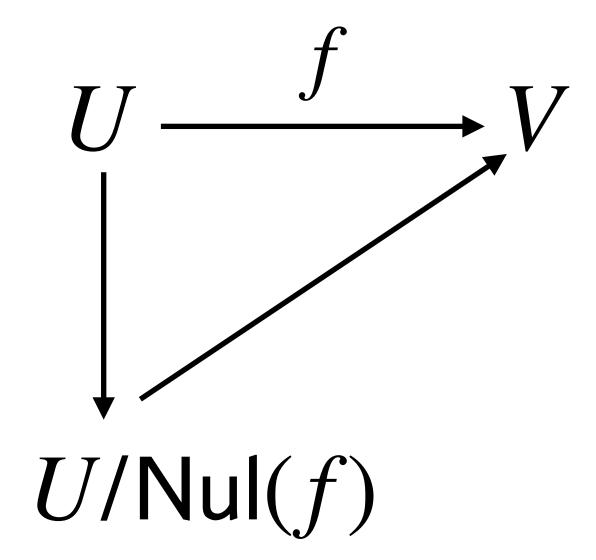
The finding eigenvalues in graphs can gives use better clustering and cutting algorithms.



Abstract Algebra $\frac{U}{\operatorname{Nul}(f)} \cong \operatorname{Range}(f)$

There's a lot of beautiful structure in the algebra we've done in this course.

And there are lots of directions to go from here (infinite dimensional spaces, less restrictive settings like groups and modules,...)



Course List

•CS 365 Foundations of Data Science •CS 440 Intro to Artificial Intelligence •CS 480 Intro to Computer Graphics •CS 505 Intro to Natural Language Processing •CS 506 Tools for Data Science •CS 507 Intro to Optimization in ML •CS 523 Deep Learning •CS 530 Advanced Algorithms •CS 531 Advanced Optimization Algorithms •CS 542 Machine Learning •CS 565 Algorithmic Data Mining •CS 581 Computational Fabrication •CS 583 Audio Computation

Some of these may not exist anymore...

Appreciations

The Course Staff

I'd like to thank:

Abhinit Sati, Vishesh Jain, Ieva Sagaitis, Kevin Wrenn, Jin Zhang, Sohan Atluri, Fynn Buesnel, Aseef Imran, Eugene Jung, Chris Min, Wyatt Napier, Kyle Yung

If you see them around you should thank them as well

The CS Department Staff

kind to the people who work there. They work very hard to keep all our courses running

If you're ever in the CS Department office, be

The Students of CS132

Thanks for sticking with it Thanks for giving feedback Thanks for participating

fin