Singular Value
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Objectives

1. Introduce the singular value decomposition
(probably the most important matrix
decomposition for computer science)

2. Talk very briefly about what to do after
this course if you want (or have to) to see
more linear algebra

3. Fill out course evals(!)



Motivation




Question

What shape 1s a the unit sphere after a linear
transformation?

Multiplication
by A

7277




Ellipsoids

Ellipsoids are spheres
"stretched" 1in orthogonal
directions called the
axes of symmetry or the
principle axes.

Linear transformations maps
spheres to ellipsoids.

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg



Simple Example : Scaling Matrices

=[5



The Picture

Multiplication

by A
—




The Picture

Multiplication
by A

—




The Picture

X The longest end of the ellipse 1s the solution to
i a constrained optimization problem
— x| = 1 Multiplication X,
N by A
= — |Ax]| = max ||Ay||

lyll=1

%)




The Picture

T lAX]| = max [|Ay]|
[yll=1

This 1s not a quadratic form...



The Picture

2
A

2 2
T l1Ax||' = max [|Ay]||

=1 But this is.
(18, 6)

This 1s not a quadratic form...



A Quadratic Form

What does ||Ax||* look like?:
1

53] (Vs h) =

MO Y &, (7<7

JixIl = 1



The Plcture

The largest
elgenvector of ATA

Multiplication X
by A

—

—

v, solves the constrained optimization problen.



The P@C?ture

Multiplication X
by A

— N

The second eigenvector 1is sent to the minimum
principle axis



Properties of A’ A



Properties of A’ A

1 o\ >
» It's symmetric (ATA) - AT(P\ ) = A" A



Properties of A’ A
04\‘30“-]
» It's symmetric (

» So its orthogonally diagonalizable ATA= POPT
S




Properties of A’ A

» ITt's symmetric

» S0 1ts orthogonally diagonalizable

» There 1s an orthogonal basis of eigenvectors



Properties of A’ A

» ITt's symmetric

» S0 1ts orthogonally diagonalizable
» There 1s an orthogonal basis of eigenvectors

» It's elgenvalues are nonnegative



>

>

Properties of A’ A

It's symmetric

So its orthogonally diagonalizable

1
» There is an orthogonal basis of eigenvectors /Avl

>

»

4
- . T
It's eigenvalues are nonnegative V6 A V?}/\f \

It's positive semidefinite
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Singular Values

Definition. For an mxn matrix A, the singular
values of A are the n values

oy > 0y... 20, >0

l

where o,=4/4 and 4 is an eigenvalue of A"A.

2



Another picture

|AV3]| = /43 = o3

vV,,V,,v, are the
eigenvectors of A’A

a7 — |AV, || = \51 — 0]
//0 B \
[AV, || = \ﬁz = 0) i - /
The singular values are the lengths of

the axes of symmetry of the ellipsoid
after transforming the unit sphere.

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg




Every mxn matrix transforms the
unit m-sphere into an n—ellipsoid



S0 every mxn matrix has
n singular values



What else can we say?

Let v,,...,v, be an orthogonal eigenbasis of R”
for A'A and suppose Ahas{ lnonzero singular

va lues can(A)

Theorem. Av,...,Av. 1S an orthogonal basis of
Col(A)




What else can we say?

Let v,,...,v, be an orthogonal eigenbasis of R”
for A’A and suppose A has r nonzero singular
values

Theorem. Av,...,Av. 1S an orthogonal basis of
Col(A)

This 1s the most important theorem for SVD



Verifying it

Let's

. show

- Av,, .

nearly indebeﬁéQZt?re orthogona’
| nal (and

LA J
v: Vf) ~ AT
vi N A



Verifying it

Let's show Av,,...,Av. span Col(A):

v € (ol (A) = Ad=e s Vel s —;‘ = ¢

amd 0= T oAy Y,



Putting it all together




Putting it all together

Let A be an mxn matrix of rank r

T (3, —9)



