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Practice Problem

Write the matrix for the transformation which 
projects vectors in  vertically onto the line 

 in 
ℝ2

y = 2x + 3 ℝ2



Answer



Answer



Answer



Objectives

» Connect questions about matrix equations and 
linear transformations 

» Motivate matrix multiplication 

» Define matrix multiplication 

» Look at the algebra of matrix multiplication



Keywords

one-to-one transformation 

onto transformation 

matrix multiplication 

row-column rule 

matrix addition and scaling 

non-commutativity



Recap: Geometry of Linear 
Transformations



Recall: Matrices as Transformations

Matrices allow us to transform vectors 

The transformed vector lies in the span of its 
columns

x ↦ Ax
map a vector  to the vector x Av



Recall: Motivating Questions

What kind of functions can we define in this 
way? 

How do we interpret what the transformation 
does to a set of vectors? 

How does this relate back to matrix equations?



Matrix transformations change the 
"shape" of a set of set of 

vectors (points) 



Example: Dilation



Example: Dilation

[2 0
0 2] x

[r 0
0 r] [x1

x2] = [rx1
rx2]

if , then the transformation pushes 
points away from the origin

r > 1



Example: Contraction



Example: Contraction

[0.5 0
0 0.5] x

[r 0
0 r] [x1

x2] = [rx1
rx2]

if , then the transformation 
pulls points towards the origin

0 ≤ r ≤ 1



Example: Shearing



Example: Shearing

[1 1
0 1] x

[1 1
0 1] [x1

x2] = [x1 + x2
x2 ]

Imagine shearing like with rocks or metal



Example: Reflection

[1 0
0 −1] x



General Rotation [cos θ −sin θ
sin θ cos θ ]



Example: Reflection through the -axisx2



Example: Projections



3D Example: Rotation about the -Axis ( -Axis)x3 z

image source

x3



The Unit Square

The unit square is the set of points in  
enclosed by the points , , , .

ℝ2

(0,0) (0,1) (1,0) (1,1)



How To: The Unit Square and Matrices



How To: The Unit Square and Matrices

Question. Find the matrix which implements the 
linear transformation which is represented 
geometrically in the following picture



How To: The Unit Square and Matrices

Question. Find the matrix which implements the 
linear transformation which is represented 
geometrically in the following picture

Solution. Find where the standard basis vectors 
go



Example
Write down the matrix for the following 
shearing operation using this method



You need to know these matrices, but you don't need to 
memorize them 

Remember: What does this matrix do to the unit square? 
Then build the matrix from there



List of Important 2D Linear Transformations

» dilation, contraction 
» reflections 
» projections 
» horizontal/vertical contractions 
» horizontal/vertical shearing 

Look through the notes for a comprehensive 
collection of pictures or...



One-to-One and Onto



Recall: Motivating Questions

What kind of functions can we define in this 
way? 

How do we interpret what the transformation 
does to a set of vectors? 

How does this relate back to matrix equations?



Recall: A New Interpretation of the Matrix Equation

?            is there a vector which     
                   transforms into ? 

Solve        find a vector which   
                   transforms into  

Ax = b ≡ A
b

Ax = b ≡ A
b



Recall: A New Interpretation of the Matrix Equation

?            is there a vector which     
                   transforms into ? 

Solve        find a vector which   
                   transforms into  

Ax = b ≡ A
b

Ax = b ≡ A
b

What about other questions?



Other Questions Like...

Does  have a solution for any choice of ? 

Does  have a unique solution?

Ax = b b

Ax = 0



Other Questions Like...

Does  have at least one solution for any 
choice of ? 

Does  have at most one solution for any 
choice of ?

Ax = b
b

Ax = b
b



Wait

 has a               has at most one 
unique solution           solution 

why?:

Ax = 0 ≡ Ax = b



Onto Transformations



Definition. A transformation  is onto 
if any vector  in  is the image of at least 
one vector  in  (where )

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b

Onto Transformations



Definition. A transformation  is onto 
if any vector  in  is the image of at least 
one vector  in  (where )

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

Onto Transformations



Definition. A transformation  is onto 
if any vector  in  is the image of at least 
one vector  in  (where )

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald

 is onto if its range = its codomainT

Onto Transformations



One-to-one Transformations



One-to-one Transformations

Definition. A transformation  is one-
to-one if any vector  in  is the image of at 
most one vector  in  (where )

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b



One-to-one Transformations

Definition. A transformation  is one-
to-one if any vector  in  is the image of at 
most one vector  in  (where )

T : ℝn → ℝm

b ℝm

v ℝn T(v) = b

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald



Comparing Pictures

 is onto if its range = its codomainT





Example: both 1-1 and onto

Rotation about the origin: 

 

why?:

[cos θ ℝsin θ
sin θ cos θ ]



Example: 1-1, not onto

Lifting: 

 

why?:

[x1
x2] ↦

x1
x2

x1 + x2



Example: not 1-1, not onto

Projection onto the  axis: 

 

why?:

x1

[1 0
0 0]



Example: onto, not 1-1

Projection from  to . 

