# Linear Transformations

Geometric Algorithms
Lecture 7

#### Practice Problem

Find three vectors  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$  in  $\mathbb{R}^3$  such that

- » every pair of vectors (i.e.,  $\{v_1, v_2\}$ ,  $\{v_1, v_3\}$ ,  $\{v_2, v_3\}$ ) are linearly independent
- $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$  is linearly dependent coplanar

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\vec{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

### Objectives

- » Introduce Matrix Transformations
- » Define Linear Transformations
- » Start looking at the Geometry of Linear
  Transformations

### Keywords

Transformations

Domain, Codomain

Image, Range

Matrix Transformations

Linear Transformations

Additivity, Homogeneity

Dilation, Contraction, Shearing, Rotation

# Recap

### Recap: Homogenous Linear Systems

**Definition.** A system of linear equations is called *homogeneous* if it can be expressed as

$$A\mathbf{x} = \mathbf{0}$$

### Recap: Linear Independence

**Definition.** A set of vectors  $\{\mathbf v_1, \mathbf v_2, ..., \mathbf v_n\}$  is **linearly independent** if the vectors equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = \mathbf{0}$$

has exactly one solution (the trivial solution).

### Recap: Linear Independence

**Definition.** A set of vectors  $\{\mathbf v_1, \mathbf v_2, ..., \mathbf v_n\}$  is **linearly independent** if the vectors equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n = \mathbf{0}$$

has exactly one solution (the trivial solution).

The columns of A are linearly independent if  $A\mathbf{x} = \mathbf{0}$  has exactly one solution.

### Recap: Linear Dependence

**Definition.** A set of vectors  $\{v_1, v_2, ..., v_n\}$  is *linearly dependent* if the vectors equation

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n = \mathbf{0}$$

has a nontrivial solution.

### Recap: Linear Dependence

**Definition.** A set of vectors  $\{v_1, v_2, ..., v_n\}$  is **linearly dependent** if the vectors equation

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots + x_n \mathbf{v}_n = \mathbf{0}$$

has a nontrivial solution.

A set of vectors is linearly dependent if there is a nontrivial linear combination of the vectors which equals 0.

### Recap: Linear Dependence

**Definition.** A set of vectors  $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$  is **linearly dependent** if it is nonempty and one of its vectors can be written as a linear combination of the others (not including itself).

### Linear Dependence (Pictorally)





### Recall: Linear Dependence Relation

**Definition.** If  $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$  are linearly dependent, then a *linear dependence relation* is an equation of the form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n = \mathbf{0}$$

A linear dependence relation witnesses the linear dependence.

### Example

Write down the linear dependence relation for the following vectors.

$$\mathbf{v}_1 = \begin{bmatrix} -4\\4\\2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -3\\6\\-3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -5\\8\\-2 \end{bmatrix}$$

### Example

$$\mathbf{v}_1 = \begin{bmatrix} -4 \\ 4 \\ 2 \end{bmatrix}$$

$$\mathbf{v}_2 = \begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix}$$

$$\mathbf{v}_3 = \begin{bmatrix} -5 \\ 8 \\ -2 \end{bmatrix}$$

$$x_{1}\vec{v}_{1} + x_{2}\vec{v}_{1} + x_{3}\vec{v}_{3} = \vec{0}$$

$$\begin{bmatrix} -4 & -3 & -5 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 6 & 8 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 4 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 7 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 7 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 & 7 \\ 7 & 7 & 7 \end{bmatrix} \sim \begin{bmatrix} 7 & 7 &$$

$$\begin{bmatrix} -4 & -3 & -5 \\ u & 6 & 8 \\ 1 & -3 & -7 \end{bmatrix} \sim \begin{bmatrix} 2 & -3 & -7 \\ 4 & 6 & 84 \\ 2 & -3 & -7 \end{bmatrix} \sim \begin{bmatrix} 2 & -3 & -7 \\ 0 & 11/2 & 11/2 \\ -4^{44} - 3^{-6} - 5^{4} \end{bmatrix} \sim \begin{bmatrix} 2 & -3 & -7 \\ 0 & 11/2 & 11/2 \\ 0 & 1-/9 & 1-/9 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -3 & -27 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0.5 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$-\bar{v}_1 - 2\bar{v}_2 + 2\bar{v}_3 = 0$$

**Theorem.**  $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$  are linearly dependent if and only there is an  $i \leq n$ ,

 $\mathbf{v}_i \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{i-1}\}$ 

**Theorem.**  $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$  are linearly dependent if and only there is an  $i \leq n$ ,

$$\mathbf{v}_i \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{i-1}\}$$

As we add vectors, we'll eventually find one in the span of the preceding ones.



span of 1 vector a line



span of 1 vector a line



span of 2 vector a plane



span of 1 vector a line



span of 2 vector a plane



span of 3 vector still a plane

### Recap: Linear Dependence Relations

When finding a linear dependence relation, we came across a system which a free variable

$$\begin{bmatrix} -4 & -3 & -5 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

we can take  $x_3$  to be free

**Theorem.** The columns of a matrix A are linearly independent if and only if A has a pivot in every <u>column</u>.

**Theorem.** The columns of a matrix A are linearly independent if and only if A has a pivot in every <u>column</u>.

Remember that we choose our free variables to be the ones whose columns don't have pivots.

