Gaussian Elimination **Geometric Algorithms Lecture 2** #### Practice Problem $$x + 2y = 1$$ $$-x - y - z = -1$$ $$2x + 6y - z = 1$$ Determine a solution to the following linear system using forward elimination and back substitution #### Outline - » Introduce echelon forms as a kind of matrix which "represents" solutions - » Learn how to "read off" a solution from an echelon form matrix - » Discuss Gaussian elimination, an algorithm for solving linear systems #### Keywords ``` leading entries echelon form (row-)reduced echelon form (RREF) pivot positions pivot columns free variables basic variables general form solutions forward elimination back substitution ``` ## Recap #### Recall: Linear Systems (General-form) $$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$ $$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$ $$\vdots$$ $$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$ #### Recall: Linear Systems (General-form) $$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$ $$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$ $$\vdots$$ $$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$ Does a system have a solution? How many solutions are there? What are its solutions? #### Recall: Matrix Representations $$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$ #### Recall: Matrix Representations $$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$ augmented matrix #### Recall: Linear Systems (Pictorially) #### Recall: Number of Solutions zero the system is inconsistent one the system has a unique solution many the system has infinity solutions #### Recall: Number of Solutions zero the system is inconsistent one the system has a unique solution many the system has infinity solutions These are the only options #### Recall: Elementary Row Operations scaling multiply a row by a NONZERO number replacement add a multiple of one row to another interchange switch two rows #### Recall: Elementary Row Operations scaling multiply a row by a NONZERO number replacement add a multiple of one row to another interchange switch two rows These operations don't change the solutions #### Scaling Example $$2x + 3y = -6$$ $$4x - 5y = 10$$ $$R_1 \leftarrow 2R_1$$ $$4x + 6y = -12$$ $$4x - 5y = 10$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$\begin{bmatrix} 4 & 6 & -12 \\ 4 & -5 & 10 \end{bmatrix}$$ #### Replacement Example $$2x + 3y = -6$$ $$4x - 5y = 10$$ $$R_2 \leftarrow R_2 + R_1$$ $$2x + 3y = -6$$ $$6x - 2y = 4$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 6 & -2 & 4 \end{bmatrix}$$ #### Interchange Example $$2x + 3y = -6$$ $$4x - 5y = 10$$ $$R_1 \leftrightarrow R_2$$ $$4x - 5y = 10$$ $$2x + 3y = -6$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$\begin{bmatrix} 4 & -5 & 10 \\ 2 & 3 & -6 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$R_2 \leftarrow R_2 - 2R_1$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$R_2 \leftarrow R_2 - 2R_1$$ $$R_2 \leftarrow R_2/(-11)$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 0 & 1 & -2 \end{bmatrix}$$ $$R_2 \leftarrow R_2 - 2R_1$$ $$R_2 \leftarrow R_2/(-11)$$ $$R_1 \leftarrow R_1 - 3R_2$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 0 & 1 & -2 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$R_2 \leftarrow R_2 - 2R_1$$ $$R_2 \leftarrow R_2/(-11)$$ $$R_1 \leftarrow R_1 - 3R_2$$ $$R_1 \leftarrow R_1/2$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 0 & -11 & 22 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 0 & 1 & -2 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$ $$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$ $$R_2 \leftarrow R_2 - 2R_1$$ $$R_2 \leftarrow R_2/(-11)$$ $$R_1 \leftarrow R_1 - 3R_2$$ $$R_1 \leftarrow R_1/2$$ $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$ $$R_2 \leftarrow R_2 - 2R_1$$ elimination $R_2 \leftarrow R_2/(-11)$ $R_1 \leftarrow R_1 - 3R_2$ $R_1 \leftarrow R_1/2$ substitution $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$ #### Row Equivalence **Definition.** Two matrices are *row equivalent* if one can be transformed into the other by a sequence of row operations $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix}$$ $$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$ #### Row Equivalence **Definition.