Matrix Algebra

Geometric Algorithms
Lecture 9

CAS CS 132



Practice Problem

Write the matrix for the transformation which
projects vectors in R? vertically onto the line
y=2x4+3 1in R’







Objectives

» Connect questions about matrix equations and
linear transformations

» Motivate matrix multiplication
» Define matrix multiplication

» Look at the algebra of matrix multiplication



Keywords

one-to-one transformation
onto transformation

matrix multiplication
row—co lumn rule

matrix addition and scaling

non—commutativity



Recap: Geometry of Linear
Transformations



Recall: Matrices as Transformations

Matrices allow us to transform vectors

The transformed vector lies 1in the span of 1ts
co lumns

X — AX

map a vector x to the vector Av



Recall: Motivating Questions

What kind of functions can we define 1n this
way?

How do we 1nterpret what the transformation
does to a set of vectors?

How does this relate back to matrix equations?



Matrix transformations change the
'shape” of a set of set of
vectors (points)



Example: Dilation




Example: Dilation 1

1f »r>1, then the transformation pushes
points away from the origin



Example: Contraction




Example: Contraction [(’;

0.5 0 .
0 0.5

——

1T 0<r<1, then the transformation
pulls points towards the origin



Example: Shearing




Imagine shearing like with rocks or metal




Example: Reflection




General Rotation

cosf —sind
sinfd cosd@




Example: Reflection through the x,-axis

Reflection through the x; axis




Example: PrOjECtiOnS Projection onto the x; axis




3D Example: Rotation about the x.-Axis (z-AXis)

A3

2

i y
y Roll: R ytatic ( .
' Pitch: Rotation
T~ around
\ y-axis

image source



https://learninglink.oup.com/access/content/neuroscience-sixth-edition-student-resources/web-topic-14-1

The Unit Square

The unit square is the
enclosed by the points




How To: The Unit Square and Matrices



How To: The Unit Square and Matrices

Question. Find the matrix which implements the
Llinear transformation which 1s represented
geometrically i1in the following picture



How To: The Unit Square and Matrices

Question. Find the matrix which implements the
Llinear transformation which 1s represented
geometrically i1in the following picture

Solution. Find where the standard basis vectors
go



Example

Write down the matrix for the following
shearing operation using this method

Vertic3a_| Shear

IN
N




You need to know these matrices, but you don't need to
memorize them

Remember: What does this matrix do to the unit square?
Then build the matrix from there



List of Important 2D Linear Transformations

» dllation, contraction

» reflections

» projections

» horizontal/vertical contractions
» horizontal/vertical shearing

Look through the notes for a comprehensive
collection of pictures or...



One-to-One and Onto




Recall: Motivating Questions

What kind of functions can we define 1n this
way?

How do we 1nterpret what the transformation
does to a set of vectors?

How does this relate back to matrix equations?



Recall: A New Interpretation of the Matrix Equation

AX =Db? = 1s there a vector which A
transforms i1nto b?
Solve Ax=Db = find a vector which A

transforms 1nto b



Recall: A New Interpretation of the Matrix Equation

AX =Db? = 1s there a vector which A
transforms i1nto b?
Solve Ax=Db = find a vector which A

transforms 1nto b

What about other questions?



Other Questions Like...

Does Ax=b have a solution for any choice of b?

Does Ax=0 have a unique solution?



Other Questions Like...

Does Ax=b have at Lleast one solution for any
choice of b?

Does Ax=b have at most one solution for any
choice of b?



Wait

Ax =0 has a Ax=Db has at most one
unique solution solution

why?:



Onto Transformations



Onto Transformations

Definition. A transformation 7:R"—- R™ 1is onto
1f any vector b i1n R™ 1s the 1mage of at Lleast
one vector v in R* (where T(v)=b)




Onto Transformations

Definition. A transformation 7:R"—- R™ 1is onto
1f any vector b i1n R™ 1s the 1mage of at Lleast
one vector v in R* (where T(v)=b)

