Matrices of Linear Transformations Geometric Algorithms Lecture 8 #### Practice Problem $$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = 9 \qquad \qquad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = 2$$ Suppose that T is a linear transformation with the above input-output behavior. What is the domain of T? What is the codomain of T? What is the value of $$T\left(\begin{bmatrix}2\\-3\end{bmatrix}\right)$$? #### Answer $$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = 9 \qquad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = 2$$ ## Objectives - » Look at more examples of linear transformations - Show that matrix transformations and linear transformations are really the same thing - » See more the geometry of linear transformations - » Relate the properties of matrix equations to properties of linear transformations ## Keywords ``` matrix of a linear transformation standard basis vectors (standard coordinate vectors) 2D linear transformations the unit square one-to-one onto ``` ## Recap ## Recap: Matrices as Transformations Matrices allow us to transform vectors The transformed vector lies in the span of its columns $$X \mapsto AX$$ map a vector \mathbf{x} to the vector $A\mathbf{v}$ ## Recap: Transformation of a Matrix The *transformation of a* $(m \times n)$ *matrix* A is the function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $$T(\mathbf{v}) = A\mathbf{v}$$ given v, return A multiplied by v $$e.g. \quad T(\mathbf{v}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \mathbf{v}$$ ## Recap: Motivating Questions What kind of functions can we define in this way? How do we interpret what the transformation does to a set of vectors? How does this relate back to matrix equations? ## Recap: Linear Transformations **Definition.** A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is **linear** if it satisfies the following two properties 1. $$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$ (additivity) 2. $$T(c\mathbf{v}) = cT(\mathbf{v})$$ (homogeneity) ## Recap: Linear Transformations **Definition.** A transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ is **linear** if it satisfies the following two properties 1. $$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$ (additivity) 2. $$T(c\mathbf{v}) = cT(\mathbf{v})$$ (homogeneity) Matrix transformations are linear transformations #### Verification any matrix transformation: rotation about the origin: translation (non-example): ## Recap: Linear Combinations $$T\left(\sum_{i=1}^{n} a_i \mathbf{v}_i\right) = \sum_{i=1}^{n} a_i T(\mathbf{v}_i)$$ We can generalize linearity to any linear combination We know that matrix transformations are linear transformations We know that matrix transformations are linear transformations Are there any other kinds of linear transformations? We know that matrix transformations are linear transformations Are there any other kinds of linear transformations? NO #### Matrix of a Linear Transformation **Theorem.** A transformation T is linear if and only if there is a matrix whose corresponding transformation is T (which "implements" T) #### Matrix of a Linear Transformation **Theorem.** A transformation T is linear if and only if there is a matrix whose corresponding transformation is T (which "implements" T) Linear transformations are **exactly** matrix transformations #### A Fundamental Concern Given a linear transformation T, how do we find the matrix A such that $T(\mathbf{v}) = A\mathbf{v}$? ## A Thought Experiment Suppose I tell you ${\it T}$ is a linear transformation and $$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix} \qquad T\left(\begin{bmatrix}3\\4\end{bmatrix}\right) = \begin{bmatrix}5\\6\end{bmatrix}$$ Do we know what $$T\begin{pmatrix} 4 \\ 6 \end{pmatrix}$$ is? #### Answer: Yes $$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix} \qquad T\left(\begin{bmatrix}3\\4\end{bmatrix}\right) = \begin{bmatrix}5\\6\end{bmatrix}$$ Because of additivity: $$T\left(\begin{bmatrix}4\\6\end{bmatrix}\right) =$$ ## A Thought Experiment $$T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix} \qquad T\left(\begin{bmatrix}3\\4\end{bmatrix}\right) = \begin{bmatrix}5\\6\end{bmatrix}$$ What about: $$T\left(\begin{bmatrix}2\\3\end{bmatrix}\right) =$$ $$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) =$$ ## The Takeaway Linearity is a very strong restriction If we know the values of $T: \mathbb{R}^n \to \mathbb{R}^m$ on **any** set of vectors which spans all of \mathbb{R}^n , then we know T. why? Suppose I am holding a matrix A Suppose I am holding a matrix A Your objective is to figure out what A is Suppose I am holding a matrix A Your objective is to figure out what A is But you're only allowed to ask the question: Suppose I am holding a matrix A Your objective is to figure out what A is But you're only allowed to ask the question: What is Av? Suppose I am holding a matrix A Your objective is to figure out what A is But you're only allowed to ask the question: What is Av? (you pick the v's, and I have to tell the truth) Suppose I am holding a matrix A Your objective is to figure out what A is But you're only allowed to ask the question: What is Av? (you pick the v's, and I have to tell the truth) This is basically linear algebraic battleship ## Recall: Calculating Av $$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ \vdots \\ ? \end{bmatrix}$$ $$b_1 = a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n = \sum_{i=1}^{n} a_{1i}v_i$$ ## Recall: Matrix-Vector Multiplication **Definition.