** Two matrices are *row equivalent* if one can be transformed into the other by a sequence of row operations $$\begin{bmatrix} 2 & 3 & -6 \\ 4 & -5 & 10 \end{bmatrix} \qquad \qquad \qquad \qquad \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}$$ We can compute solutions by sequence of row operations # !!!IMPORTANT!!! Row equivalent augmented matrices represent linear system with the same solution set # How do we know when we're done? What's the "target" matrix? # Answer: when we are able to "read off" a solution #### Motivating Questions What matrices "represent solutions"? (which have solutions that are easy to "read off"?) How does the number of solutions affect the shape of these matrix? How do we use row operations to get to those matrices? #### Motivating Questions #### echelon forms What matrices "represent solutions"? (which have solutions that are easy to "read off"?) How does the number of solutions affect the shape of these matrix? How do we use row operations to get to those matrices? $$\begin{bmatrix} 2 & -3 & 5 & 11 \\ 2 & -1 & 13 & 39 \\ 1 & -1 & 5 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$ $$x = 1$$ $$y = 2$$ $$z = 3$$ $$\begin{bmatrix} 2 & -3 & 5 & 11 \\ 2 & -1 & 13 & 39 \\ 1 & -1 & 5 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$ $$x = 1$$ $$y = 2$$ $$z = 3$$ x = 1 y = 2Like all incomples we've seen for far #### The Identity Matrix ``` [1 0 0 [0 1 0 [0 0 1 ``` #### The Identity Matrix coefficient matrix a system of linear equations whose **coefficient matrix** is the identity matrix represents a unique solution | | 1 | 1 | 1 | | | 2 | 3 | 4 | |---|---|---|----|---|---|---|---|---| | 1 | 1 | 1 | 2 | ~ | 1 | 1 | 1 | 1 | | | 2 | 3 | 4_ | | | 0 | 0 | 1 | ``` \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} ``` two parallel planes ``` \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{two parallel} \quad \text{row representing } 0 = 1 ``` row representing 0 = 1 a system with no solutions can be reduced to a matrix with the row $$\begin{bmatrix} 2 & 4 & 2 & 14 \\ 1 & 7 & 1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$ $$\begin{bmatrix} 2 & 4 & 2 & 14 \\ 1 & 7 & 1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$ $$x_1 + x_3 = 2$$ $x_2 = 1$ $$\begin{bmatrix} 2 & 4 & 2 & 14 \\ 1 & 7 & 1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$ $$x_1 + x_3 = 2$$ $x_2 = 1$ a system with infinity solutions can be reduced to a system which leaves a variable <u>unrestricted</u> $$x_1 + x_3 = 2$$ $x_2 = 1$ $$x_1 = 2$$ $x_2 = 1$ $x_3 = 0$ $$x_1 + x_3 = 2$$ $x_2 = 1$ $$x_1 = 1.5$$ $x_2 = 1$ $x_3 = 0.5$ $$x_1 + x_3 = 2$$ $x_2 = 1$ $$x_1 = 20$$ $x_2 = 1$ $x_3 = -18$ $$x_1 + x_3 = 2$$ $x_2 = 1$ $$x_1 = 2 - x_3$$ $$x_2 = 1$$ $$x_3 ext{ is free}$$ $$x_1 + x_3 = 2$$ $x_2 = 1$ it doesn't matter what x_3 is if we want to satisfy this system of equations $$x_1 = 2 - x_3$$ $$x_2 = 1$$ $$x_3 ext{ is free}$$ general form #### In Sum none reduces to a system with the equation 0 = 1 one reduces to a system whose coefficient matrix is the identity matrix infinity reduces to a system which leaves a variable unrestricted #### In Sum none reduces to a system with the equation 0 = 1 one reduces to a system whose coefficient matrix is the identity matrix infinity reduces to a system which leaves a variable unrestricted Ideally, we want one *form* that handles all three cases ## The Picture (and a bit of history) # Echelon Form (Pictorially) ``` \begin{bmatrix} 0 & \blacksquare & * & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \blacksquare & * & * & * & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} ``` \blacksquare = nonzero, * = anything ## Leading Entries **Definition.** the *leading entry* of a row is the first nonzero value $$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & 3 \\ 0 & 0 & 0 \\ 1 & -1 & 10 \end{bmatrix} \leftarrow \begin{array}{c} \text{no leading} \\ \text{entry} \end{array}$$ Definition. A matrix is in echelon form if Definition. A matrix is in echelon form if 1. The leading entry of each row appears to the right of the leading entry above it Definition. A matrix is in echelon form if - 1. The leading entry of each row appears to the right of the leading entry above it - 2. Every all-zeros row appears below any non-zero rows ## Echelon Form (Pictorially) ``` \begin{bmatrix} 0 & \bullet & * & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \bullet & * & * & * & * & * \\ 0 & 0 & 0 & \bullet & \bullet & * & * & * & * \\ 0 & 0 & 0 & 0 & \bullet & \bullet & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \bullet & \bullet & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} ``` = nonzero, * = anything ## Echelon Form (Pictorially) ``` next leading entry to the right ll-zero rows at ``` = nonzero, * = anything ### Question Is the identity matrix in echelon form? #### Answer: Yes the leading entries of each row appears to the right of the leading entry above it it has no all-zero rows ## Question $$\begin{bmatrix} 2 & 3 & -8 \\ 0 & 1 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$ Is this matrix in echelon form? #### Answer: No The leading entry of the least row is not to the right of the leading entry of the second row ## What's special about Echelon forms? **Theorem.** Let A be the augmented matrix of an inconsistent linear system. If $A \sim B$ and B is in echelon form then B has the row $[0\ 0\ ...\ 0\ 0]$ ## What's special about Echelon forms? **Theorem.** Let A be the augmented matrix of an inconsistent linear system. If $A \sim B$ and B is in echelon form then B has the row [00...00 If all we care about is consistency then we just need to find an echelon form ## Example $$x - 2z = 4$$ $$-x + y + 5z = -3$$ $$x + 2y + 4z = 7$$ ### The Problem with Echelon Forms If our system *is* consistent, we can't get a solution quite yet We need to simplify our matrix a bit more until it "represents" a solution # Reduced Echelon Form ## Row-Reduced Echelon Form (RREF) Definition. A matrix is in (row-)reduced echelon form if - 1. The leading entry of each row appears to the right of the leading entry above it - 2. Every all-zeros row appears below any non-zero rows - 3. The leading entries of non-zero rows are 1 - 4. the leading entries are the only non-zero entries of their columns # Reduced Echelon Form (Pictorially) ``` \begin{bmatrix} 0 & 1 & * & 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} ``` # Reduced Echelon Form (Pictorially) leading entries are 1 ### Reduced Echelon Form (A Simple Example) $$x_1 + x_3 = 2$$ $x_2 = 1$ ## Reduced Echelon Form (A Simple Example) $$x_1 + x_3 = 2$$ $x_2 = 1$ $$x_1 = 2 - x_3$$ $$x_2 = 1$$ $$x_3 ext{ is free}$$ ## The Fundamental Points #### The Fundamental Points **Point 1.** we can "read off" the solutions of a system of linear equations from its RREF ### The Fundamental Points **Point 1.** we can "read off" the solutions of a system of linear equations from its RREF **Point 2.** every matrix is row equivalent to a unique matrix in reduced echelon form 1. Write your system as an augmented matrix 1. Write your system as an augmented matrix 2. Find the RREF of that matrix 1. Write your system as an augmented matrix 2. Find the RREF of that matrix 3. Read off the solution from the RREF 1. Write your system as an augmented matrix 2. Find the RREF of that matrix 3. Read off the solution from the RREF # What's special about RREF? the goal of <u>back-substitution</u> is to reduce an echelon form matrix to a **reduced** echelon form the goal of <u>back-substitution</u> is to reduce an echelon form matrix to a **reduced** echelon form the goal of <u>Gaussian elimination</u> is to reduce an **augmented** matrix to a **reduced** echelon form the goal of <u>back-substitution</u> is to reduce an echelon form matrix to a **reduced** echelon form the goal of <u>Gaussian elimination</u> is to reduce an **augmented** matrix to a **reduced** echelon form reduced echelon forms describe solutions to linear equations # General-Form Solutions We know how to use an RREF to see if a system is inconsistent We know how to use an RREF to see if a system is inconsistent We know how to use an RREF to read of a unique solution, if there is one We know how to use an RREF to see if a system is inconsistent We know how to use an RREF to read of a unique solution, if there is one But how do we characterize *all* solutions in the infinite solution case? **Definition.** a *pivot position* (i,j) in a matrix is the position of a leading entry in it's reduced echelon form **Definition.** a *pivot position* (i,j) in a matrix is the position of a leading entry in it's reduced echelon form **Definition.** A variable is *basic* if its column has a pivot position (this is called a *pivot column*). It is *free* otherwise **Definition.