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Practice Problem

3

Determine the inverse of the above matrix 1n
every way that we've discussed









Objectives

» Motivate matrix factorization in general, and
the LU factorization 1n specific

» Recall elementary row operations and connect
them to matrices

» Look at the LU factorization, how to find 1it,
and how to use 1t
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expresses A as a product of one or more matrices,
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Matrix Factorization

A factorization of a matrix A is an equation which
expresses A as a product of one or more matrices,

e.qg.,
A =BC

So far, we've been given two factors and asked to
find their product

Factorization is the harder direction
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Reasons to Factorize

Writing A as the product of multiple matrices can
» make computing with A faster LU Decomposition
» make working with A easier

» expose 1important information about A



The Problem

Question. For an matrix A, solve the equations

Ax=Db, , Ax=Db, ... Ax=b,_, , AX=Db,

In other words: we want to solve several matrix
equations over the same matrix




The Problem

Question. For a matrix A, solve (for X) in the
equation

AX=1HB

where X and B are matrices of appropriate
dimension

This 1s (essentially) the same question



The Problem

Question. Solve AX=BH
IT A 1s 1invertible, then we have a solution:

Find A-! and then X=A"'B



The Problem

Question. Solve AX=BH
IT A 1s 1invertible, then we have a solution:

Find A-! and then X=A"'B

What if A~! 1s not invertible?
Even 1f 1t 1s, can we do 1t faster?



LU Factorization at a High Level

Given a mXxn matrix A, we are going to
factorize A as

echelon form of A
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LU Factorization at a High Level

Given a mXxn matrix A, we are going to
factorize A as

echelon form of A

x* K K

0
1
¥
¥

¥ —_— O O
—_— O O O

L
Note. This applies to non-square matrices



What are "L" and "U"?

L stands for "lower"™ as 1in lower triangular

U stands for "upper" as 1in upper trianqular
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The Fundamental Question

A — Ll } echelon form of A

We know how to build U, that's just the forward
phase of Gaussian elimination

How do we build L?

The 1dea. L "implements" the row operations of
the forward phase



Elementary Matrices




Recall: Elementary Row Operations

scaling multiply a row by a number
interchange switch two rows

replacement add a scaled equation to another



The First Key Observation
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The First Key Observation

Elementary row operations are linear transformations
(viewed as transformation on columns)

Example: Scale row 2 by 5

di1 di1p 43 P SR 11 5P) 413
ayy Gy apy| T2 T 02

—_—
31 d3p d33 31 0%%) %%



Example: Scaling

Restricted to one column, we see this 1s the
above linear transformation

Vl Vl
V2 > 5 Vz
V3 V3



Example: Scaling



Another Example: Scaling + Replacement

ayy dpp aqg i din d13
ar1 dryr 04y3 —p 253 %%, dr3

31 d3zp U3z (a3 — 2ay1) (az, —2ap,) (az3 — 2a;3)



Another Example: Scaling + Replacement

[ X, { Xy R, — (R, — 2R))
N ) ' 9 0
X-L&\’B L ‘k [O]H[O‘g (\A\lﬂ \
A4, Ay- 1%, | "l 0 ’
2
)



Elementary row operations are
Linear, so they are 1mplemented
by matrices



General Elementary Scaling Matrix

o OO =
OO = O
o OO
—_ O O O



General Elementary Scaling Matrix

1 0 0 0O
0O 1 0 0O
0 0 k£ O
0 0 O 1

IT we want to perform R; « kR, then we need the identity matrix
but with the entry A;; =«.



General Elementary Scaling Matrix
0 0 O
1 0 0
0 k O
0 0 1

IT we want to perform R; « kR, then we need the identity matrix
but with the entry A;; =«.

IT we want to perform R < kR, then we need the identity matrix
but with then entry A, =k«.
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General Replacement Matrix

O = OO

0
0
0
1

OO = O

1
0
0
k

IT we want to perform R, « R, +kR,, then we need the
identity matrix but with the entry A, =k.