**Theorem.** The columns of a matrix A are linearly independent if and only if A has a pivot in every <u>column</u>.

Remember that we choose our free variables to be the ones whose columns don't have pivots.

Free variables allow for infinitely many (nontrivial) solution.

### Recap: Linear Independence

**Question.** Is the set of vectors  $\{a_1, a_2, ..., a_n\}$  linearly independent?

**Solution.** Reduce  $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$  to echelon form and check if has a pivot position in every column.

### Recap: Example

$$\mathbf{v}_1 = \begin{bmatrix} -4 \\ 4 \\ 2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} -3 \\ 6 \\ -3 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} -5 \\ 8 \\ -2 \end{bmatrix}$$

The reduced echelon form of  $[v_1 \ v_2 \ v_3]$  is

$$\begin{bmatrix} 1 & 0 & 0.5 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} \text{column} \\ \text{without a} \\ \text{nivot} \end{array}$$

pivot

#### Recap: Linear Independence and Full Span

The columns of a  $(m \times n)$  matrix span all of  $\mathbb{R}^n$  if there is a pivot in every  $\underline{row}$ .

The columns of a matrix are linearly independent if there is a pivot in every <u>column</u>.

Don't confuse these!

# Matrix Transformations

### Recall: Spans (with Matrices)

**Definition.** The *span* of a set of vectors is the set of all possible linear combinations of them.

$$span\{a_1, a_2, ..., a_n\} = \{[a_1 \ a_2 \ ... \ a_n] \ v : v \in \mathbb{R}^n\}$$

### Recall: Spans (with Matrices)

**Definition.** The *span* of a set of vectors is the set of all possible linear combinations of them.

$$span\{a_1, a_2, ..., a_n\} = \{[a_1 \ a_2 \ ... \ a_n] \ v : v \in \mathbb{R}^n\}$$

The span of the columns of a matrix *A* is the set of of vectors resulting from multiplying *A* by any vector.

#### Matrices as Transformations

Matrices allow us to transform vectors

The transformed vector lies in the span of its columns

$$X \mapsto AX$$

map a vector  $\mathbf{x}$  to the vector  $A\mathbf{v}$ 

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ 1 \\ x_2 \end{bmatrix}$$



#### !!Important!!

The vector may be a different size after translation.

#### Recall: Matrix-Vector Multiplication and Dimension

matrix-vector multiplication only works if the number of *columns* of the matrix matches the dimension of the vector









### Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

### Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

#### A New Interpretation of the Matrix Equation

 $A\mathbf{x} = \mathbf{b}$ ?  $\equiv$  is there a vector which A transforms into  $\mathbf{b}$ ?

Solve  $A\mathbf{x} = \mathbf{b} \equiv \text{find a vector which } A$ transforms into  $\mathbf{b}$ 

### Question (Conceptual)

Suppose a matrix transforms a vector according to the following picture. What is the size of the matrix?





 $\mathbb{R}^n \to \mathbb{R}^n$ 

Mapping between the same space can be viewed as a way of moving around points.



# Transformations

**Definition.** A *transformation* T from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a function which maps every vector  $\mathbf{v}$  in  $\mathbb{R}^n$  to a vector  $T(\mathbf{v})$  in  $\mathbb{R}^m$ .

**Definition.** A *transformation* T from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a function which maps every vector  $\mathbf{v}$  in  $\mathbb{R}^n$  to a vector  $T(\mathbf{v})$  in  $\mathbb{R}^m$ .

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

**Definition.** A *transformation* T from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a function which maps every vector  $\mathbf{v}$  in  $\mathbb{R}^n$  to a vector  $T(\mathbf{v})$  in  $\mathbb{R}^m$ .

$$T: \mathbb{R}^n o \mathbb{R}^m$$
 domain codomain

**Definition.** A *transformation* T from  $\mathbb{R}^n$  to  $\mathbb{R}^m$  is a function which maps every vector  $\mathbf{v}$  in  $\mathbb{R}^n$  to a vector  $T(\mathbf{v})$  in  $\mathbb{R}^m$ .

$$T: \mathbb{R}^n o \mathbb{R}^m$$
 domain codomain

It's just a function, like in calculus.