** a *pivot position* (i,j) in a matrix is the position of a leading entry in it's reduced echelon form **Definition.** A variable is *basic* if its column has a pivot position (this is called a *pivot column*). It is *free* otherwise **Definition.** a *pivot position* (i,j) in a matrix is the position of a leading entry in it's reduced echelon form **Definition.** A variable is *basic* if its column has a pivot position (this is called a *pivot column*). It is *free* otherwise x_3 is free ### Solutions of Reduced Echelon Forms the row i of a <u>pivot position</u> describes the <u>value of x_i in a solution</u> to the system, in terms of the free variables $$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$ #### How-To: General Form Solution $$x_1 = 2 - x_3$$ $$x_2 = 1$$ $$x_3 ext{ is free}$$ #### How-To: General Form Solution $$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$ $$x_1 = 2 - x_3$$ $$x_2 = 1$$ $$x_3 \text{ is free}$$ 1. For each pivot position (i,j), isolate x_i in the equation in row i ## How-To: General Form Solution $$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$ $$x_1 = 2 - x_3$$ $$x_2 = 1$$ $$x_3 \text{ is free}$$ - 1. For each pivot position (i,j), isolate x_i in the equation in row i - 2. If x_i is not in a pivot column then write x_i is free # Example | 1 | 2 | 0 | -2 | 4 | |---|---|---|-----------|---| | 0 | 0 | 1 | 3 | 5 | | 0 | 0 | 0 | 0 | 0 | # Question Circle the pivot positions, highlight the pivot rows. Which variables are free? Which are basic? Write down a solution in general form for this reduced echelon form matrix. Write down a particular solution given the general form. #### Answer $$x_1 = 1 - 3x_4$$ x_2 is free $$x_3 = 4 - 2x_4$$ x_4 is free # Gaussian Elimination # At a High Level eliminations + back-substitution eliminations + back-substitution we've already done this eliminations + back-substitution we've already done this but we'll take one step further and write down the algorithm as <u>pseudocode</u> eliminations + back-substitution we've already done this but we'll take one step further and write down the algorithm as <u>pseudocode</u> **Keep in mind.** How do we turn our intuitions into a formal procedure? The details of Gaussian elimination are tricky The details of Gaussian elimination are tricky The goal is not to understand it entirely, but to get enough intuition to emulate it The details of Gaussian elimination are tricky The goal is not to understand it entirely, but to get enough intuition to emulate it You should roughly use Gaussian Elimination when solving a system by hand # demo # Gaussian Elimination (Specification) ``` FUNCTION GE(A): # INPUT: m × n matrix A # OUTPUT: equivalent m × n RREF matrix ... ``` # Gaussian Elimination (High Level) ``` FUNCTION fwd_elim(A): # INPUT: m × n matrix A # OUTPUT: equivalent m × n echelon form matrix FUNCTION back_sub(A): # INPUT: m × n echelon form matrix A # OUTPUT: equivalent m × n RREF matrix FUNCTION GE(A): RETURN back_sub(fwd_elim(A)) ``` # Elimination Stage # Elimination Stage (High Level) # Elimination Stage (High Level) Input: matrix A of size $m \times n$ Output: echelon form of A # Elimination Stage (High Level) Input: matrix A of size $m \times n$ Output: echelon form of A starting at the top left and move down, find a leading entry and eliminate it from latter equations What if the first equation doesn't have the variable x_1 ? What if the first equation doesn't have the variable x_1 ? Swap rows with an equation that does. What if the first equation doesn't have the variable x_1 ? Swap rows with an equation that does. What if *none* of the equations have the variable x_1 ? What if the first equation doesn't have the variable x_1 ? Swap rows with an equation that does. What if *none* of the equations have the variable x_1 ? Find the *leftmost* variable which appears in *any* of the remaining equations. FUNCTION fwd_elim(A): ``` FUNCTION fwd_elim(A): FOR [i from 1 to m]: # for each row from top to bottom ``` ``` FUNCTION fwd_elim(A): FOR [i from 1 to m]: # for each row from top to bottom IF [rows i...m are all-zeros]: # if remaining rows are zero ``` ``` FUNCTION fwd_elim(A): FOR [i from 1 to m]: # for each row from top to bottom IF [rows i...m are all-zeros]: # if remaining rows are zero RETURN A ELSE: (j, k) ← [position of leftmost entry in the rows i...m] ``` ``` FUNCTION fwd_elim(A): FOR [i from 