Putting it all together

Let A be an mxn matrix of rank r

What we Know:




Putting it all together

Let A be an mxn matrix of rank r

What we Know:

» We can find orthonormal vectors v,...,v, 1n R"” such that
Av,...,Av. 1n R™ form an orthogonal basis for Col(A)



Multiplication X
by A

Putting it all together

Let A be an mxn matrix of rank r

What we Know:

» We can find orthonormal vectors v,...,v, 1n R"” such that
Av,...,Av. 1n R™ form an orthogonal basis for Col(A)

AvV.

l

4
|AV;|

» S0 1T we take u, = we get an orthonormal basis of Col(A)



Multiplication X
by A

Putting it all together

Let A be an mxn matrix of rank r

What we Know:

» We can find orthonormal vectors v,...,v, 1n R"” such that
Av,...,Av. 1n R™ form an orthogonal basis for Col(A)

AvV.

l

» S0 1T we take u, = ,
|AV]]

we get an orthonormal basis of Col(A)

» And we can extend this to wu,...,u, an orthonormal basis of
R™ (via Gram-Schmidt).



Singular Value Decomposition



High Level View of the Decomposition

recall: Orthogonal
matrices preserves vi [/
lengths and angles

M=U-%-V'

https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg



AvV.

The Important Equality S A

@ IV, = ou,



The Important Equality ST AV
Av; = ||Av||lu; = o,

Remember that ¢,=4/4 is the singular value,
which 1s the Llength |Av,|



The Important Equality ST AV
Av; = ||Av||lu; = o,

l

which 1s the Llength |Av,|

Remember that ¢;,=./4, is the singular value,

What happens when we write this 1in matrix form?



The Important Equality

Remember that ¢,=4/4 is the singular value,
which 1s the Llength ||Av/|.



The Importantv Equality

——

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u, | and

Remember that ¢;,=./4, is the singular value,



The Important Equality

Remember that ¢,=4/4 is the singular value,
which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u | and

m>n

o ... 0O m < n b

L o, 0 0 0 o,
s=|Y = @ orz=]|: S | or == :

I R P S |



The Important Equality

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u, | and

m > n remember: U 1s orthonormal
°1 0 m<n
5 o 0 0 0
= | °n| or =1 : ; or ¥ =
0 0 |o s 0 o} |



The Important Equality
AV =U2

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u, | and

m > n remember: U 1s orthonormal
o ... 0 m < n
T o 0 0 0
5 _ 0 ... o, or = | : S
0O .. O |O 6 0 0



The Important Equality
AV =U2

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u, | and

m > n remember: U 1s orthonormal
o ... 0 m < n
T o 0 0 0
5 _ 0 ... o, or = | : S
0O .. O |O 6 0 0



The Important Equality

A//)/ UsyT

Remember that o, =4/4 1s the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u, | and

m > n remember: U 1s orthonormal
o ... 0 m < n B
" o, 0 0 0 o,
s=|9 - G| or £= T | or == :
O 0 |o 6,y O o} |o



The Important Equality
A=UxV'

Remember that ¢;,=./4, is the singular value,

l

which 1s the Llength ||Av/|.

Let's take V=[v, ... v.] and U=[u, ... u, | and

m > n remember: U 1s orthonormal
°1 0 m<n
5 o 0 0 0
= | °n| or =1 : ; or ¥ =
0 0 |o s 0 o} |



The Important Equality

singular value decomposition

A=UxV!

Remember that ¢;,=./4, is the singular value,

l

which 1s the length |Av,

Let's take V=[v, ... v.] and U=[u, ... u, | and

m > n remember: U 1s orthonormal
°l 0 m<n
’ o 0 0 0
$=|"Y “n| or £=|: s or ¥ =
0 0 |o 60 o} |



Singular Value Decomposition

Theorem. For a mxn matrix A, there are

orthogonal matrices U e R™™ and Ve R™" such
that

mxXxXm nXxn

A=UX V!

mXn

where diagonal entries* of X are oy,...,0, the
singular values of A.