/ T \ / I \
. ———'% -
Domain Range Domain Range
m
L
T is not onto R™ T is onto R™

image source: Linear Algebra and 1its Applications. Lay, Lay, and McDonald



Onto Transformations

Definition. A transformation 7:R"—- R™ 1is onto
1f any vector b i1n R™ 1s the 1mage of at Lleast
one vector v in R* (where T(v)=b)

e

T 1s onto 1f_1ts range = its codomain

T is not onto R™ T is onto R™

image source: Linear Algebra and 1its Applications. Lay, Lay, and McDonald



One-to-one Transformations



One-to-one Transformations

Definition. A transformation 7:R" —- R™ 1s one-
to-one 1f any vector b 1n R™ 1s the 1mage of at
most one vector v in R” (where T(v) =b)




One-to-one Transformations

Definition. A transformation 7:R"—- R™ 1S one-
to-one 1f any vector b 1n R™ 1s the 1mage of at
most one vector v in R” (where T(v) =b)

=\ N

Domain Range Domain T ange
'Y — — o >0
o S e > °
(1 S == Oe >e ()

R” N R” e

T 1s not one-to-one T 1s one-to-one

image source: Linear Algebra and 1its Applications. Lay, Lay, and McDonald



Comparing Pictures

T is onto R™

Domain 7 Domain T
o o
o o
o o— o ®
Oe Oe
o— o
R" R"

Rm

T 1s not one-to-one T 1s one-to-one




Example: both 1-1 and onto

Rotation about the origin:

cosf —sind
sinf cosd@

why?:



Example: 1-1, not onto

Lifting:



Example: not 1-1, not onto

Projection onto the x, axis:

1 0
0 0

why?:




Example: onto, not 1-1

Projection from R’ to R-”.

5[

why?:

0




Taking Stock: Onto



Taking Stock: Onto

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A
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Taking Stock: Onto

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A

» T 1S onto

» Ax =b has a solution for any choice of b
» range(1) = codomain(T’)



Taking Stock: Onto

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A

» T 1S onto
» Ax =b has a solution for any choice of b
» range(1) = codomain(T’)

» the columns of A span R”




Taking Stock: Onto

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A

» T 15 onto

» Ax =b has a solution for any choice of b
» range(1) = codomain(T’)

» the columns of A span R™
» A has a pivot position 1n every row




Taking Stock: One-to-One




Taking Stock: One-to-One

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A




Taking Stock: One-to-One

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A

» T 1S ohe—-to—-one



Taking Stock: One-to-One

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A

» T 1S one—to—-one
» AXx=b has at most one solution for any b



Taking Stock: One-to-One

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A

» T 1S one—to—-one
» AXx=b has at most one solution for any b
» AXx =0 has only the trivial solution



Taking Stock: One-to-One

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A

» T 1S one—to—one

» AXx=b has at most one solution for any b
» AXx =0 has only the trivial solution

» The columns of A are linearly 1ndependent



Taking Stock: One-to-One

Theorem. The following are logically equivalent
for the linear transformation 7:R" - R™
imp lemented by the matrix A

» T 1S one—to—-one

» AXx=b has at most one solution for any b
» AXx =0 has only the trivial solution

» The columns of A are linearly independent
» A has a plvot position 1n every column




How To: One-to-One and Onto

Question. Show that the linear transformation 7 is one-
to—-one/onto

Solution. (one approach) Find the matrix which implements
T and see 1f 1t has a pivot 1n every column/row

Warning: this 1s not the only way. Always try to think 1if
you can solve 1t using any of the perspectives



Example: both 1-1 and onto

Rotation about the origin:

cosf —sind
sinf cosd@

why?:



Example: 1-1, not onto

Lifting:



Example: not 1-1, not o

Projection onto the x, axis:
1 O
0 O

why?:




Example: onto, not 1-1

Projection from R’ to R-”.

5[

why?:

S,




Question

Is vertical shearing a 1-1 transformation?
Justify your answer

Vertic3a_| Shear

1\ o
0 \

_1-

_2-




Answer: Yes

Vertic_gl Shear




Composing Linear
Transformations



Shearing and Reflecting (Geometrically)

2D Matrix Transformations

2D Matrix Transformations

2D Matrix Transformations
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Shearing and Reflecting Matrix

1 2D Matrix Transformations
>
O 1.5 -

e2|el+e

|
|

€




Shearing and Reflecting (Algebraically)

—1 0 1 1] |
0 1 0O 1| |*2
ref lect shear

First multiply by shear matrix, then multiply
by reflection matrix



Shearing and Reflecting (Algebraically)

—1 0 1 1] |1
0 1 0O 1| |*2
ref lect shear

First multiply by shear matrix, then multiply
by reflection matrix

This gives us the same transftormation



Shearing and Reflecting




The Key Fact



The Key Fact

Fact. The composition of two Llinear
transtformation 1s a linear transformation



The Key Fact

Fact. The composition of two Llinear
transtformation 1s a linear transformation

Verify:



The Key Fact

Fact. The composition of two Llinear
transtformation 1s a linear transformation

Verify:

This means the composition of two matrix
transformations can be represented as a

single matrix



The Key Question

Given two linear transformations,
how to we compute the matrix which
implements their composition?