** Given a $(m \times n)$ matrix A with columns $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$, and a vector \mathbf{v} in \mathbb{R}^n , we define $$A\mathbf{v} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots v_n \mathbf{a}_n$$ ## Recall: Matrix-Vector Multiplication **Definition.** Given a $(m \times n)$ matrix A with columns $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$, and a vector \mathbf{v} in \mathbb{R}^n , we define $$A\mathbf{v} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix} = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots + v_n \mathbf{a}_n$$ ## Recall: Matrix-Vector Multiplication **Definition.** Given a $(m \times n)$ matrix A with columns $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n$, and a vector \mathbf{v} in \mathbb{R}^n , we define $$A\mathbf{v} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 \mathbf{a}_1 + v_2 \mathbf{a}_2 + \dots + v_n \mathbf{a}_n$$ $A\mathbf{v}$ is a linear combination of the columns of A with weights given by \mathbf{v} ## Isolating a_{11} $$b_1 = a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n = \sum_{i=1}^{n} a_{1i}v_i$$ ## Isolating a_{11} $$b_1 = a_{11}v_1 + a_{12}v_2 + \dots + a_{1n}v_n = \sum_{i=1}^{n} a_{1i}v_i$$ We actually get the whole column \mathbf{a}_1 So its like battleship, but you get to choose one column at a time. ## The Takeaway We can learn the first column of the matrix implementing $$T$$ by looking at $T\left(\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}\right)$ # Matrix of a Linear Transformation #### Standard Basis **Definition.** The *n*-dimensional standard basis vectors (or standard coordinate vectors) are the vectors $\mathbf{e}_1, ..., \mathbf{e}_n$ where $$\mathbf{e}_{i} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ i + 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ i - 1 \\ i \\ i + 1 \\ \vdots \\ n - 1 \\ n \end{bmatrix}$$ #### Standard Basis **Definition (Alternative).** The n-dimensional standard basis vectors $\mathbf{e}_1, ..., \mathbf{e}_n$ are the columns of the $n \times n$ identity matrix $$I = [\mathbf{e}_1 \quad \mathbf{e}_2 \quad \dots \quad \mathbf{e}_n]$$ #### Standard Basis and the Matrix Equation The key points: $[\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n] \mathbf{e}_i = \mathbf{a}_i$ The standard basis vectors gives us a way to "look into" a matrix #### Standard Basis and Vector Coordinates $$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \dots + v_n \mathbf{e}_n$$ Column vectors can be viewed as describing how to write a vector as a linear combination of the standard basis #### Standard Basis and Linear Transformations **Theorem.** For any linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, the matrix $$A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \dots & T(\mathbf{e}_n) \end{bmatrix}$$ is the <u>unique</u> matrix such that $T(\mathbf{v}) = A\mathbf{v}$ for all \mathbf{v} in \mathbb{R}^n # More Formally $T(\mathbf{v}) =$ $$T(\mathbf{v}) =$$ $$= \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \dots & T(\mathbf{e}_n) \end{bmatrix} \mathbf{v}$$ #### How To: Matrices of Linear Transformations **Question.** Find the matrix which implements the transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ **Solution.** Determine the images of standard basis under T. Then write down $$T(\mathbf{e}_1)$$ $T(\mathbf{e}_2)$... $T(\mathbf{e}_n)$ ### Question Write done the matrix which implements the linear transformation T which **rotates** vectors by 90 degrees clockwise #### Answer #### General Rotation # **Geometry of Matrix Transformations** ### Motivating Questions What kind of functions can we define in this way? How do we interpret what the transformation does to a set of vectors? How does this relate back to matrix equations? # Matrix transformations change the "shape" of a set of set of vectors (points). # Example: Dilation # Example: Dilation $$\begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} rx_1 \\ rx_2 \end{bmatrix}$$ if r > 1, then the transformation pushes points away from the origin. # Example: Contraction # Example: Contraction $$\begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} rx_1 \\ rx_2 \end{bmatrix}$$ if $0 \le r \le 1$, then the transformation pulls points towards the origin. # Example: Shearing # Example: Shearing $$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}$$ Imagine shearing like with rocks or metal. # Question Draw how this matrix transforms points. What kind of transformation does it represent? #### Answer: Reflection #### General Rotation How does rotation affect the standard basis? $$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$ $$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$ Note: This is rotation about the origin $$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$ Note: This is rotation about the origin **The Takeaway:** We can figure out the matrices which implement complex linear transformations by understanding what they do to the standard basis #### Question (Conceptual) Is rotation about a point other than the origin a linear transformation? #### Answer: No The origin is not fixed by this transformation # The Unit Square The *unit square* is the set of points in \mathbb{R}^2 enclosed by the points (0,0), (0,1), (1,0), (1,1). #### How To: The Unit Square and Matrices #### How To: The Unit Square and Matrices **Question.