* these are diagonal entries 1n a non-square matrix.




Singular Value Decomposition

Theorem. For a mxn matrix A, there are

orthogonal matrices U e R™ and Ve R™" such
that left singular vectors right singular vectors

mxXxXm nXxn

A=UX V!

mXn

where diagonal entries* of X are oy,...,0, the
singular values of A.

* these are diagonal entries 1n a non-square matrix.




The Picture (Again)

Bl 4

recall: Orthonormal
matrices preserves Vi [
lengths and angles

‘ll“|||||Iiiiii" EE)
e

M=UX -V

https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg




How To: Finding a SVD



(7 O 1 -1
Step1:Setup2> Y - | 0o o '—2 2]
O 0 2 -

The singular values are the squgﬁe roots of the
eigenvalues of A'A (or AA'):

A =1 -2 T - :
B A "’L] -1 ([0‘ qj
_— -1

det (A-XTY = (X-a -8l x*Tigy = XN(A-18) X=9,8



Step 2: Setup V

Find an orthonormal eigenbasis for A'A:

A 3 Q’e\ o ] ] ‘/
™= i - \387) ~ l = {
A -\ \\ A ZC/B \/" ];'1

a

\

1 -1
-2 2



Step 3: Setup U (Part1) ;- |, W e |2 2
74 G, /Gr 2 —2

If v,...,v, 1s an eigenbasis of R” (in decreasing order of
eigenvalue), then Av,,...,Av. is an eigenbasis of Col(A) (where

r 1s the rank of A). These vectors can be normalized and a/
made the first r columns of U: 1 \

R \G’X 7 Q%‘[J s

HA\rH

S¢

<W\r> . ) = X - 701"’-2"6' O



1 -1
Step 4: Set up U (Part 2) '—2 2 ]
2 =2

If m>r, then extend u,...,u until 1t has m
orthonormal vectors:

(lest g, a\w\



1 -1
Step 5: Put everything together '_2 p) ]
2 =2

NERY AV



SVD in NumPy

In reality, we will almost never build SVDs by
hand. We can use:

numpy.linalg.svd

Let's do a quick demo...



Pseudoinverses




SVD (The Picture)




Reduced SVD (The Picture)

IT we just want a decomposition
of A, we don't need all the 0
singular valudes 1in X



The Reduced SVD

Theorem. For every matrix A of rank r, there 1s
an orthonormal matrix U e R™, a diagonal matrix
> e R™ with positive entries on the diagonal,
and an orthonormal matrix Ve R™ such that

A=UxV!



The Pseudoinverse

Definition. Given a reduced SVD A =UXxV!, the
pseudoinverse of A is At =vX Iy’

Theorem. A™b 1s the minimum length least
squares solution of Ax=b

A AT b= M////MTE
c P iy e U (MU'

(in Python we have numpy.linalg.pinv)




Recall: Least Squares in NumPy
numpy.linalg.Istsqg

linalg.lstsq(a, b, rcond='warn') [source]

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equationa @ x = b. The equation may be

under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than,
equal to, or greater than its number of linearly independent columns). If a is square and of full rank,
then x (but for round-off error) is the “exact” solution of the equation. Else, x minimizes the Euclidean
2-norm ||b — ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||x|| is
returned.

Parameters: a : (M, N) array like

“Coefficient” matrix.

b : {(M,), (M, K)} array_like

Ordinate or “"dependent variable” values. If b is two-dimensional, the least-squares
solution is calculated for each of the K columns of b.

rcond : float. ontional



Recall: Least Squares in NumPy
numpy.linalg.Istsqg

linalg.lstsq(a, b, rcond='warn') [source]

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equationa @ x = b. The equation may be
under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than,
equal to, or greater than its number of linearly independent columns). If a is square and of full rank,
then x (but for round-off error) is the “exact” solution of the equation. Else, x minimizes the Euclidean
2-norm ||b — ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||z|| is

NumPy chooses the shortest vector

Parameters: a : (M, N) array like

returned.