The Key Question

Given two linear transformations,
how to we compute the matrix which
implements their composition?

Matrix Multiplication



Matrix Multiplication



Shearing and Reflecting



General Composition (2D)

(b wi])-



Matrix Multiplication

Definition. For a mxn matrix A and a nxp
matrix B with columns b;b,,....,b, the product AB

1s the mxp matrix given by

AB=A[b; b, .. b]=][Ab, Ab, ... Ab]

Replace each column of B with A multiplied by
that column



Tracking Dimensions

This only works 1if the number of columns of the left
matrix matches the number of rows of the right matrix

n k
k ok %k Je k ok kXK
k ok %k k ok kXK k ok kXK
mil % = x| »nll*x * % x| =ml|l=*x *x % =
k ok %k k ok kXK k ok kXK
k ok %k k ok kXK

(m X n) (n X k) (m X k)



Important Note

Even 1t AB 1s defined, 1t may
be that BA 1s not defined



Non-Example



Non-Example

REEIE R H A

These are not defined.



Example

B RS F I )



The Key Fact (Restated)

For any matrices A and B (such that AB is
defined) and any vector v

A(Bv) = (AB)v

The matrix implementing the composition 1s the
product of the two underlying matrices



Row-Column Rule

k=1

Given a mxn matrix A and a nxp matrix B, the
entry 1in row i and column j of AB 1s defined above



k-



Row-Column Rule (Pictorially)

K K K K K K
K K K K °K K K K K K
K K K K °K °K K — K K K
K K K K °K K K K K K
K K K K K K

O S 3
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Row-Column Rule (Pictorially)
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Row-Column Rule (Pictorially)

K K K K K K
K K K K °K K K K K K
K K K K °K °K K — K K K
K K K K °K K K K K K
K K K K K K

B S



Question

1 1
Compute ll 0 _J] [2 O]
01 1[|5 5

short version: What 1s the entry 1n the 2nd row
and 2nd column?






Matrix Operations




Connection with Matrix-Vector Multiplication



Connection with Matrix-Vector Multiplication

What about when the right matrix 1is a single column?



Connection with Matrix-Vector Multiplication

What about when the right matrix 1is a single column?

A[b,] = [Ab,] = Ab,



Connection with Matrix-Vector Multiplication

What about when the right matrix 1is a single column?

A[b,] = [Ab,] = Ab,

This is just vector multiplication



Connection with Matrix-Vector Multiplication

What about when the right matrix 1is a single column?

A[b,] = [Ab,] = Ab,

This is just vector multiplication

We can think of |Ab, Ab, ... Ab,| as collection of
simultaneous matrix—-vector multiplications



Matrix "Interface"

multiplication what does AB mean when A and
B are matrices?

addition what does A+ B mean when A
and B are matrices?

scaling what does cA mean when A 1S
matrix and ¢ 1s a real number?



Matrix "Interface"

multiplication what does AB mean when A and
B are matrices?

addition what does A+ B mean when A
and B are matrices?

scalling what does cA mean when A 1S
matrix and ¢ 1s a real number?

