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Objectives

» Demonstrate how to i1nvert a matrix

» Motivate matrix factorization in general, and the LU
factorization 1n specific

» Recall elementary row operations and connect them to
matrices

» Look at the LU factorization, how to find it, and
how to use 1t
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Basic Algebra
X =3

How do we solve this equation?

Divide on both sides by 2 to get x=>5.

|
Multiply each side by-z a.k.a. 271,

1 . : . oo : :
5 1s the reciprocal or multiplicative 1inverse of 2.
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Wouldn't it be nice...
—1
X=A""b
How do we solve this equation?

Multiply each side by A~! to get x=A4""b.

A-! is the multiplicative inverse of A
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nxn matrix B such that

AB=1 and BA =1

A 1s 1invertible if it has an inverse. Otherwise it is
singular.



Matrix Inverses

Definition. For a nxn matrix A, an inverse of A is a
nxn matrix B such that

AB=1 and BA =1
A 1s 1invertible if it has an inverse. Otherwise it is
SlﬂQUlar. { ) O ’ OAX ) VL) . o(-l-) |(03+ O(a
] I][—) ) ] \L\'B“')(-')—) 1(0’)+)U)/|

Example. [1 Or:[l O] : X\O Sﬂ

1 1 -1 1






Example: Geometric

Reflection across the x;—axis in R* is it's own

lnverse. T
. (=)
Verify: -
| O 9 ,/((i,:\
—> a -) >/\
T (7)




Example: No inverse

‘Y12 1
Verify: O 3 1
00 0

=



Inverses are Unique

Theorem. If B and C are 1nverses of A, then
B=~C.

Verify: ) Mg:® @ L :®

e - BT = R(r)=@NL =T =¢C



Inverses are Unique

Theorem. If B and C are 1nverses of A, then
B=~C.

Verify.

If A is invertible, then we write A-!
for the 1nverse of A.



Unique Solutions

IT Ax=b has a unique solution for any choice
of b, then 1t has

» exactly one solution for any choice of b

7( = (’\‘\b



Unique Solutions

IT Ax=b has a unique solution for any choice
of b, then 1t has

» at least one solution for any choice of b

» at most one solution for any choice of b




Unique Solutions

IT Ax=b has a unique solution for any choice
of b, then 1t has

» 7 1S onto

» 7 1S one—to—one

where T 1s 1implemented by A
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Recall: Onto Transformations

Definition. A transformation 7:R" - R™ is onto
1f any vector b i1in R™ 1s the 1mage of at Lleast

one vector v in R" (where T(v)=Db).
N S

T 1s onto 1f 1ts range = 1ts codomailn

T is not onto R™ T is onto R

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald
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Recall: One-to-one Transformations

Definition. A transformation 7:R" —- R™ 1s one-
to-one 1f any vector b 1n R™ 1s the 1mage of at
most one vector v in R” (where T(v) =b).




Recall: One-to-one Transformations

Definition. A transformation 7:R"—- R™ 1S one-
to-one 1f any vector b 1n R™ 1s the 1mage of at
most one vector v in R” (where T(v) =b).

Domain - \\\\\ﬁiﬁg“‘\~ Domain T -\\\\EEBQ;\\\“
o— ° >0
>—— S— o >0
Oe =0 () Oe »o ()
. - - ® — ). .
R Nero w N
T 1s not one-to-one T 1s one-to-one

image source: Linear Algebra and its Applications. Lay, Lay, and McDonald



Connection to Transformations

Definition. A linear transformation 7:R"— R"” 1is
invertible if there is a linear transformation
S such that

S(T(v))=v and T(S(v)) =v

Multiplication
by A
X(////V B
"~ Multiplication _—

by A~}

for any v 1in R”

o AX
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Connection to Transformations

Theorem. A nxn matrix A 1s 1nvertible 1f and
only 1f the matrix transformation x+— Ax 1S
invertible