“Coefficient” matrix.

b : {(M,), (M, K)} array_like

Ordinate or “dependent variable” values. If b is two-dimensional, the least-squares
solution is calculated for each of the K columns of b.

rcond : float. ontional



Recall: Least Squares in NumPy
numpy.linalg.Istsqg

linalg.lstsq(a, b, rcond='warn') [source]

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equationa @ x = b. The equation may be
under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than,
equal to, or greater than its number of linearly independent columns). If a is square and of full rank,
then x (but for round-off error) is the “exact” solution of the equation. Else, x minimizes the Euclidean
2-norm ||b — ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||z|| is

NumPy chooses the shortest vector

Parameters: a : (M, N) array like
(why?...)

returned.

“Coefficient” matrix.

b : {(M,), (M, K)} array_like

Ordinate or “dependent variable” values. If b is two-dimensional, the least-squares
solution is calculated for each of the K columns of b.

rcond : float. ontional



Recall: Least Squares in NumPy
numpy.linalg.Istsqg

linalg.lstsq(a, b, rcond='warn') [source]

Return the least-squares solution to a linear matrix equation.

Computes the vector x that approximately solves the equationa @ x = b. The equation may be

under-, well-, or over-determined (i.e., the number of linearly independent rows of a can be less than,
equal to, or greater than its number of linearly independent columns). If a is square and of full rank,
then x (but for round-off error) is the “exact” solution of the equation. Else, x minimizes the Euclidean
2-norm ||b — ax||. If there are multiple minimizing solutions, the one with the smallest 2-norm ||z|| is

returned.
t NumPy chooses the shortest vector
Parameters: a : (M, N) array like ( hy? )
“Coefficient” matrix. WIY £
b+ {(M,), (M, K} array like because they use SVD!

Ordinate or “dependent variable” values. If b is two-dimensional, the least-squares
solution is calculated for each of the K columns of b.

rcond : float. ontional



What's next?
A couple final thoughts




Applications of SVD 279 Ccomression
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Applications of SVD 279 Comressio

100

e Reduced SVD, pseudoinverses and least gl ol /i
>quares ) N | L Y
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Applications of SVD oneression

100 100

e Reduced SVD, pseudoinverses and least
squares .

200

e If At=VvXZ'U’, then A™b is a least
squares solution of minimum length

B

0 100 200 300 400 500 0 100 200 300 400 500

2D PCA Visualization Labeled with Document Source

" document
o classification




Applications of SVD | .pae compression |

100 100

* Reduced SVD, pseudoinverses and least R,
squares o .

e If At=VvXZ'U’, then A™b is a least
squares solution of minimum length

300 1°
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e Low Rank Approximation and Data Compression
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Applications of SVD inage conpression

e Reduced SVD, pseudoinverses and least B,
squares o B T »
.
e If At=VvZ ly!, then A'b is a least

squares solution of minimum length

e Low Rank Approximation and Data Compression

e Replacing small singular values with zero o gy P ¢ i SO o [
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1n X g ives a gOOd dPpProx imation to A. 2D PCA Visualization Labeled with Document Source
' document
o classification
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- = 1lmage compression
Applicationsof SVD ™

] Wl 10
e Reduced SVD, pseudoinverses and least s
squares w1 =
e If AT=VvZlU?, then A'b is a least
squares solution of minimum Llength )
* Low Rank Approximation and Data Compression B
e Replacing small singular values with zero sy W Rl T w0 i s
1n >~ glives a gOOd approximation to A. 2D PCA Visualization Labeled with Document Source
e This is used for image compression L
) document
oo classification




