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Objectives

1. Introduce the singular value decomposition 
(probably the most important matrix 
decomposition for computer science) 

2. Talk very briefly about what to do after 
this course if you want (or have to) to see 
more linear algebra 

3. Fill out course evals(!)



Motivation



Question

What shape is a the unit sphere after a linear 
transformation?

???



Ellipsoids

Ellipsoids are spheres 
"stretched" in orthogonal 
directions called the 
axes of symmetry or the 
principle axes. 

Linear transformations maps 
spheres to ellipsoids.

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg



Simple Example : Scaling Matrices

A = [2 0
0 −1]

e1 2e1

e2

−e2



The Picture



The Picture

who get mapped here?



The Picture

∥x∥ = 1

∥Ax∥ = max
∥y∥=1

∥Ay∥

The longest end of the ellipse is the solution to 
a constrained optimization problem 



The Picture

∥Ax∥ = max
∥y∥=1

∥Ay∥

This is not a quadratic form...



The Picture

∥Ax∥ = max
∥y∥=1

∥Ay∥

This is not a quadratic form...

22

But this is.



A Quadratic Form

What does  look like?:∥Ax∥2



The Picture

∥Av1∥ = λ1

 solves the constrained optimization problem. v1

The largest 
eigenvector of AT A

v1

AT Av1 = λ1v1



The Picture

The second eigenvector is sent to the minimum 
principle axis

v1v2

Av1
Av2
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Properties of AT A

» It's symmetric

» So its orthogonally diagonalizable

» There is an orthogonal basis of eigenvectors

» It's eigenvalues are nonnegative

» It's positive semidefinite



Singular Values

Definition. For an  matrix , the singular 
values of  are the  values 

 

where  and  is an eigenvalue of .

m × n A
A n

σ1 ≥ σ2… ≥ σn ≥ 0

σi = λi λi AT A



Another picture

∥Av1∥ = λ1 = σ1

∥Av2∥ = λ2 = σ2

∥Av3∥ = λ3 = σ3

The singular values are the lengths of 
the axes of symmetry of the ellipsoid 
after transforming the unit sphere.

 are the 
eigenvectors of  

v1, v2, v3
AT A

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg



Every  matrix transforms the 
unit -sphere into an -ellipsoid

m × n
m n



So every  matrix has 
 singular values

m × n
n



What else can we say?

Let  be an orthogonal eigenbasis of  
for  and suppose  has  nonzero singular 
values 

Theorem.  is an orthogonal basis of 

v1, …, vn ℝn

AT A A r

Av1, …, Avr
𝖢𝗈𝗅(A)



What else can we say?

Let  be an orthogonal eigenbasis of  
for  and suppose  has  nonzero singular 
values 

Theorem.  is an orthogonal basis of 

v1, …, vn ℝn

AT A A r

Av1, …, Avr
𝖢𝗈𝗅(A)

This is the most important theorem for SVD



Verifying it

Let's show  are orthogonal (and 
linearly independent):

Av1, …, Avr



Verifying it

Let's show  span :Av1, …, Avr 𝖢𝗈𝗅(A)



v1v2
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v1v2

Av1
Av2Putting it all together

Let  be an  matrix of rank A m × n r

What we know:

» We can find orthonormal vectors  in  such that 
 in  form an orthogonal basis for 

v1, …, vn ℝn

Av1, …, Avr ℝm 𝖢𝗈𝗅(A)

» So if we take , we get an orthonormal basis of ui =
Avi

∥Avi∥
𝖢𝗈𝗅(A)

» And we can extend this to  an orthonormal basis of 
 (via Gram-Schmidt).

u1, …, um
ℝm



Singular Value Decomposition



High Level View of the Decomposition

VT

VT

recall: Orthogonal 
matrices preserves 
lengths and angles

https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg



The Important Equality

Avi = ∥Avi∥ui = σiui

ui =
Avi

∥Avi∥
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The Important Equality

Remember that  is the singular value, 
which is the length 

σi = λi
∥Avi∥

What happens when we write this in matrix form?

Avi = ∥Avi∥ui = σiui

ui =
Avi

∥Avi∥



The Important Equality

Remember that  is the singular value, 
which is the length .

σi = λi
∥Avi∥

A[v1 … vn] = [σ1u1 …σnun]
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Let's take  and  andV = [v1 … vn] U = [u1 … um]

 or  or Σ =

σ1 … 0
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0 … σn
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m > n
m < n m = n
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The Important Equality

A = UΣVT
singular value decomposition

Remember that  is the singular value, 
which is the length .
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orthogonal matrices  and  such 
that  

 
where diagonal entries  of  are  the 
singular values of .
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Singular Value Decomposition

Theorem. For a  matrix , there are 
orthogonal matrices  and  such 
that  

 
where diagonal entries  of  are  the 
singular values of .

m × n A
U ∈ ℝm×m V ∈ ℝn×n

A = U Σ VT

* Σ σ1, …, σn
A

m × m

m × n

n × n

 these are diagonal entries in a non-square matrix.*

left singular vectors right singular vectors



The Picture (Again)

