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Practice Problem

Suppose that  is a linear transformation with the 
above input-output behavior. 

What is the domain of ? What is the codomain of ? 

What is the value of ?

T

T T

T ([ 2
−3])

T ([1
0]) = 9 T ([0

1]) = 2



Answer T ([1
0]) = 9 T ([0

1]) = 2



Objectives

» Look at more examples of linear transformations 

» Show that matrix transformations and linear 
transformations are really the same thing 

» See more the geometry of linear transformations 

» Relate the properties of matrix equations to 
properties of linear transformations



Keywords

matrix of a linear transformation 

standard basis vectors (standard coordinate vectors) 

2D linear transformations 

the unit square 

one-to-one 

onto



Recap



Recap: Matrices as Transformations

Matrices allow us to transform vectors 

The transformed vector lies in the span of its 
columns

x ↦ Ax
map a vector  to the vector x Av



Recap: Transformation of a Matrix

The transformation of a  matrix  is the 
function  such that 

 

given , return  multiplied by  

e.g. 

(m × n) A
T : ℝn → ℝm

T(v) = Av

v A v

T(v) = [1 1
0 1] v



Recap: Motivating Questions

What kind of functions can we define in this 
way? 

How do we interpret what the transformation 
does to a set of vectors? 

How does this relate back to matrix equations?



Recap: Linear Transformations

Definition. A transformation  is 
linear if it satisfies the following two 
properties 

    1.     (additivity) 

    2.           (homogeneity)

T : ℝm → ℝn

T(u + v) = T(u) + T(v)

T(cv) = cT(v)



Recap: Linear Transformations

Definition. A transformation  is 
linear if it satisfies the following two 
properties 

    1.     (additivity) 

    2.           (homogeneity)

T : ℝm → ℝn

T(u + v) = T(u) + T(v)

T(cv) = cT(v)

Matrix transformations are linear transformations



Verification

any matrix transformation: 

rotation about the origin: 

translation (non-example):



Recap: Linear Combinations

We can generalize linearity to any linear 
combination

T (
n

∑
i=1

aivi) =
n

∑
i=1

aiT(vi)



Our Next Motivating Question



Our Next Motivating Question

We know that matrix transformations are linear 
transformations



Our Next Motivating Question

We know that matrix transformations are linear 
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Are there any other kinds of linear 
transformations?



Our Next Motivating Question

We know that matrix transformations are linear 
transformations

Are there any other kinds of linear 
transformations?

NO



Matrix of a Linear Transformation

Theorem. A transformation  is linear if and 
only if there is a matrix whose corresponding 
transformation is  (which "implements" ) 

T

T T



Matrix of a Linear Transformation

Theorem. A transformation  is linear if and 
only if there is a matrix whose corresponding 
transformation is  (which "implements" ) 

T

T T

Linear transformations are exactly 
matrix transformations



A Fundamental Concern

Given a linear transformation , how do we find 
the matrix  such that ?

T
A T(v) = Av



A Thought Experiment

Suppose I tell you  is a linear transformation 
and 

 

Do we know what  is?

T

T ([1
2]) = [3

4] T ([3
4]) = [5

6]
T ([4

6])



Answer: Yes

Because of additivity: 

T ([4
6]) =

T ([1
2]) = [3

4] T ([3
4]) = [5

6]



A Thought Experiment

What about: 

 T ([2
3]) =

T ([1
0]) =

T ([1
2]) = [3

4] T ([3
4]) = [5

6]



The Takeaway

Linearity is a very strong restriction 

If we know the values of  on any set 
of vectors which spans all of , then we know 
. 

why?

T : ℝn → ℝm

ℝn

T



Another Thought Experiment (Game)
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Another Thought Experiment (Game)

Suppose I am holding a matrix A

Your objective is to figure out what  isA

But you're only allowed to ask the question:

What is ?Av

(you pick the 's, and I have to tell the truth)v



Another Thought Experiment (Game)

Suppose I am holding a matrix A

Your objective is to figure out what  isA

But you're only allowed to ask the question:

What is ?Av

(you pick the 's, and I have to tell the truth)v
This is basically linear algebraic battleship



Recall: Calculating Av

a11 a12 … a1n
a21 a22 … a2n
⋮ ⋮ ⋱ ⋮

am1 am2 … amn

v1
v2
⋮
vn

=

?
?
⋮
?