- - 1lmage compression
Applications of SVD

e Reduced SVD, pseudoinverses and least
squares

2004

e If At=VvXZ'U’, then A™b is a least
squares solution of minimum length

300 s
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400
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1n X g ives a gOOd dPpProx imation to A. 2D PCA Visualization Labeled with Document Source

» Replacing small singular values with zero =i

¢ comp.os.ms-windows.misc
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e This 1s used for image compression 03 o s

* Principle Component Analysis 02
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document
classification
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- - 1mage compression
Applications of SVD v

e Reduced SVD, pseudoinverses and least
squares

o If AT=VvXZ U, then A*b is a least
squares solution of minimum Llength

e Low Rank Approximation and Data Compression
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e Replacing small singular values with zero | S i
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e This 1s used for 1image compression 02 ¢ s
e Principle Component Analysis or 53
e Large singular vectors are '"most o q +
affected." ocument
oo classification




- - 1mage compression
Applications of SVD ™ “"

e Reduced SVD, pseudoinverses and least
squares

o If AT=VvXZ U, then A*b is a least
squares solution of minimum Llength

e Low Rank Approximation and Data Compression

e Replacing small singular values with zero

1n ¥ gives a good approximation to A. 020 PCZOVisuaIizzooation L:;eledv:;oth Doc;o:nen:Spurcgloo
e This is used for image compression 0> s
e Principle Component Analysis 02
e Large singular vectors are "most ” |
affected."” document

classification

0.0 A

e These are good vectors to look at for
classifying data o




Neural Networks (Non-Linearity)

o B,
/ S~ .
Golgi apparatus

Cell body
Axon

7 /
v/

."\
Nucleus 4

@ —Axon hillock |

T Py

Endoplasmic
reticulum

Mitochondrion?XDendrite
|
/ \\k Dendritic branches

\

Hidden

Telodendria

- ~
” N

5 - './-\/Ss’ ﬁ
[/

e — A,/‘--»,k> e

Synaptic terminals

J(Bf(AX))

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Neural networks are models of
artificial neurons bundles.

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Neural networks are models of
artificial neurons bundles.

Given an 1nput vector x, 1t 1S
transformed into a hidden vector
Ax by a linear transformation, and
then an activation function f 1s
applied to the result.

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Neural networks are models of
artificial neurons bundles.

Given an 1nput vector x, 1t 1S
transformed into a hidden vector
Ax by a linear transformation, and
then an activation function f 1s
applied to the result.

Neural networks are just matrix
multiplications with intermediate
calls to a nonlinear function 7¥.

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Neural networks are models of
artificial neurons bundles.

Given an 1nput vector x, 1t 1S
transformed into a hidden vector
Ax by a linear transformation, and
then an activation function f 1s
applied to the result.

Neural networks are just matrix
multiplications with intermediate
calls to a nonlinear function 7¥.

NN(x) = f(A(f(Ay_;.. J(AX))

https://commons.wikimedia.org/wiki/File:Blausen_0657_ MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg



Spectral/Algebraic Graph Theory

Graphs can be viewed as
matrices. . ?%m_m :
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https://medium.com/@n.rajadhyaksha/a—-gentle-introduction—-to—graph-spectral-filtering-df03ddc9d3f7/



Abstract Algebra f

U |4
v ~ Range(f)
Nul(H) ‘
U/Nul(f)

There's a lot of beautiful structure 1n the
algebra we've done 1n this course.

And there are lots of directions to go from here
(infinite dimensional spaces, less restrictive
settings like groups and modules,...)
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480
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Some of these may not exist anymore...

Foundations of Data Science
Intro to Artificial Intelligence
Intro to Computer Graphics

Intro to Natural Language Processing
Tools for Data Science

Intro to Optimization 1n ML

Deep Learning

Advanced Algorithms

Advanced Optimization Algorithms
Machine Learning

Algorithmic Data Mining
Computational Fabrication

Audio Computation
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