**Definition.** For a vector  $\mathbf{v}$ , the *image* of  $\mathbf{v}$  under the transformation T is the vector  $T(\mathbf{v})$ 

**Definition.** For a vector  $\mathbf{v}$ , the *image* of  $\mathbf{v}$  under the transformation T is the vector  $T(\mathbf{v})$ 

**Definition.** The *range* of a transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is the set of all possible images under T

**Definition.** For a vector  $\mathbf{v}$ , the *image* of  $\mathbf{v}$  under the transformation T is the vector  $T(\mathbf{v})$ 

**Definition.** The *range* of a transformation  $T: \mathbb{R}^n \to \mathbb{R}^m$  is the set of all possible images under T

$$\operatorname{ran}(T) = \{ T(\mathbf{v}) : \nu \in \mathbb{R}^n \}$$

image of  ${\bf v}$  under  $T\equiv$  output of T applied to  ${\bf v}$  range of  $T\equiv$  all possible output of T

### Codomain and Range

The codomain and range of a transformation may or may not be the same



### Codomain and Range

The codomain and range of a transformation may or may not be the same



### Codomain and Range

The codomain and range of a transformation may or may not be the same



The range is always contained in the codomain

$$X_1^2$$
 $X_2$ 
 $X_3$ 
 $X_4$ 
 $X_5$ 
 $X_7$ 
 $X_$ 

$$\left\{ \begin{bmatrix} 7, \\ 22 \end{bmatrix} : 7 \in \mathbb{R}, 7 \in \mathbb{R} \right\}$$

$$\left[ 7, \\ 7, \\ 7, \\ 7 \right]$$

# Matrix Transformations

The *transformation of a*  $(m \times n)$  *matrix* A is the function  $T: \mathbb{R}^n \to \mathbb{R}^m$  such that

$$T(\mathbf{v}) = A\mathbf{v}$$

The *transformation of a*  $(m \times n)$  *matrix* A is the function  $T: \mathbb{R}^n \to \mathbb{R}^m$  such that

$$T(\mathbf{v}) = A\mathbf{v}$$

given v, return A multiplied by v

The transformation of a  $(m \times n)$  matrix A is the function  $T: \mathbb{R}^n \to \mathbb{R}^m$  such that

$$T(\mathbf{v}) = A\mathbf{v}$$

given v, return A multiplied by v

e.g. 
$$T(\mathbf{v}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{v}$$
 $T = \mathbf{v}$ 
 $T(\mathbf{v}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{v}$ 
 $T(\mathbf{v}) = \mathbf{v}$ 

$$T \left( \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left( \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = 2 \left($$

The span of the columns of a matrix A is the set of all possible images under A

The span of the columns of a matrix A is the set of all possible images under A

$$span\{a_1, a_2, ..., a_n\} = ran([a_1 \ a_2 \ ... \ a_n])$$

The span of the columns of a matrix A is the set of all possible images under A  $\{ [\widehat{a_1} ... \widehat{a_n}] \widehat{v} : v \in \mathbb{R}^n \} = \{ [\widehat{a_1} ... \widehat{a_n}] \widehat{v} : \widehat{v} \in \mathbb{R}^n \}$   $span \{ \mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n \} = ran([\mathbf{a}_1 \ \mathbf{a}_2 \ ... \ \mathbf{a}_n])$ 

The transformation of a vector  $\mathbf{v}$  under the matrix A always lies in the span of its columns

### Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

# Linear Transformations

#### Recall: Algebraic Properties

Matrix-vector multiplication satisfies the following two properties:

1. 
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
 (additivity)

2. 
$$A(c\mathbf{v}) = c(A\mathbf{v})$$
 (homogeneity)

#### Example

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \left( \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{pmatrix} = 2 \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{pmatrix}$$

#### Example

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \left( \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) =$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} =$$

#### Example

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \left( 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right) =$$

#### Linear Transformations

**Definition.** A transformation  $T: \mathbb{R}^m \to \mathbb{R}^n$  is **linear** if it satisfies the following two properties

1. 
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 (additivity)

2. 
$$T(c\mathbf{v}) = cT(\mathbf{v})$$
 (homogeneity)

#### Linear Transformations

**Definition.** A transformation  $T: \mathbb{R}^m \to \mathbb{R}^n$  is **linear** if it satisfies the following two properties

1. 
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 (additivity)

2. 
$$T(c\mathbf{v}) = cT(\mathbf{v})$$
 (homogeneity)

Matrix transformations are linear transformations

# Example: Identity

$$T(\mathbf{v}) = \mathbf{v}$$

$$T(\vec{u} + \vec{r}) = \vec{u} + \vec{r} = T(\vec{u}) + T(\vec{r})$$

$$T(-\vec{u}) = (\vec{u} = c T(\vec{u}))$$

# Example: Zero

$$T(\mathbf{v}) = \mathbf{0}$$

$$T(\vec{u}+\vec{r}) = \vec{0} = \vec{0} + \vec{0} = T(\hat{n}) + T(\hat{v})$$

$$T(c\hat{n}) = \vec{0} = c\vec{0} = cT(\hat{n}) \checkmark$$

#### Example: Rotation

We'll see this on Thursday, but we can reason about it geometrically for now.