A matrix 1s 1nvertible 1if 1t's possible to "undo”
1ts transformation without "losing information"

Non-Example. Projection onto the x;—ax1is



>
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Connection to Transformations

Definition. A transformation 7T:R”" - R"” 1S a one-
to-one correspondence (bijection) if any vector
b 1n R"” 1s the 1mage of exactly one vector v 1n

R” (where T(v)=b)

A transformation 1s a 1-1 correspondence 1f 1t
1s 1-1 and onto

Invertible transformations are 1-1 correspondences



Kinds of Transformations (Pictorially)

not covered

collision not covered collision
X X Y X X X Y
D D
B B
C C
A A

1-1 correspondence onto, not 1-1 1-1 not onto not 1-1, not onto
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Fundamental Questions

How can we determine 1f a matrix has an
inverse?

ITf a matrix has an i1nverse how do we
compute 1t?
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Fundamental Questions
Answer 1: Try to compute 1t

How can we determine 1f a matrix has an
inverse?

ITf a matrix has an i1nverse how do we
compute 1t?

Answer 2: the Invertible Matrix Theorem (IMT)



In General

Can we solve for each b,?:

- > = - - — - \
l\‘(o, L., \731: C e, . : \0
0



In General
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It we want a matrix B such that
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hold (in the case B has 3 columns)



In General

Abl — el Abz — 62 Ab3 — 63

It we want a matrix B such that
AB =1, then the above equation must
hold (in the case B has 3 columns)

We need to solve 3 matrix equations



How To: Matrix Inverses

Question. Find the inverse of an invertible nxn
matrix A

Solution. Solve the equation Ax=e, for every
standard basis vector e,. Put those solutions
$,$,,...,s, 1NTto a single matrix

n

[S; S, ... S]]



How To: Matrix Inverses

Question. Find the inverse of an invertible nxn
matrix A

Solution. Row reduce the matrix [A ] to a
matrix [/ B]. Then B 1s the 1nverse of A

This 1s really the same thing. It's a
simultaneous reduction



demo
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Special Case: 2 x 2 Matrice Inverses

_1
a bl _ 1 [ d —b]
c d ad — bc L—C a

The determinant of a 2x2 matrix is the value ad - bc

The 1nverse 1s defined only 1f the determinant 1s
nonzero

(see the notes on linear transformations for more information about determinants)



—6 14
3 -7



3 4

Is the above matrix invertible?



3 4

Is the above matrix invertible?

No. The determinant 1s (—=6)(=7)—143)=42—-42 =0



Algebra of Matrix Inverses



Algebraic Properties (Matrix Inverses)

Theorem. For a nxn 1nvertible matrix A, the
matrix A=! is invertible and

(A_l)_l = A 4.—;/ ~ N

'\Yﬁ‘ ’:f

Verify: v\‘;:’e Y "
— \ =

ATV =L T



Algebraic Properties (Matrix Inverses)

Theorem. For a nxn 1nvertible matrix A, the
matrix AT is invertible and (A E\: 3N

(AT)—I — (A—I)T

Verify: AT ( (\—-\3 ( j:‘V —

y)



Algebraic Properties (Matrix Inverses)

Theorem. For a nxn 1invertible matrices A and B,
the matrix AB 1s 1nvertible and

-~ - <
Verify: ¥ T S B¢ 2 M
N \T'\/ ;{x \
> T & & 2
g N\



Question

Suppose that A 1s a nxn 1nvertible matrix such
that A=A and B 1s a mxn matrix

Simplify the expression A(BA™Y)' using the
algebraic properties we've seen



Answer: B’ ABATYH'

n (e Ay A=AT
A(%AW(@AWQ
< (a'AY
_ (%131'



Invertible Matrix Theorem



Motivation

Question. How do we know if a
square matrix 1s 1nvertible?

Answer. Every perspective we've
taken so far can help us answer
this question



Invertible Matrix Theorem

Theorem. Suppose A 1s a nxn 1lnvertible matrix.
Then the following hold.