** Find the matrix which implements the linear transformation which is represented geometrically in the following picture #### How To: The Unit Square and Matrices **Question.** Find the matrix which implements the linear transformation which is represented geometrically in the following picture **Solution.** Find where the standard basis vectors go # Question Write down the matrix for the following shearing operation using this method #### Answer You need to know these matrices, but you don't need to memorize them Remember: What does this matrix do to the unit square? Then build the matrix from there ### Reflection through the x_2 -axis Reflection through the x_2 axis ## Projections #### A 3D Example: Rotation about the x_3 -Axis (z-Axis) #### List of Important 2D Linear Transformations - » dilation, contraction - » reflections - » projections - » horizontal/vertical contractions - » horizontal/vertical shearing Look through the notes for a comprehensive collection of pictures or... # demo ## One-to-One and Onto ### Recall: Motivating Questions What kind of functions can we define in this way? How do we interpret what the transformation does to a set of vectors? How does this relate back to matrix equations? #### Recall: A New Interpretation of the Matrix Equation $A\mathbf{x} = \mathbf{b}$? \equiv is there a vector which A transforms into \mathbf{b} ? Solve $A\mathbf{x} = \mathbf{b} \equiv \text{find a vector which } A$ transforms into \mathbf{b} #### Recall: A New Interpretation of the Matrix Equation $$A\mathbf{x} = \mathbf{b}$$? \equiv is there a vector which A transforms into \mathbf{b} ? Solve $$A\mathbf{x} = \mathbf{b} \equiv \text{find a vector which } A$$ transforms into \mathbf{b} What about other questions? #### Other Questions Like... Does $A\mathbf{x} = \mathbf{b}$ have a solution for any choice of b? Does Ax = 0 have a unique solution? #### Other Questions Like... Does $A\mathbf{x} = \mathbf{b}$ have at least one solution for any choice of \mathbf{b} ? Does $A\mathbf{x} = \mathbf{b}$ have at most one solution for any choice of \mathbf{b} ? #### Wait ``` A\mathbf{x} = \mathbf{0} has a unique solution ``` why?: Ax = b has at most one solution #### Onto and One-to-One #### Onto and One-to-One **Definition.** A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$) #### Onto and One-to-One **Definition.** A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if any vector \mathbf{b} in \mathbb{R}^m is the image of at least one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$) **Definition.** A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is **oneto-one** if any vector \mathbf{b} in \mathbb{R}^m is the image of at most one vector \mathbf{v} in \mathbb{R}^n (where $T(\mathbf{v}) = \mathbf{b}$) ## Onto (Pictorially) ## Onto (Pictorially) #### T is onto if its range = its codomain image source: Linear Algebra and its Applications. Lay, Lay, and McDonald ### One-to-One (Pictorially) **Theorem.** The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A \gg T is onto - \gg T is onto - \Rightarrow Ax = b has a solution for any choice of b - \gg T is onto - \Rightarrow $A\mathbf{x} = \mathbf{b}$ has a solution for any choice of \mathbf{b} - \Rightarrow range(T) = codomain(T) - \gg T is onto - \Rightarrow $A\mathbf{x} = \mathbf{b}$ has a solution for any choice of \mathbf{b} - \Rightarrow range(T) = codomain(T) - \gg the columns of A span \mathbb{R}^m - \gg T is onto - \Rightarrow $A\mathbf{x} = \mathbf{b}$ has a solution for any choice of \mathbf{b} - \Rightarrow range(T) = codomain(T) - \gg the columns of A span \mathbb{R}^m - \gg A has a pivot position in every <u>row</u> **Theorem.** The following are logically equivalent for the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ implemented by the matrix A » T is one-to-one - *Ax = b has at most one solution for any b - \gg The columns of A are linearly independent - » T is one-to-one - *Ax = b has at most one solution for any b - \gg The columns of A are linearly independent - » A has a pivot position in every <u>column</u> ### Example: both 1-1 and onto Rotation about the origin: $$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$ #### Example: 1-1, not onto Lifting: $$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 \\ x_1 + x_2 \end{bmatrix}$$ ### Example: not 1-1, not onto Projection onto the x_1 axis: ### Example: onto, not 1-1 Projection from \mathbb{R}^3 to \mathbb{R}^2 . $$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$ #### Summary Matrix transformations and linear transformations are the same thing We can find these matrices by looking at how the transformation behaves on the **standard basis** We can reason about matrix equations by directly reasoning about the linear transformations