b1 = a11v1 + a12v2 + … + a1nvn =
n

∑
i=1

a1ivi



Recall: Matrix-Vector Multiplication

Definition. Given a  matrix  with columns 
, and a vector  in , we define 

(m × n) A
a1, a2, …, an v ℝn

Av = [a1 a2 … an]

v1
v2
⋮
vn

= v1a1 + v2a2 + …vnan



Recall: Matrix-Vector Multiplication

Definition. Given a  matrix  with columns 
, and a vector  in , we define 
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a1, a2, …, an v ℝn
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Recall: Matrix-Vector Multiplication

Definition. Given a  matrix  with columns 
, and a vector  in , we define 

(m × n) A
a1, a2, …, an v ℝn

Av = [a1 a2 … an]

v1
v2
⋮
vn

= v1a1 + v2a2 + …vnan

 is a linear combination of the columns of  with 
weights given by 

Av A
v



Isolating a11 b1 = a11v1 + a12v2 + … + a1nvn =
n

∑
i=1

a1ivi



Isolating a11 b1 = a11v1 + a12v2 + … + a1nvn =
n

∑
i=1

a1ivi

We actually get the whole column a1

So its like battleship, but you get to 
choose one column at a time.



The Takeaway

We can learn the first column of the matrix 

implementing  by looking at T T

1
0
⋮
0



Matrix of a Linear 
Transformation



Standard Basis

Definition. The -dimensional standard basis vectors (or 
standard coordinate vectors) are the vectors  where 

n
e1, …, en

ei =

0
0
⋮
0
1
0
⋮
0
0

1
2
⋮

i − 1
i

i + 1
⋮

n − 1
n



Standard Basis

Definition (Alternative). The -dimensional 
standard basis vectors  are the columns 
of the  identity matrix 

n
e1, …, en

n × n

I = [e1 e2 … en]



Standard Basis and the Matrix Equation

The key points:  

The standard basis vectors gives us a way to 
"look into" a matrix

[a1 a2 … an] ei = ai



Standard Basis and Vector Coordinates

Column vectors can be viewed as describing how 
to write a vector as a linear combination of 
the standard basis

v1
v2
⋮
vn

= v1e1 + v2e2 + … + vnen



Standard Basis and Linear Transformations

Theorem. For any linear transformation 
, the matrix 

 

is the unique matrix such that  for all  
in 

T : ℝn → ℝm

A = [T(e1) T(e2) … T(en)]
T(v) = Av v

ℝn



More Formally
T(v) =

= [T(e1) T(e2) … T(en)] v



How To: Matrices of Linear Transformations

Question. Find the matrix which implements the 
transformation  

Solution. Determine the images of standard 
basis under . Then write down 

 

T : ℝn → ℝm

T

[T(e1) T(e2) … T(en)]



Question

Write done the matrix which implements the 
linear transformation  which rotates vectors 
by 90 degrees clockwise

T



Answer



General Rotation
Additivity Homogeneity

Rotation a Linear Transformation



Geometry of Matrix 
Transformations



Motivating Questions

What kind of functions can we define in this 
way? 

How do we interpret what the transformation 
does to a set of vectors? 

How does this relate back to matrix equations?



Matrix transformations change the 
"shape" of a set of set of 

vectors (points). 



Example: Dilation



Example: Dilation

[2 0
0 2] x

[r 0
0 r] [x1

x2] = [rx1
rx2]

if , then the transformation pushes 
points away from the origin.

r > 1



Example: Contraction



Example: Contraction

[0.5 0
0 0.5] x

[r 0
0 r] [x1

x2] = [rx1
rx2]

if , then the transformation 
pulls points towards the origin.

0 ≤ r ≤ 1



Example: Shearing



Example: Shearing

[1 1
0 1] x

[1 1
0 1] [x1

x2] = [x1 + x2
x2 ]

Imagine shearing like with rocks or 
metal.



Question

[1 0
0 −1] x

Draw how this matrix transforms points. What kind of 
transformation does it represent?



Answer: Reflection

[1 0
0 −1] x



General Rotation

How does 
rotation 

affect the 
standard 
basis?



Rotation Matrix



Rotation Matrix

[cos θ −sin θ
sin θ cos θ ]



Rotation Matrix

[cos θ −sin θ
sin θ cos θ ]

Note: This is rotation about the origin



Rotation Matrix

[cos θ −sin θ
sin θ cos θ ]

Note: This is rotation about the origin

The Takeaway: We can figure out the matrices 
which implement complex linear transformations by 
understanding what they do to the standard basis



Question (Conceptual)

Is rotation about a point other than the origin 
a linear transformation?