1. A! is invertible



Invertible Matrix Theorem

Theorem. Suppose A 1S a nxn 1nvertible matrix.
Then the following hold.

2. Ax=Db has at least one solution for every b
3. Ax=Db has at most one solution for every b
4. Ax=Db has at exactly one solution for every b




Invertible Matrix Theorem

Theorem. Suppose A 1s a nxn 1lnvertible matrix.
Then the following hold.

as a plivot 1n every column +
as a plvot 1n every row
1s row equlvalent to I, n

h
h

o. A
0. A
/. A



Invertible Matrix Theorem

Theorem. Suppose A 1s a nxn 1lnvertible matrix.
Then the following hold.

8. Ax=0 has only the trivial solution
9. The columns of A are linearly 1ndependent
10. The columns of A span R”




Invertible Matrix Theorem

Theorem. Suppose A 1s a nxn 1nvertible matrix.
Then the following hold.

11. The linear transformation x~ Ax 1S onto
12. x— Ax 1S one-to-one

13. x—~ Ax 1S a one-to-one correspondence
14. x+— Ax 1S 1nvertible



Taking Stock: IMT

1.
2.

3.

10.

11.

12

13

14.

A 1s 1nvertible
Al is invertible

Ax=Db has at least one solution for any b

. Ax=Db has at most one solution for any b
. Ax=Db has a unique solution for any b

. A has n pivots (per row and per column)
. A 1S row equivalent to I

. Ax=0 has only the trivial solution

. The columns of A are linearly 1ndependent

The columns of A span R”

The linear transformation x~ Ax 1S onto

.X—~ AX 1S one-to—-one

.X > Ax 1S a one-to-one correspondence

X —» Ax 1S 1nvertible

These all express the
same thing

(this 1is a stronger statement than
we just verified)



Taking Stock: IMT

1. A 1s 1nvertible
2. A" is invertible

3. Ax=b has at least one solution for any b

4. Ax=b has at most one solution for any b These a-L-L EXp.I"ESS the
5. Ax=b has a unique solution for any b sdhne thlng

6. A has »n pivots (per row and per column)

7.4 is row equivalent to J (this is a stronger statement than

. | we just verified)
8. Ax=0 has only the trivial solution

9. The columns of A are linearly independent

10.The columns of A span R” ! ! Only fOI" Squa I"e mat I"iCES ! !
11.The linear transformation x+— Ax 1s onto

12.x —» Ax 1S one-to-one

13.x » Ax is a one-to-one correspondence

14.x —» Ax 1s 1nvertible



We get a lot of information for free




We get a lot of information for free

Theorem. If A 1s square, then

A 1s 1-1 if and only if A 1s onto



We get a lot of information for free

Theorem. If A 1s square, then
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We only need to check one of these.



We get a lot of information for free

Theorem. If A 1s square, then
A 1s 1-1 if and only if A 1s onto
We only need to check one of these.

Warning. Remember this only applies square
matrices.



We get a lot of information for free




We get a lot of information for free

Theorem. If A 1s square, then

A 1s 1nvertible Ax =0 1mplies x=0



We get a lot of information for free

Theorem. If A 1s square, then

A 1s 1nvertible Ax =0 1mplies x=0

Invertibility 1s completely determined by how A
behaves on 0.



Question (Conceptual)

True or False: If A 1s invertible, and B 1s row
equivalent to A (we can transform B into A by a
sequence of row operations), the B 1s also
invertible.



Answer: True

Row reductions don't change the number of
pivots.



Question

If [a, a, a;] is invertible, then is
(a; +a,—2a;) (a,+5a;) as| also invertible? Justify
your answer.