General Replacement Matrix

O = OO

0
0
0
1

OO = O

1
0
0
k

IT we want to perform R, « R, +kR,, then we need the
identity matrix but with the entry A, =k.

If we want to perform R, < R, + kR, then we need the
identity matrix but with the entry A, =k.



General Swap Matrix

O = OO

0
1
0
1

OO O =
o O O O

IT we want to swap R, and R;, then we need the
identity matrix, but with R, and R, swapped.



Elementary Matrices

Definition. An elementary matrix is a matrix
obtained by applying a single row operation to
the i1dentity matrix I

Example. 00 ] F,e2¥ [ 0
9, ' ) —D O O ]
o o | ©

)



How To: Finding Elementary Matrices

Question. Find the matrix implementing the
elementary row operation op

Solution. Apply op to the identity matrix of the
appropriate size

] < 9

o Y
‘121«—(21-%%% 0 2V

p 0ol
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Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row
operations

» Remember that Matrix multiplication 1s transformation
composition (i.e., do one then the other)

So we can implement any sequence of row operations as a
product of elementary matrices



How to: Matrices implementing Row Operations

Question. Find the matrix implementing a
sequence of row operations op,, op,, ...

Solution. Apply the row operations in sequence
to the 1dentity matrix of the appropriate size



Question

Find the matrix implementing the following sequence
of elementary row operations on a 3xn matrix.

R, < 3R,
Ry < R+ R,
R, & R,

Then multiply 1t with the all-ones 3x3 matrix.



R, < 3R,
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transformations



Second Key Observation

Elementary row operations are invertible linear
transformations

This also means the product of elementary
matrices 1s 1nvertible

(E\E,E:E)™' = E; 'E; 'E; E;

'l the order reverses !
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Question (Conceptual)

Describe the inverse transformation for each
elementary row operation

The 1nverse of scaling by k£ 1s scaling by 1/k

The inverse of R, <« R, +kR; 1S R; < R, — kR,

The 1nverse of swapplng 1s swapplhg agaln



Recall: Elementary Row Operations

scaling multiply a row by a number
interchange switch two rows

replacement add a scaled equation to another



Recall: Elementary Row Operations

We only need these two for the forward phase

interchange switch two rows

replacement add a scaled equation to another



Recall: Elementary Row Operations

We'll assume we only need this

replacement add a scaled equation to another



Reminder: LU Factorization at a High Level

Given a mXxn matrix A, we are going to
factorize A as

Echelon form of A

1 0 0 0
Ao |* 1 00
K K K 1




Gaussian Elimination and Elementary Matrices

Consider a sequence of elementary row
operations from A to an echelon form

Each step can be represent as a product with an
elementary matrix



Gaussian Elimination and Elementary Matrices




Gaussian Elimination and Elementary Matrices
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This exactly tells us that if B 1s the final echelon form we get then

where E 1implements a sequence of row operations. So:
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Gaussian Elimination and Elementary Matrices

1/‘ ~/ JE?I/4L "".lzgylzaggl N eee Y JE;kJE%k__l....JEazJEalfqt

This exactly tells us that if B 1s the final echelon form we get then
Invertible

where E 1implements a sequence of row operations. So:

A=E'B=(E'E;'...E_ E "B



LU Factorization Algorithm



LU Factorization Algorithm

FUNCTION LU Factorization(A):



LU Factorization Algorithm

FUNCTION LU Factorization(A):

L « identity matrix



LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « identity matrix

U <« A



LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « identity matrix
U <« A

convert U to an echelon form by GE forward step # without swaps



LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « identity matrix
U < A
convert U to an echelon form by GE forward step # without swaps

FOR each row operation OP in the prev step:



LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « identity matrix
U < A
convert U to an echelon form by GE forward step # without swaps
FOR each row operation OP in the prev step:

E « the matrix implementing OP



LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « identity matrix
U < A
convert U to an echelon form by GE forward step # without swaps
FOR each row operation OP in the prev step:
E « the matrix implementing OP