These should be consistent with matrix-vector i1nterface and vector interface



Matrix Addition

@, ... a,]+[b... b)]=[@+b) .. (a,+b))]

Addition is done column-wise (or equivalently,

element-wise)
2 3| _ _ {3 5
-2 =3 1 1

[1 9, (1+2) (2+3)
e.qg.

i (3-2) (4-23)

3 4




Matrix Addition

@, ... a,]+[b... b)]=[@+b) .. (a,+b))]

Addition is done column-wise (or equivalently,
element—-wise)
2 3| _ _ 13 5
-2 =3 1 1

[1 2
e.g.
This 1s exactly the same as vector addition, but for matrices

(1+2) 2+3)

i (3-2) (4-73)

3 4



Matrix Addition and Scaling
C [al 32 ¢ o o an] — [Cal C32 o o o Can]

Scaling and adding happen element-wise (or,
equivalently, column-wise)

eng. 2| 1 2| = 2) 2 _ |12 4
U1 3] T 2= 23)] T |2 6



Matrix Addition and Scaling

c (A

Scaling and adding happen element-wise (or,
equivalently, column-wise)

oo 2|1 220 2@] _[2 4
U1 3] T 2= 23 -2 6

a, ... a,]=|[ca; ca, ... ca,]

This 1s exactly the same as vector scaling, but for matrices



Algebraic Properties (Addition and Scaling)

A+B=B+A In these properties A, B, and C

are matrices of the same size
A+B) +C=A+ B+ C) and » and s are scalars (R)
A+0=A

We need to know/memorize these

r(A+B)=rA+rB
(r+s)A =rA + sA

r(sA) = (rs)A



Algebraic Properties (Addition and Scaling)

A(BC) = (AB)C In these properties A, B, and C
are matrices of the appropriate
B size so that everything 1s

AB+ () =AB+AC defined, and r 1s a scalar

(B+ C)A = BC+ CA

We need to know/memorize these

r(AB) = (rA)B = A(rB)

IA=A=AIl



Matrix Multiplication i1s hot Commutative

Important. AB may not be the
same as BA

(it may not even be defined)



Question (Conceptual)

Find a palr of 2D linear transformations 7, and
T, such that 7, followed by 7, 1s not the same as
T, followed by T,

(also find a pair where they are the same)




Answer: Rotation and Reflection




Computational Aspects of
Matrix Multiplication




Matrix Operations in Numpy

Let 2 and b be 2D numpy arrays and let c be a floating
poilnt number

» a @ b (matrix multiplication)
» a + b (matrix addition)
» C % a (matrix scaling)

We've seen these, we've used them a bit, we'll use them
much more



Analyzing Linear Algebra Algorithims
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For numerics, we care about number of FLoating—oint
OPerations (FLOPs):

>> addition

>> subtraction

>> multiplication
>> division

>> square root



Analyzing Linear Algebra Algorithims

We will not use O(-) notation!

For numerics, we care about number of FLoating-oint
OPerations (FLOPs):

>> addition

>> subtraction

>> multiplication
>> division

>> square root

2n VS. n 1S very different
when n ~ 10%



Dominant Terms
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that said, we don't care about exact bounds



Dominant Terms

that said, we don't care about exact bounds

A function f(n) is asymptotically equivalent to g(n) if
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i—oo g(1)



Dominant Terms

that said, we don't care about exact bounds

A function f(n) is asymptotically equivalent to g(n) if
J(0)

i—oo g(1)

for polynomials, they are equivalent to their
dominant term



Dominant Terms

the dominant term of a polynomial 1s the monomial with the highest
degree

~3x2 4+ 100000x2
lrnn-—————————————————— — 1
1— 00 3)63

3x? dominates the function even though the coefficient for x?> is so
large



A Note on Complexity

(AB)zj — Z AikBkj
k=1

Suppose A and B are nxn matrices

This operations takes » multiplications and n
divisions (2n FLOPS total)

Repeating for each entry gives ~ 2n° FLOPS



A Note on Parallelization

(AB); = ) AyBy
k=1

The main part of this procedure 1s highly parallelizable



A Note on Parallelization

a = np.array(...)
b = np.array(...)
prod = np.zeros([a.shape[@], b.shape[1l]])
for i in range(a.shapel@]):
for j in range(b.shapel[1l]):
prod[i, j] = np.dot(alil, bl:,j])

The main part of this procedure 1s highly parallelizable

One processor per entry gets you to ~2n FLOPS



A Note on Libraries

There are a lot of other considerations for doing
Linear algebra on computers

Best leave it to experts (or do research in the
area)

LAPACK 1s the state of the art library for matrix
operations

numpy uses LAPACK



Summary

We can reason about matrix equations by reasoning
directly about properties of Llinear
transformations

Matrix multiplication coincides with composition
of Llinear transformations

There 1s an algebra of matrices which 1s
consistent with the algebra of vectors