Answer

A
Consider [a; a, a3]', We can get to

[(al + a, — 2a,) (a, + 5a,) a3]T by row operations

P\T



LU Factorization



Matrix Factorization



Matrix Factorization

A factorization of a matrix A is an equation which
expresses A as a product of one or more matrices,

e.qg.,

A=BC



Matrix Factorization

A factorization of a matrix A is an equation which
expresses A as a product of one or more matrices,

e.qg.,
A =BC

So far, we've been given two factors and asked to
find their product

Factorization is the harder direction
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» Mmake working with A easier

» expose 1important information about A



Reasons to Factorize

Writing A as the product of multiple matrices can
» make computing with A faster LU Decomposition
» make working with A easier

» expose 1important information about A



The Problem

Question. For an matrix A, solve the equations

Ax=Db, , Ax=Db, ... Ax=b,_, , AX=Db,

In other words: we want to solve a bunch of
matrix equations over the same matrix




The Problem

Question. For a matrix A, solve (for X) in the
equation

AX=1HB

where X and B are matrices of appropriate
dimension

This 1s (essentially) the same question



The Problem

Question. Solve AX=BH
IT A 1s 1invertible, then we have a solution:

Find A-! and then X=A"'B



The Problem

Question. Solve AX=BH
IT A 1s 1invertible, then we have a solution:

Find A-! and then X=A"'B

What if A~! 1s not invertible?
Even 1f 1t 1s, can we do 1t faster?



LU Factorization at a High Level

Given a mXxn matrix A, we are going to
factorize A as

echelon form of A

1 0 0 0
Ao |* 1 00
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LU Factorization at a High Level

Given a mXxn matrix A, we are going to
factorize A as

echelon form of A

x* K K

0
1
¥
¥

¥ —_— O O
—_— O O O

L
Note. This applies to non-square matrices



What are "L" and "U"?

L stands for "lower"™ as 1in lower triangular

U stands for "upper" as 1in upper trianqular

* K K

0 O
1 0
o]
¥ %

—_ O O O

. oK oK
O WM *
0O O N
0O O O

B % % %

L U
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The Fundamental Question

A — Ll } echelon form of A

We know how to build U, that's just the forward
phase of Gaussian elimination

How do we build L?

The 1dea. L "implements" the row operations of
the forward phase



Elementary Matrices




Recall: Elementary Row Operations

scaling multiply a row by a number
interchange switch two rows

replacement add a scaled equation to another



The First Key Observation



The First Key Observation

Elementary row operations are linear transformations
(viewed as transformation on columns)



The First Key Observation

Elementary row operations are linear transformations
(viewed as transformation on columns)

Example: Scale row 2 by 5

di1 di1p 43 P SR 11 5P) 413
ayy Gy apy| T2 T 02

—_—
31 d3p d33 31 0%%) %%



Example: Scaling

Restricted to one column, we see this 1s the
above linear transformation

Vl Vl
V2 > 5 Vz
V3 V3



Example: Scaling M -

Let's build the matrix which implements 1t:



Another Example: Scaling + Replacement

ayy dpp aqg i din d13
ar1 dryr 04y3 —p 253 %%, dr3

31 d3zp U3z (a3 — 2ay1) (az, —2ap,) (az3 — 2a;3)



Another Example: Scaling + Replacement



Elementary row operations are
Linear, so they are 1mplemented
by matrices



General Elementary Scaling Matrix

o OO =
OO = O
o OO
—_ O O O



General Elementary Scaling Matrix

1 0 0 0O
0O 1 0 0O
0 0 k£ O
0 0 O 1

IT we want to perform R; « kR, then we need the identity matrix
but with the entry A;; =«.



General Elementary Scaling Matrix
0 0 O
1 0 0
0 k O
0 0 1

IT we want to perform R; « kR, then we need the identity matrix
but with the entry A;; =«.

IT we want to perform R < kR, then we need the identity matrix
but with then entry A, =k«.



General Replacement Matrix

O = OO

0
0
0
1

OO = O

1
0
0
k



General Replacement Matrix

O = OO

0
0
0
1

OO = O

1
0
0
k

IT we want to perform R, « R, +kR,, then we need the
identity matrix but with the entry A, =k.