Answer: No
The origin is not 
fixed by this 
transformation



The Unit Square

The unit square is 
the set of points in 
 enclosed by the 

points , , 
, .

ℝ2

(0,0) (0,1)
(1,0) (1,1)



How To: The Unit Square and Matrices



How To: The Unit Square and Matrices

Question. Find the matrix which implements the 
linear transformation which is represented 
geometrically in the following picture



How To: The Unit Square and Matrices

Question. Find the matrix which implements the 
linear transformation which is represented 
geometrically in the following picture

Solution. Find where the standard basis vectors 
go



Question

Write down the matrix for 
the following shearing 
operation using this 
method



Answer



You need to know these matrices, 
but you don't need to memorize them 

Remember: What does this matrix do 
to the unit square? Then build the 

matrix from there



Reflection through the -axisx2



Projections



A 3D Example: Rotation about the -Axis ( -Axis)x3 z

image source

x3

https://learninglink.oup.com/access/content/neuroscience-sixth-edition-student-resources/web-topic-14-1


List of Important 2D Linear Transformations

» dilation, contraction 
» reflections 
» projections 
» horizontal/vertical contractions 
» horizontal/vertical shearing 

Look through the notes for a comprehensive 
collection of pictures or...



demo



One-to-One and Onto



Recall: Motivating Questions

What kind of functions can we define in this 
way? 

How do we interpret what the transformation 
does to a set of vectors? 

How does this relate back to matrix equations?



Recall: A New Interpretation of the Matrix Equation

?            is there a vector which     
                   transforms into ? 

Solve        find a vector which   
                   transforms into  

Ax = b ≡ A
b

Ax = b ≡ A
b



Recall: A New Interpretation of the Matrix Equation

?            is there a vector which     
                   transforms into ? 

Solve        find a vector which   
                   transforms into  

Ax = b ≡ A
b

Ax = b ≡ A
b

What about other questions?



Other Questions Like...

Does  have a solution for any choice of ? 

Does  have a unique solution?

Ax = b b

Ax = 0



Other Questions Like...

Does  have at least one solution for any 
choice of ? 

Does  have at most one solution for any 
choice of ?

Ax = b
b

Ax = b
b



Wait

 has a               has at most one 
unique solution           solution 

why?:

Ax = 0 ≡ Ax = b



Onto and One-to-One



Onto and One-to-One

Definition. A transformation  is onto 
if any vector  in  is the image of at least 
one vector  in  (where )

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b



Onto and One-to-One

Definition. A transformation  is onto 
if any vector  in  is the image of at least 
one vector  in  (where )

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b

Definition. A transformation  is one-
to-one if any vector  in  is the image of at 
most one vector  in  (where )

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b



Onto (Pictorially)

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald



Onto (Pictorially)

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

 is onto if its range = its codomainT



One-to-One (Pictorially)

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald
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»   is ontoT
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Taking Stock: Onto

Theorem. The following are logically equivalent 
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»   has a solution for any choice of Ax = b b
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Taking Stock: Onto

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ℝn → ℝm

A

»   is ontoT
»   has a solution for any choice of Ax = b b
»  𝗋𝖺𝗇𝗀𝖾(T) = 𝖼𝗈𝖽𝗈𝗆𝖺𝗂𝗇(T)
»  the columns of  span A ℝm

»   has a pivot position in every rowA
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Taking Stock: One-to-One
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Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ℝn → ℝm

A

»  is one-to-oneT
»  has at most one solution for any Ax = b b
»  has only the trivial solutionAx = 0
» The columns of  are linearly independentA
»  has a pivot position in every columnA



Example: both 1-1 and onto

Rotation about the origin: 

 

why?:

[cos θ −sin θ
sin θ cos θ ]



Example: 1-1, not onto

Lifting: 

 

why?:

[x1
x2] ↦

x1
x2

x1 + x2



Example: not 1-1, not onto

Projection onto the  axis: 

 

why?:

x1

[1 0
0 0]



Example: onto, not 1-1

Projection from  to . 

 

why?:

ℝ3 ℝ2

x1
x2
x3

↦ [x1
x2]



Summary

Matrix transformations and linear 
transformations are the same thing 

We can find these matrices by looking at how the 
transformation behaves on the standard basis 

We can reason about matrix equations by directly 
reasoning about the linear transformations