VT

VT

recall: Orthonormal 
matrices preserves 
lengths and angles

https://commons.wikimedia.org/wiki/File:Singular-Value-Decomposition.svg



How To: Finding a SVD



Step 1: Set up Σ

The singular values are the square roots of the 
eigenvalues of  (or ):AT A AAT

[
1 −1

−2 2
2 −2]



Step 2: Set up V

Find an orthonormal eigenbasis for :AT A

[
1 −1

−2 2
2 −2]



Step 3: Set up  (Part 1)U

If  is an eigenbasis of  (in decreasing order of 
eigenvalue), then  is an eigenbasis of  (where 
 is the rank of ). These vectors can be normalized and 
made the first  columns of : 

v1…, vn ℝn

Av1, …, Avr 𝖢𝗈𝗅(A)
r A

r U

[
1 −1

−2 2
2 −2]



Step 4: Set up  (Part 2)U

If , then extend  until it has  
orthonormal vectors: 

m > r u1, …, ur m

[
1 −1

−2 2
2 −2]



Step 5: Put everything together [
1 −1

−2 2
2 −2]



SVD in NumPy 

In reality, we will almost never build SVDs by 
hand.  We can use: 

numpy.linalg.svd 

Let's do a quick demo...



Pseudoinverses



SVD (The Picture)



Reduced SVD (The Picture)

If we just want a decomposition 
of , we don't need all the  

singular valudes in 
A 0

Σ



The Reduced SVD

Theorem. For every matrix  of rank , there is 
an orthonormal matrix , a diagonal matrix 

 with positive entries on the diagonal, 
and an orthonormal matrix  such that 

A r
U ∈ ℝm×r

Σ ∈ ℝr×r

V ∈ ℝn×r

A = UΣVT



The Pseudoinverse

Definition. Given a reduced SVD , the 
pseudoinverse of  is  

Theorem.  is the minimum length least 
squares solution of 

A = UΣVT

A A+ = VΣ−1UT

A+b
Ax = b

(in Python we have numpy.linalg.pinv)



Recall: Least Squares in NumPy
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Recall: Least Squares in NumPy

NumPy chooses the shortest vector
(why?...)



Recall: Least Squares in NumPy

NumPy chooses the shortest vector
(why?...)

because they use SVD!



What's next? 
A couple final thoughts



Applications of SVD image compression

document 
classification
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Applications of SVD
• Reduced SVD, pseudoinverses and least 
squares

• If , then  is a least 
squares solution of minimum length

A+ = VΣ−1UT A+b

• Low Rank Approximation and Data Compression

• Replacing small singular values with zero 
in  gives a good approximation to .Σ A

• This is used for image compression

• Principle Component Analysis

• Large singular vectors are "most 
affected."

• These are good vectors to look at for 
classifying data

image compression

document 
classification



Neural Networks (Non-Linearity)

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
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Neural Networks (Non-Linearity)
Neural networks are models of 
artificial neurons bundles.

https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png
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Neural Networks (Non-Linearity)
Neural networks are models of 
artificial neurons bundles.

Given an input vector , it is 
transformed into a hidden  vector 
 by a linear transformation, and 

then an activation function  is 
applied to the result.

x

Ax
f
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Neural Networks (Non-Linearity)
Neural networks are models of 
artificial neurons bundles.

Given an input vector , it is 
transformed into a hidden  vector 
 by a linear transformation, and 

then an activation function  is 
applied to the result.

x

Ax
f

Neural networks are just matrix 
multiplications with intermediate 
calls to a nonlinear function .f
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Neural Networks (Non-Linearity)
Neural networks are models of 
artificial neurons bundles.

Given an input vector , it is 
transformed into a hidden  vector 
 by a linear transformation, and 

then an activation function  is 
applied to the result.

x

Ax
f

Neural networks are just matrix 
multiplications with intermediate 
calls to a nonlinear function .f

𝖭𝖭(x) = f(Ak( f(Ak−1…f(A1x))
https://commons.wikimedia.org/wiki/File:Blausen_0657_MultipolarNeuron.png

https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
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Spectral/Algebraic Graph Theory
Graphs can be viewed as 
matrices. 

The finding eigenvalues 
in graphs can gives use 
better clustering and 
cutting algorithms.

https://medium.com/@n.rajadhyaksha/a-gentle-introduction-to-graph-spectral-filtering-df03ddc9d3f7



Abstract Algebra

There's a lot of beautiful structure in the 
algebra we've done in this course. 

And there are lots of directions to go from here 
(infinite dimensional spaces, less restrictive 
settings like groups and modules,...)

U
𝖭𝗎𝗅( f )

≅ 𝖱𝖺𝗇𝗀𝖾( f )

f
U V

U/𝖭𝗎𝗅( f )



Course List
•CS 365 Foundations of Data Science 
•CS 440 Intro to Artificial Intelligence 
•CS 480 Intro to Computer Graphics 
•CS 505 Intro to Natural Language Processing 
•CS 506 Tools for Data Science 
•CS 507 Intro to Optimization in ML 
•CS 523 Deep Learning 
•CS 530 Advanced Algorithms 
•CS 531 Advanced Optimization Algorithms 
•CS 542 Machine Learning 
•CS 565 Algorithmic Data Mining 
•CS 581 Computational Fabrication 
•CS 583 Audio Computation

Some of these may not exist anymore...
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fin