General Replacement Matrix

O = OO

0
0
0
1

OO = O

1
0
0
k

IT we want to perform R, « R, +kR,, then we need the
identity matrix but with the entry A, =k.

If we want to perform R, < R, + kR, then we need the
identity matrix but with the entry A, =k.



General Swap Matrix

O = OO

0
1
0
1

OO O =
o O O O

IT we want to swap R, and R;, then we need the
identity matrix, but with R, and R, swapped.



Elementary Matrices

Definition. An elementary matrix is a matrix
obtained by applying a single row operation to
the i1dentity matrix I.

Example.



How To: Finding Elementary Matrices

Question. Find the matrix implementing the
elementary row operation op

Solution. Apply op to the identity matrix of the
appropriate size



Products of Elementary Matrices
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Taking stock:
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» Elementary matrices implement elementary row
operations



Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row
operations

» Remember that Matrix multiplication 1s transformation
composition (i.e., do one then the other)



Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row
operations

» Remember that Matrix multiplication 1s transformation
composition (i.e., do one then the other)

So we can implement any sequence of row operations as a
product of elementary matrices



How to: Matrices implementing Row Operations

Question. Find the matrix implementing a
sequence of row operations op,, op,, ...

Solution. Apply the row operations in sequence
to the 1dentity matrix of the appropriate size



Question

Find the matrix implementing the following sequence
of elementary row operations on a 3xn matrix.

R, < 3R,
Ry < R+ R,
R, & R,

Then multiply 1t with the all-ones 3x3 matrix.






Second Key Observation



Second Key Observation

Elementary row operations are invertible linear
transformations



Second Key Observation

Elementary row operations are invertible linear
transformations

This also means the product of elementary
matrices 1s 1nvertible

(E\E,E:E)™' = E; 'E; 'E; E;

'l the order reverses !



Question (Conceptual)

Describe the inverse transformation for each
elementary row operation
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Question (Conceptual)

Describe the inverse transformation for each
elementary row operation

The 1nverse of scaling by k£ 1s scaling by 1/k

The inverse of R, <« R, +kR; 1S R; < R, — kR,



Question (Conceptual)

Describe the inverse transformation for each
elementary row operation

The 1nverse of scaling by k£ 1s scaling by 1/k

The inverse of R, <« R, +kR; 1S R; < R, — kR,

The 1nverse of swapplng 1s swapplhg agaln



Recall: Elementary Row Operations

scaling multiply a row by a number
interchange switch two rows

replacement add a scaled equation to another



Recall: Elementary Row Operations

We only need these two for the forward phase

interchange switch two rows

replacement add a scaled equation to another



Recall: Elementary Row Operations

We'll assume we only need this

replacement add a scaled equation to another



Reminder: LU Factorization at a High Level

Given a mXxn matrix A, we are going to
factorize A as

Echelon form of A

1 0 0 0
Ao |* 1 00
K K K 1




Gaussian Elimination and Elementary Matrices

Consider a sequence of elementary row
operations from A to an echelon form

Each step can be represent as a product with an
elementary matrix



Gaussian Elimination and Elementary Matrices




Gaussian Elimination and Elementary Matrices
1/‘ ~/ JE?I/4L "".lzgylzaggx N eee Y JE;kJEZQ__l....JEazJEalfqt

This exactly tells us that if B 1s the final echelon form we get then

where E 1implements a sequence of row operations. So:




Gaussian Elimination and Elementary Matrices
1/‘ ~/ JE?I/4L "".lzgylzaggl N eee Y JE;kJE%k__l....JEazJEalfqt

This exactly tells us that if B 1s the final echelon form we get then
Invertible

where E 1implements a sequence of row operations. So:




Gaussian Elimination and Elementary Matrices

1/‘ ~/ JE?I/4L "".lzgylzaggl N eee Y JE;kJE%k__l....JEazJEalfqt

This exactly tells us that if B 1s the final echelon form we get then
Invertible

where E 1implements a sequence of row operations. So:

A=E'B=(E'E;'...E_ E "B
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L « identity matrix
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LU Factorization Algorithm
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LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « identity matrix
U < A
convert U to an echelon form by GE forward step # without swaps
FOR each row operation OP in the prev step:
E « the matrix implementing OP

L « L @ E™! # note the multiplication on the right
RETURN (L, U) we'll see how to do this more efficiently



The forward part of Gaussian
elimination 1s matrix
factorization



The "L" Part
jE; :::‘szJEZk—-l""jE%lea_

This a product of elementary matrices
So L=E'=E'E;'...E_. E' '! the order reverses !!

We won't prove this, but 1it's worth thinking about: why
1s this lower triangular?

And can we build this 1n a more efficient way?



demo



How To: LU Factorization by hand

Question. Find a LU Factorization for the
matrix A (assuming no swaps)

Solution.

» Start with L as the identity matrix
» Find U by the forward part of GE
» For each operation R, < R;+kR, set L, to —k
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Analyzing Linear Algebra Algorithims

We will not use O(-) notation!

For numerics, we care about number of FLoating-oint
OPerations (FLOPs):

>> addition

>> subtraction

>> multiplication
>> division

>> square root

2n VS. n 1S very different
when n ~ 10%



Analyzing LU Factorization



Dominant Terms



Dominant Terms

that said, we don't care about exact bounds



Dominant Terms

that said, we don't care about exact bounds

A function f(n) is asymptotically equivalent to g(n) if
o

i~co 8(1)



Dominant Terms

that said, we don't care about exact bounds

A function f(n) is asymptotically equivalent to g(n) if
o

i~co 8(1)

for polynomials, they are equivalent to their
dominant term



Dominant Terms

the dominant term of a polynomial 1s the monomial with the highest
degree

~ 3x7 4+ 100000x2
llnﬂ-—————————————————— — 1
1 — 00 3)63

3x? dominates the function even though the coefficient for x?> is so
large



How To: Solving systems with the LU

Question. Solve the equation Ax=b given that
A=LU 1s a LU factorization.

Solution. First solve ILx=b to get a solution ¢,
then solve Ux=c¢ to get a solution d.

Verify:



How To: Solving systems with the LU

Question. Solve the equation Ax=b given that
A=LU 1s a LU factorization.

Solution. First solve ILx=b to get a solution ¢,
then solve Ux=c¢ to get a solution d.

Why 1s this better than just solving Ax =b?



FLOPs for Solving General Systems

The following FLOP estimates are based on nxn matrices

L . on’
Gaussilian Elimination: N% FLOPS

3
GE Forward: N% FLOPS

GE Backward: ~ 2n? FLOPS
Matrix Inversion: ~2n> FLOPS
Matrix-Vector Multiplication: ~ 2r? FLOPS

Solving by matrix inversion: ~ 2n° FLOPS

. . - . 2n>
Solving by Gaussian elimination: N% FLOPS



FLOPS for solving LU systems

. . 2n’
LU Factorization: NT FLOPS

Solving Lx=b: ~2n* FLOPS (by "forward" elimination)

Solving Ux=c: ~2n*> FLOPS (already in echelon form)

. . . 2n°
Solving by LU Factorization: N% FLOPS



IT you solve several matrix equations for the same
matrix, LU factorization 1s faster than matrix i1nversion
on the first equation, and the same (asymptotically) 1n
later equations (and 1t works for rectangular matrices).
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Other Considerations: Density

IfT A doesn't have to many entries (A is
sparse), then 1ts likely that L and U won't
elther.

But A-! may have many entries (A~!' is dense)

Sparse matrices are faster to compute with and
better with respect to storage.



Summary

Matrix inverses allow us to easily solve many
matrixes equations over the same A

LU Factorizations allows us to do the same, but
more generally more efficiently