 

why?:

≤3 ≤2

x1
x2
x3

↦ [x1
x2]



Taking Stock: Onto



Taking Stock: Onto

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A
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»  is ontoT
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Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m
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»  has a solution for any choice of Ax = b b



Taking Stock: Onto

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A

»  is ontoT
»  has a solution for any choice of Ax = b b
» ≡→𝗋𝖺𝗇(T) = 𝗀𝖾𝖼𝖾𝗈→𝖽𝗋(T)



Taking Stock: Onto

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A

»  is ontoT
»  has a solution for any choice of Ax = b b
» ≡→𝗋𝖺𝗇(T) = 𝗀𝖾𝖼𝖾𝗈→𝖽𝗋(T)
» the columns of  span A ≤m



Taking Stock: Onto

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A

»  is ontoT
»  has a solution for any choice of Ax = b b
» ≡→𝗋𝖺𝗇(T) = 𝗀𝖾𝖼𝖾𝗈→𝖽𝗋(T)
» the columns of  span A ≤m

»  has a pivot position in every rowA



Taking Stock: One-to-One



Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A



Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A

»  is one-to-oneT



Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A

»  is one-to-oneT
»  has at most one solution for any Ax = b b



Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A

»  is one-to-oneT
»  has at most one solution for any Ax = b b
»  has only the trivial solutionAx = 0



Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A

»  is one-to-oneT
»  has at most one solution for any Ax = b b
»  has only the trivial solutionAx = 0
» The columns of  are linearly independentA



Taking Stock: One-to-One

Theorem. The following are logically equivalent 
for the linear transformation  
implemented by the matrix 

T : ≤n − ≤m

A

»  is one-to-oneT
»  has at most one solution for any Ax = b b
»  has only the trivial solutionAx = 0
» The columns of  are linearly independentA
»  has a pivot position in every columnA



How To: One-to-One and Onto

Question. Show that the linear transformation  is one-
to-one/onto 

Solution. (one approach) Find the matrix which implements 
 and see if it has a pivot in every column/row 

Warning: this is not the only way. Always try to think if 
you can solve it using any of the perspectives

T

T



Example: both 1-1 and onto

Rotation about the origin: 

 

why?:

[cos θ ℝsin θ
sin θ cos θ ]



Example: 1-1, not onto

Lifting: 

 

why?:

[x1
x2] ↦

x1
x2

x1 + x2



Example: not 1-1, not onto

Projection onto the  axis: 

 

why?:

x1

[1 0
0 0]



Example: onto, not 1-1

Projection from  to . 

 

why?:

≤3 ≤2

x1
x2
x3

↦ [x1
x2]



Question
Is vertical shearing a 1-1 transformation? 
Justify your answer



Answer: Yes



Composing Linear 
Transformations



Shearing and Reflecting (Geometrically)

reflectshear



Shearing and Reflecting Matrix

 

 

[1
0] ↦

[0
1] ↦

[1
1] ↦

e1

e2 e1 + e2



Shearing and Reflecting (Algebraically)

First multiply by shear matrix, then multiply 
by reflection matrix

[ℝ1 0
0 1] ([1 1

0 1] [x1
x2])

shearreflect



Shearing and Reflecting (Algebraically)

First multiply by shear matrix, then multiply 
by reflection matrix

[ℝ1 0
0 1] ([1 1

0 1] [x1
x2])

shearreflect

This gives us the same transformation



Shearing and Reflecting

[ℝ1 ℝ1
0 1 ] x = [ℝ1 0

0 1] ([1 1
0 1] x)



The Key Fact



The Key Fact

Fact. The composition of two linear 
transformation is a linear transformation



The Key Fact

Fact. The composition of two linear 
transformation is a linear transformation

Verify:



The Key Fact

Fact. The composition of two linear 
transformation is a linear transformation

Verify:

This means the composition of two matrix 
transformations can be represented as a 
single matrix



The Key Question

Given two linear transformations, 
how to we compute the matrix which 
implements their composition?



The Key Question

Given two linear transformations, 
how to we compute the matrix which 
implements their composition?