L « L @ E! # note the multiplication on the right



LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « identity matrix
U < A
convert U to an echelon form by GE forward step # without swaps
FOR each row operation OP in the prev step:
E « the matrix implementing OP

L « L @ E! # note the multiplication on the right

RETURN (L, U)



LU Factorization Algorithm

FUNCTION LU Factorization(A):
L « identity matrix
U < A
convert U to an echelon form by GE forward step # without swaps
FOR each row operation OP in the prev step:
E « the matrix implementing OP

L « L @ E™! # note the multiplication on the right
RETURN (L, U) we'll see how to do this more efficiently



The forward part of Gaussian
elimination 1s matrix
factorization



The "L" Part
jE; :::‘szJEZk—-l""jE%lea_

This a product of elementary matrices
So L=E'=E'E;'...E_. E' '! the order reverses !!

We won't prove this, but 1it's worth thinking about: why
1s this lower triangular?

And can we build this 1n a more efficient way?



demo



How To: LU Factorization by hand

Question. Find a LU Factorization for the
matrix A (assuming no swaps)

Solution.

» Start with L as the identity matrix
» Find U by the forward part of GE
» For each operation R, < R;+kR, set L, to —k



Practice Problem

3

Determine an LU factorization of the above
matrix using this procedure



Determine an LU factorization of the above
matrix using this procedure

1 2
3 7
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Analyzing Linear Algebra Algorithims

We will not use O(-) notation!

For numerics, we care about number of FLoating-oint
OPerations (FLOPs):

>> addition

>> subtraction

>> multiplication
>> division

>> square root

2n VS. n 1S very different
when n ~ 10%
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Dominant Terms

That said, we don't care about exact bounds

A function f(n) is asymptotically equivalent to g(n) if
J(0)

i—oo g(1)

For polynomials, they are equivalent to their
dominant term



Dominant Terms

the dominant term of a polynomial 1s the monomial with the highest
degree

~3x2 4+ 100000x2
lrnn-—————————————————— — 1
1— 00 3)63

3x? dominates the function even though the coefficient for x?> is so
large



How To: Solving systems with the LU

Question. Solve the equation Ax=b given that
A=LU 1s a LU factorization.

Solution. First solve ILx=b to get a solution ¢,
then solve Ux=c¢ to get a solution d.

Verify:



How To: Solving systems with the LU

Question. Solve the equation Ax=b given that
A=LU 1s a LU factorization.

Solution. First solve ILx=b to get a solution ¢,
then solve Ux=c¢ to get a solution d.

Why 1s this better than just solving Ax =b?
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FLOPs for Solving General Systems

The following FLOP estimates are based on nxn matrices

L . on’
Gaussilian Elimination: N% FLOPS

3
GE Forward: N% FLOPS

GE Backward: ~ 2n? FLOPS
Matrix Inversion: ~2n> FLOPS
Matrix-Vector Multiplication: ~ 2r? FLOPS

Solving by matrix inversion: ~ 2n° FLOPS

. . - . 2n>
Solving by Gaussian elimination: N% FLOPS



FLOPS for solving LU systems

. . 2n’
LU Factorization: NT FLOPS

Solving Lx=b: ~2n* FLOPS (by "forward" elimination)

Solving Ux=c: ~2n*> FLOPS (already in echelon form)

. . . 2n°
Solving by LU Factorization: N% FLOPS



IT you solve several matrix equations for the same
matrix, LU factorization 1s faster than matrix i1nversion
on the first equation, and the same (asymptotically) 1n
later equations (and 1t works for rectangular matrices).
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Other Considerations: Density

IfT A doesn't have to many entries (A is
sparse), then 1ts likely that L and U won't
elther.

But A-! may have many entries (A~!' is dense)

Sparse matrices are faster to compute with and
better with respect to storage.



Algebraic Graph Theory



Graphs

Definition (Informal). A graph is a collection
of nodes with edges between them.




