
Lab 1: NumPy, SciPy and Linear Algebra

CAS CS 132: Geometric Algorithms

Due September 18, 2025 by 8:00PM

In this lab, you will be introduced to the programming tools we will use throughout this course. We begin
with a short installation guide and a review of the basics of NumPy. We’ll then do some benchmarking
some SciPy functions for solving linear systems. You’re required to submit a write-up for this lab as a pdf
on Gradescope. The details of what you’re required to submit are given in the last section called “Lab
Write-up.”

Installation Guide

We will generally assume access to a unix-style command line. If you are a Windows user, I recommend
setting up a WSL environment.1 If you want to work directly in PowerShell, we cannot guarantee we’ll
able to troubleshoot any issues you might run into.

Getting Set Up

1. Install the latest release of python from the Python webpage.2 Follow the “Downloads” tab to an
installer for your operating system. After doing this, open a terminal and run the command python3

on the command line to open an interactive Python REPL (Read-Eval-Print-Loop). This will verify
that everything was set up correctly. You can use the key combination CTL-D to exit the REPL.

2. The above installation includes a program called pip3, a package manager for Python. Run the fol-
lowing command, which will install all the libraries you need for this course.

pip3 install numpy scipy matplotlib networkx scikit-learn

3. (Optional) Install VSCode.3

Working in Python

1. Open a file file name.py in your code editor and make the necessary changes.

2. In a terminal, navigate to the directory where your Python file is, e.g.,

cd path/to/directory/where/file/is

3. Run the following command to evaluate the code in that file.

python3 file name.py

1https://learn.microsoft.com/en-us/windows/wsl/install
2https://www.python.org
3https://visualstudio.microsoft.com/downloads/

1

https://learn.microsoft.com/en-us/windows/wsl/install
https://www.python.org
https://visualstudio.microsoft.com/downloads/


If you want to evaluate the file and then go into an interactive Python REPL, then use:

python3 -i file name.py

Tips

You may want to review basic command line usage.

• ls shows whats in your current directory

• pwd shows the path of the directory you’re currently in

• cd path/to/directory name goes to the directory given by the path

• rm file name deletes the file file name4

• rm -r directory name deletes the directory named directory name and everything in it

• touch file name creates an empty file called file name

• mkdir dir name creates an empty directory called dir name

I would also generally recommend putting all your code for this course in a single directory in, for example,
your “Documents” folder. You can run the command

mkdir -p /Documents/CS132

to create this directory. This is equivalent to going to the “Documents” folder (in Finder for MacOS) and
creating a new folder.

Familiarizing yourself with NumPy

The primary motivation of this lab is to familiarize ourselves with NumPy. The TFs will cover the basics of
NumPy during your discussion section. On your own you should look through the following resources.

1. Read the NumPy quickstart5 up to and including the section called “Shape manipulation.”

2. Read the supplementary Numpy Tutorial on the course webpage.6

Lab Write-Up

1. For reasons that will become clear later in the course, we can use the following to compute an echelon
form of a NumPy array A:

scipy.linalg.lu(A)[2]

Given this, implement the function is consistent which takes an augmented matrix A and returns
True if A represents the augmented matrix of a consistent linear system, and False otherwise. Your
function should look at the echelon form of A and use the principles we’ve discussed to determine

4This cannot be undone. It’s not the same as putting in the Trash folder.
5https://numpy.org/devdocs/user/quickstart.html
6https://nmmull.github.io/CS132-Notes/NumPy/notes.html

2

https://numpy.org/devdocs/user/quickstart.html
https://nmmull.github.io/CS132-Notes/NumPy/notes.html


consistency. Remember, you should not compare any value to 0 directly; you should instead use
numpy.isclose.7

Include your implementation in your write-up.

2. SciPy has a function that solves square systems of linear equations called scipy.linalg.solve.8

However, it doesn’t take as an argument an augmented matrix, but rather a coefficient matrix and a
NumPy array representing the right-hand-sides of the equations of the linear system. Using NumPy
slicing, write a wrapper for this function called solve which takes as an argument an augmented
matrix and calls scipy.linalg.solve on the appropriate inputs.

Note that scipy.linalg.solve only works if given a consistent linear system with the same number
of equations as variables. You should put your call of scipy.linalg.solve is a try-except block and
return None if it fails because the given system is inconsistent or the system is the wrong shape.

Include your implementation in your write-up.

3. Look through the starter code given for this lab. The purpose of this code is to benchmark the func-
tions defined above. According to what we’ve said in class, determining that a system is inconsistent
should be faster than determining a solution.

Put your two functions in the given starter code and run it. Doing so should produce a graph which
shows the running time of is consistent and solve. Depending on your machine, you may need to
update the input to benchmark so that the code finishes in a reasonable amount of time.

It will also show the running time of a function called getrf, a FORTRAN function that actually com-
putes the echelon form.9 The point here is to demonstrate that, even though it’s technically faster to
determine consistency, the overhead from working in Python makes solving about as fast as deter-
mining consistency using an echelon form.

Include the graph produced by the starter code in your write-up. Make sure that the graph demon-
strates the separation of the running time of getrf from that of the other functions.

4. You’ll also notice that the graph includes an approximation of the form an3 for the running time of
getrf, and that the starter code prints the coefficient a of this approximation.10 According to what
we’ve said in class, the number of FLOPs performed by getrf should be approximately (2/3)n3.
Based on this fact, you should be able to estimate how many FLOPs per second performed by your
CPU.

Include the coefficient a printed by the starter code in your write-up. Use this number to estimate
the number of FLOPs per second performed by your CPU. Justify your calculation in 1-2 sentences.

7https://numpy.org/doc/stable/reference/generated/numpy.isclose.html
8https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html
9Much of NumPy and SciPy calls FORTRAN and C functions to do the computationally expensive parts of linear algebraic com-

putations.
10We will eventually learn how to do this approximation.

3

https://numpy.org/doc/stable/reference/generated/numpy.isclose.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html