Matrix Multiplication



Matrix Multiplication



Shearing and Reflecting

[ℝ1 0
0 1] ([1 1

0 1] [x1
x2]) =



General Composition (2D)

A ([b1 b2] [x1
x2]) =



Matrix Multiplication

Definition. For a  matrix  and a  
matrix  with columns  the product  
is the  matrix given by 

 

Replace each column of  with  multiplied by 
that column

m 𝗆 n A n 𝗆 p
B b1, b2, …, bp AB
m 𝗆 p

AB = A [b1 b2 … bp] = [Ab1 Ab2 … Abp]

B A



Tracking Dimensions
This only works if the number of columns of the left 
matrix matches the number of rows of the right matrix

* * *
* * *
* * *
* * *
* * *

[
* * * *
* * * *
* * * * ] =

* * * *
* * * *
* * * *
* * * *
* * * *

(m 𝗆 n) (n 𝗆 k) (m 𝗆 k)

m m

n

n

k
k



Important Note

Even if  is defined, it may 
be that  is not defined

AB
BA



Non-Example

[1 2 3
4 5 6] [1 2

3 4] = [[1 2 3
4 5 6] [1

3] [1 2 3
4 5 6] [2

4]]



Non-Example

[1 2 3
4 5 6] [1 2

3 4] = [[1 2 3
4 5 6] [1

3] [1 2 3
4 5 6] [2

4]]
These are not defined.



Example

[1 2
3 4] [1 2 3

4 5 6] = [[1 2
3 4] [1

4] [1 2
3 4] [2

5] [1 2
3 4] [3

6]]



The Key Fact (Restated)

For any matrices  and  (such that  is 
defined) and any vector  

 

The matrix implementing the composition is the 
product of the two underlying matrices

A B AB
v

A(Bv) = (AB)v



Row-Column Rule

Given a  matrix  and a  matrix , the 
entry in row  and column  of  is defined above

m 𝗆 n A n 𝗆 p B
i j AB

(AB)ij =
n

∑
k=1

AikBkj



Example

[ℝ1 0
0 1] [1 1

0 1] =



Row-Column Rule (Pictorially)

* * *
* * *
* * *
* * *
* * *

[
* * * *
* * * *
* * * * ] =

* * * *
* * * *
* * * *
* * * *
* * * *

(AB)ij =
n

∑
k=1

AikBkj
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Row-Column Rule (Pictorially)

(AB)ij =
n

∑
k=1

AikBkj

* * *
* * *
* * *
* * *
* * *

[
* * * *
* * * *
* * * * ] =

* * * *
* * * *
* * * *
* * * *
* * * *
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Row-Column Rule (Pictorially)

(AB)ij =
n

∑
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AikBkj

* * *
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* * *

[
* * * *
* * * *
* * * * ] =

* * * *
* * * *
* * * *
* * * *
* * * *



Question

Compute  

short version: What is the entry in the 2nd row 
and 2nd column?

[1 0 ℝ1
0 1 1 ] [

1 1
2 0

ℝ1 2]



Answer

[1 0 ℝ1
0 1 1 ] [

1 1
2 0

ℝ1 2]



Matrix Operations



Connection with Matrix-Vector Multiplication



Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?



Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

A[b1] = [Ab1] = Ab1



Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

A[b1] = [Ab1] = Ab1
This is just vector multiplication



Connection with Matrix-Vector Multiplication

What about when the right matrix is a single column?

A[b1] = [Ab1] = Ab1
This is just vector multiplication

We can think of  as collection of 
simultaneous matrix-vector multiplications

[Ab1 Ab2 … Abp]



Matrix "Interface"

multiplication    what does  mean when  and 
                   are matrices? 

addition          what does  mean when  
                  and  are matrices? 

scaling           what does  mean when  is 
                  matrix and  is a real number?

AB A
B

A + B A
B

cA A
c



Matrix "Interface"

multiplication    what does  mean when  and 
                   are matrices? 

addition          what does  mean when  
                  and  are matrices? 

scaling           what does  mean when  is 
                  matrix and  is a real number?

AB A
B

A + B A
B

cA A
c

These should be consistent with matrix-vector interface and vector interface



Matrix Addition

[a1 … an] + [b1… bn] = [(a1 + b1) … (an + bn)]
Addition is done column-wise (or equivalently, 
element-wise) 

e.g. [1 2
3 4] + [ 2 3

ℝ2 ℝ3] = [(1 + 2) (2 + 3)
(3 ℝ 2) (4 ℝ 3)] = [3 5

1 1]



Matrix Addition

[a1 … an] + [b1… bn] = [(a1 + b1) … (an + bn)]
Addition is done column-wise (or equivalently, 
element-wise) 

e.g. [1 2
3 4] + [ 2 3

ℝ2 ℝ3] = [(1 + 2) (2 + 3)
(3 ℝ 2) (4 ℝ 3)] = [3 5

1 1]
This is exactly the same as vector addition, but for matrices



Matrix Addition and Scaling

c [a1 a2 … an] = [ca1 ca2 … can]
Scaling and adding happen element-wise (or, 
equivalently, column-wise) 

e.g. 2 [ 1 2
ℝ1 3] = [ 2(1) 2(2)