#### Example: Indefinite Integrals

$$T(f) = \int f(x)dx$$
 Disclaimer: Advanced Material

the same goes for derivatives (how are functions vectors???)

#### Example: Expectation

$$T(X) = \mathbb{E}[X]$$

Disclaimer:
Advanced
Material

This is exactly <u>linearity</u> of expectation.

(how are random variables vectors???)

#### Non-Example: Squares

$$T(x) = x^{2}$$
Note that  $T: \mathbb{R}^{1} \to \mathbb{R}^{1}$ 

$$(5+1)^{2} \neq 5^{2} + 1^{2}$$

#### Non-Example: Translation



# Properties of Linear Transformations

$$T(0) = ???$$

$$T(0) = 0$$

$$T(\vec{0}) = T(\vec{0}) = (\vec{0}) = \vec{0}$$

$$T(0) = 0$$

The zero vector is *fixed* by linear transformations.

$$T(\mathbf{0}) = \mathbf{0} \quad \left( \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right)^{2} \quad \left( \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right)^{2}$$

Note: These may be different dimensions!

The zero vector is *fixed* by linear transformations.

$$T(a\mathbf{v} + b\mathbf{u}) = aT(\mathbf{v}) + bT(\mathbf{u})$$

$$T(a\mathbf{v} + b\mathbf{u}) = aT(\mathbf{v}) + bT(\mathbf{u})$$

$$T(a\mathbf{v} + b\mathbf{u}) = aT(\mathbf{v}) + bT(\mathbf{u})$$

$$T(a\mathbf{v} + b\mathbf{u})$$

$$T(a\mathbf{v} + b\mathbf{u}) = aT(\mathbf{v}) + bT(\mathbf{u})$$

$$T(a\mathbf{v} + b\mathbf{u})$$

$$= T(a\mathbf{v}) + T(b\mathbf{u})$$
 (additivity)

$$T(a\mathbf{v} + b\mathbf{u}) = aT(\mathbf{v}) + bT(\mathbf{u})$$

$$T(a\mathbf{v} + b\mathbf{u})$$

$$= T(a\mathbf{v}) + T(b\mathbf{u})$$
 (additivity)

$$= aT(\mathbf{v}) + bT(\mathbf{u})$$
 (homogeneity for each term)

**Theorem.** A transformation  $T: \mathbb{R}^m \to \mathbb{R}^n$  is linear if and only if for any vectors  $\mathbf{u}$  and  $\mathbf{v}$  in  $\mathbb{R}^m$  and any real numbers a and b,

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$$

**Theorem.** A transformation  $T: \mathbb{R}^m \to \mathbb{R}^n$  is linear if and only if for any vectors  $\mathbf{u}$  and  $\mathbf{v}$  in  $\mathbb{R}^m$  and any real numbers a and b,

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$$

It's often easiest to show this single condition

#### Linear Combinations

$$T(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \dots + a_n\mathbf{v}_n) = a_1T(\mathbf{v}_1) + a_2T(\mathbf{v}_2) + \dots + a_nT(\mathbf{v}_n)$$

We can generalize this condition to any linear combination

#### Linear Combinations

$$T\left(\sum_{i=1}^{n} a_i \mathbf{v}_i\right) = \sum_{i=1}^{n} a_i T(\mathbf{v}_i)$$

We can generalize this condition to any linear combination

#### Linear Combinations

$$T\left(\sum_{i=1}^{n} a_i \mathbf{v}_i\right) = \sum_{i=1}^{n} a_i T(\mathbf{v}_i)$$

We can generalize this condition to any linear combination

This is the most useful form

# **Geometry of Matrix Transformations**

#### Motivating Questions

What kind of functions can we define in this way?

How do we interpret what the transformation does to a set of vectors?

How does this relate back to matrix equations?

# Matrix transformations change the "shape" of a set of set of vectors (points).

# Example: Dilation



# Example: Dilation

$$\begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} rx_1 \\ rx_2 \end{bmatrix}$$



if r > 1, then the transformation pushes points away from the origin.

# Example: Contraction



# Example: Contraction

$$\begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} rx_1 \\ rx_2 \end{bmatrix}$$



if  $0 \le r \le 1$ , then the transformation pulls points towards the origin.

# Example: Shearing



# Example: Shearing

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}$$



Imagine shearing like with rocks or metal.

# Question



Draw how this matrix transforms points. What kind of transformation does it represent?

#### Answer: Reflection



# demo

#### Summary

Matrices can be viewed as linear transformations

Matrix transformations change the **shape** of points sets

Linear transformations behave well with respect to linear combinations