1 to m]: # for each row from top to bottom IF [rows i...m are all-zeros]: # if remaining rows are zero RETURN A ELSE: (j, k) ← [position of leftmost entry in the rows i...m] [swap row i and row j] ``` ``` FUNCTION fwd_elim(A): FOR [i from 1 to m]: # for each row from top to bottom IF [rows i...m are all-zeros]: # if remaining rows are zero RETURN A ELSE: (j, k) ← [position of leftmost entry in the rows i...m] [swap row i and row j] FOR [l from i + 1 to m]: # for all remaining rows ``` ``` FUNCTION fwd_elim(A): FOR [i from 1 to m]: # for each row from top to bottom IF [rows i...m are all-zeros]: # if remaining rows are zero RETURN A ELSE: (j, k) \leftarrow [position of leftmost entry in the rows i...m] [swap row i and row j] FOR [l from i + 1 to m]: # for all remaining rows [zero out A[l, k] using a replacement operation] ``` ``` FUNCTION fwd_elim(A): FOR [i from 1 to m]: # for each row from top to bottom IF [rows i...m are all-zeros]: # if remaining rows are zero RETURN A ELSE: (j, k) \leftarrow [position of leftmost entry in the rows i...m] [swap row i and row j] FOR [l from i + 1 to m]: # for all remaining rows [zero out A[l, k] using a replacement operation] RETURN A ``` $$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$ ``` \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ \hline 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} entry ``` ``` \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ \hline 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} entry ``` Swap R_1 and R_3 $$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$ $R_3 \leftarrow R_3 - R_1$ $$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$ swap R_2 with R_2 $$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$ ``` \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix} ``` $$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$ $$R_{3} \leftarrow R_{3} - \frac{3R_{2}}{2}$$ $$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ ``` \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} leftmost nonzero entry ``` ``` \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} leftmost nonzero entry ``` swap R_3 with R_3 $$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ done with elimination stage going to back substitution stage # Back Substitution Stage ### Back Substitution Stage (High Level) # Back Substitution Stage (High Level) **Input:** matrix A of size $m \times n$ in echelon form Output: reduced echelon form of A # Back Substitution Stage (High Level) Input: matrix A of size $m \times n$ in echelon form Output: reduced echelon form of A scale pivot positions and eliminate the variables for that column from the other equations FUNCTION back_sub(A): ``` FUNCTION back_sub(A): FOR [i from 1 to m]: # for each row from top to bottom ``` ``` FUNCTION back_sub(A): FOR [i from 1 to m]: # for each row from top to bottom IF [row i has a leading entry]: ``` ``` FUNCTION back_sub(A): FOR [i from 1 to m]: # for each row from top to bottom IF [row i has a leading entry]: j ← index of leading entry of row i ``` ``` FUNCTION back_sub(A): FOR [i from 1 to m]: # for each row from top to bottom IF [row i has a leading entry]: j \leftarrow index \ of \ leading \ entry \ of \ row \ i R_i(A) \leftarrow R_i(A) \ / \ A[i, j] \ # \ divide \ by \ leading \ entry ``` ``` FUNCTION back_sub(A): FOR [i from 1 to m]: # for each row from top to bottom IF [row i has a leading entry]: j ← index of leading entry of row i R_i(A) ← R_i(A) / A[i, j] # divide by leading entry FOR [k from 1 to i - 1]: # for the rows above the current one ``` ``` FUNCTION back_sub(A): FOR [i from 1 to m]: # for each row from top to bottom IF [row i has a leading entry]: j ← index of leading entry of row i R_i(A) \leftarrow R_i(A) / A[i, j] \# divide by leading entry FOR [k from 1 to i - 1]: # for the rows above the current one R_k(A) \leftarrow R_k(A) - R[k, j] * R_i(A) # zero out R[k, j] above the leading entry ``` ``` FUNCTION back_sub(A): FOR [i from 1 to m]: # for each row from top to bottom IF [row i has a leading entry]: j ← index of leading entry of row i R_i(A) \leftarrow R_i(A) / A[i, j] \# divide by leading entry FOR [k from 1 to i - 1]: # for the rows above the current one R_k(A) \leftarrow R_k(A) - R[k, j] * R_i(A) # zero out R[k, j] above the leading entry RETURN A ``` $$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ ``` \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} ``` $$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ $R_1 \leftarrow R_1 / 3$ $$\begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ $$R_2 \leftarrow R_2 / 2$$ $$\begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ ``` \begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} ``` $$\begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ $R_1 \leftarrow R_1 + 3R_2$ $$\begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ ``` \begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} ``` $$\begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ $R_3 \leftarrow R_3 / 1$ $$\begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ $$R_2 \leftarrow R_2 - R_1$$ $$\begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ ``` \begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} ``` ``` \begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} ``` $$R_1 \leftarrow R_1 - 5R_3$$ $$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ $$\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$ done with back substitution phase $$x_1 = (-24) + 2x_3 - 3x_4$$ $x_2 = (-7) + 2x_3 - 2x_4$ x_3 is free x_4 is free $x_5 = 4$ 1. Write your system as an augmented matrix 1. Write your system as an augmented matrix 2. Find the RREF of that matrix 1. Write your system as an augmented matrix 2. Find the RREF of that matrix 3. Read off the solution from the RREF 1. Write your system as an augmented matrix 2. Find the RREF of that matrix Gaussian elimination 3. Read off the solution from the RREF # Extra Topic: Analyzing the Algorithm We will not use $O(\cdot)$ notation! ``` We will not use O(\cdot) notation! ``` For numerics, we care about number of **FL**oating-oint **OP**erations (FLOPs): - >> addition - >> subtraction - >> multiplication - >> division - >> square root ``` We will not use O(\cdot) notation! ``` For numerics, we care about number of **FL**oating-oint **OP**erations (FLOPs): - >> addition - >> subtraction - >> multiplication - >> division - >> square root ``` 2n vs. n is very different when n \sim 10^{20} ``` that said, we don't care about exact bounds that said, we don't care about exact bounds A function f(n) is asymptotically equivalent to g(n) if $$\lim_{i \to \infty} \frac{f(i)}{g(i)} = 1$$ that said, we don't care about exact bounds A function f(n) is asymptotically equivalent to g(n) if $$\lim_{i \to \infty} \frac{f(i)}{g(i)} = 1$$ for polynomials, they are equivalent to their dominant term The **dominant term** of a polynomial is the monomial with the highest degree $$\lim_{i \to \infty} \frac{3x^3 + 100000x^2}{3x^3} = 1$$ $3x^3$ dominates the function even though the coefficient for x^2 is so large #### Parameters n: number of variables m : number of equations (we will assume m=n) n+1: number of rows in the augmented matrix ### The Cost of a Row Operation $$R_i \leftarrow R_i + aR_i$$ n+1 multiplications for the scaling n+1 additions for the row additions Tally: 2(n+1) FLOPS ### Cost of First Iteration of Elimination $$R_2 \leftarrow R_2 + a_2 R_1$$ $$R_3 \leftarrow R_3 + a_3 R_1$$ $$\vdots$$ $$R_n \leftarrow R_n + a_n R_1$$ Repeated row operations for each row except the first Tally: $\approx 2n(n+1)$ FLOPS ### Rough Cost of Elimination repeating this last process at most n times gives us a dominant term $2n^3$ we can give a better estimation... Tally: $\approx 2n^2(n+1)$ FLOPS ### Cost of Elimination At iteration *i*, we're only interested in rows after *i* And to the right of column *i* #### Cost of Elimination ``` Iteration 1: 2n(n+1) Iteration 2: 2(n-1)n Iteration 3: 2(n-2)(n-1) \vdots ``` $$\sum_{k=1}^{n} 2k(k+1) \approx \frac{2n(n+1)(2n+1)}{6} \sim (2/3)n^3$$ Tally: $\sim (2/3)n^3$ FLOPS #### Cost of Back Substitution ``` (Let's assume no free variables) for each pivot, we only need to: >> zero out a position in 1 row (0 FLOPS) >> add a value to the last row (1 FLOP) at most 1 FLOP per row per pivot ~ n² ``` Tally: $\sim (2/3)n^3$ FLOPS ### Cost of Gaussian Elimination Tally: $$\sim (2/3)n^3$$ FLOPS (dominated by elimination) ### Summary Echelon form matrices "represent solutions" **General form solutions** can be used to describe the infinite solution sets **Gaussian elimination** uses forward elimination and back-substitution to solve linear equations in general