2(ℝ1) 2(3)] = [ 2 4
ℝ2 6]



Matrix Addition and Scaling

c [a1 a2 … an] = [ca1 ca2 … can]
Scaling and adding happen element-wise (or, 
equivalently, column-wise) 

e.g. 2 [ 1 2
ℝ1 3] = [ 2(1) 2(2)

2(ℝ1) 2(3)] = [ 2 4
ℝ2 6]

This is exactly the same as vector scaling, but for matrices



Algebraic Properties (Addition and Scaling)

 

 

 

 

 

A + B = B + A

(A + B) + C = A + (B + C)

A + 0 = A

r(A + B) = rA + rB

(r + s)A = rA + sA

r(sA) = (rs)A

In these properties , , and  
are matrices of the same size 
and  and  are scalars ( )

A B C

r s ↦

We need to know/memorize these



Algebraic Properties (Addition and Scaling)

 

 

 

 

A(BC) = (AB)C

A(B + C) = AB + AC

(B + C)A = BC + CA

r(AB) = (rA)B = A(rB)

ImA = A = AIn

In these properties , , and  
are matrices of the appropriate 
size so that everything is 
defined, and  is a scalar

A B C

r

We need to know/memorize these



Matrix Multiplication is not Commutative

Important.  may not be the 
same as  

(it may not even be defined)

AB
BA



Question (Conceptual)

Find a pair of 2D linear transformations  and 
 such that  followed by  is not the same as 
 followed by  

(also find a pair where they are the same)

T1
T2 T1 T2
T2 T1



Answer: Rotation and Reflection



Computational Aspects of 
Matrix Multiplication



Matrix Operations in Numpy

Let a and b be 2D numpy arrays and let c be a floating 
point number 

    » a @ b    (matrix multiplication) 

    » a + b    (matrix addition) 

    » c * a    (matrix scaling) 

We've seen these, we've used them a bit, we'll use them 
much more



Analyzing Linear Algebra Algorithms



Analyzing Linear Algebra Algorithms

We will not use  notation!O( ≤ )



Analyzing Linear Algebra Algorithms

We will not use  notation!O( ≤ )

For numerics, we care about number of FLoating-oint 
OPerations (FLOPs):

  >> addition 
  >> subtraction 
  >> multiplication 
  >> division 
  >> square root



Analyzing Linear Algebra Algorithms

We will not use  notation!O( ≤ )

For numerics, we care about number of FLoating-oint 
OPerations (FLOPs):

  >> addition 
  >> subtraction 
  >> multiplication 
  >> division 
  >> square root

 vs.  is very different 
when 

2n n
n − 1020



Dominant Terms



Dominant Terms

that said, we don't care about exact bounds



Dominant Terms

that said, we don't care about exact bounds

A function  is asymptotically equivalent to  iff(n) g(n)

lim
i≡→

f(i)
g(i) = 1



Dominant Terms

that said, we don't care about exact bounds

A function  is asymptotically equivalent to  iff(n) g(n)

lim
i≡→

f(i)
g(i) = 1

for polynomials, they are equivalent to their 
dominant term



Dominant Terms

the dominant term of a polynomial is the monomial with the highest 
degree 

 

 dominates the function even though the coefficient for  is so 
large

lim
i≡→

3x3 + 100000x2

3x3 = 1

3x3 x2



A Note on Complexity

Suppose  and  are  matrices 

This operations takes  multiplications and  
divisions (  FLOPS total) 

Repeating for each entry gives  FLOPS

A B n 𝗋 n

n n
2n

− 2n3

(AB)ij =
n

∑
k=1

AikBkj



A Note on Parallelization

(AB)ij =
n

∑
k=1

AikBkj

The main part of this procedure is highly parallelizable



A Note on Parallelization

The main part of this procedure is highly parallelizable 

One processor per entry gets you to  FLOPS− 2n

a = np.array(...) 
b = np.array(...) 
prod = np.zeros([a.shape[0], b.shape[1]]) 
for i in range(a.shape[0]): 
    for j in range(b.shape[1]): 
        prod[i, j] = np.dot(a[i], b[:,j])



A Note on Libraries

There are a lot of other considerations for doing 
linear algebra on computers 

Best leave it to experts (or do research in the 
area) 

LAPACK is the state of the art library for matrix 
operations 

numpy uses LAPACK



Summary

We can reason about matrix equations by reasoning 
directly about properties of linear 
transformations 

Matrix multiplication coincides with composition 
of linear transformations 

There is an algebra of matrices which is 
consistent with the algebra of vectors