Directed vs. Undirected Graphs

A graph is directed if its edges have a
direction.

A and B
are there 1s an edge
connected from B to A
by an edge
undirected @ directed




Weighted vs Unweighted graphs

A graph is weighted if its edges have
assoclated values.

unweighted welghted



Weighted vs Unweighted graphs

A graph is weighted if its edges have

assoclated values. |
edge weights

> @
¥ Vi ‘z

@/2/}< 4@ ¥ |2
A :
o O

unweighted welghted




Simple Graphs

A graph is simple if it is undirected, has no
self loops, and no multi-edges.




Four Kinds of Graphs

directed undirected

nodes are traffic lights nodes are musicians
' edges are streets edges are collaborations
WE lg h t ed weights are number of lanes weights are number of collaborations

nodes are instagram users

nodes are bodies of land

Uunwe ]_g h 't Ed edges are follows edges are pedestrian bridges




Four Kinds of Graphs

directed undirected

nodes are traffic lights nodes are musicians
' edges are streets edges are collaborations
WE lg h t ed weights are number of lanes weights are number of collaborations

nodes are instagram users

nodes are bodies of land

Uunwe ]_g h 't Ed edges are follows edges are pedestrian bridges
Today




Four Kinds of Graphs

directed undirected

nodes are traffic lights nodes are musicians
' edges are streets edges are collaborations
WE lg h t ed weights are number of lanes weights are number of collaborations

Markov Chains

nodes are instagram users .
J nodes are bodies of land

Uunwe ]_g h 't Ed edges are follows edges are pedestrian bridges
Today
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Fundamental Question

How do we represent a graph
formally 1n a computer?



Fundamental Question

How do we represent a graph
formally 1n a computer?

There are a couple ways, but one
way 1S to use matrices.



Adjacency Matrices

O 1 O

I O 1

0O 1 O
Let G be an simple graph with Az [0 0 1
its nodes labeled by numbers 1 1 1 0
through . Aes |0 0 O
We can create the adjacency
matrix A for G as follows.

A _”{1 there is an edge between i and ]
L0 otherwise



Symmetric Matrices

Definition. A nxn matrix is symmetric if
Al =A

Example.

OO = O O O



Once we have an adjacency matrix,
we can do linear algebra on
grapns.



Example: Squared Adjacency Matrices

Given an adjacency matrix A, can we
interpret anything meaningful from
A%?



Example: Squared Adjacency Matrices

O 1 00T1TOH0O 1T 0 0 1 O
1 01 0 1 O)jf1r 01 0 1 0O
O 1 0100101 01 0 O
001 01 1]1j0O 0 1 0 1 1
1 1T 0O 1 O Ojf1 1.0 1 0 0O
0 00 1T O0O0]{00O0T1TO0O0

(A%)s; = 1(0) + 1(1) + 0(0) + 1(1) + 0(0) + 0(0) = 2



Example: Squared Adjacency Matrices

(A% = AjA| +ApAs + ... +A,A

in‘ “nj
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Example: Squared Adjacency Matrices

(A% = AjA +ApAs + ...+ ALA,

in‘ "nj

A~ {1 there are edges i to k and k to ]
910 otherwise

(Az)“ __|number of 2-step paths
/ from i to j




Application: Triangle Counting

A triangle in an undirected
graph 1s a set of three
distinct nodes with edges
between every pair of nodes.

Triangles 1n a social
network represent mutual
friends and tight cohesion
(among other things)




Application: Triangle Counting (Naive)

FUNCTION tri_count naive(A):
count = 0
for 1 from 1 to n:
for 3 from 1 + 1 to n:

for K from j + 1 to n:

if A;=1 and A, =1 and A,;=1: # an edge between each pair

count += 1:

RETURN count



Application: Triangle Counting

Theorem. For an adjacency matrix A, the number
of triangle containing the edge (i,j) 1S

2
(A%);* A,

Verify:



Application: Triangle Counting

FUNCTION tri count(A):
compute A~

count « sum of (A%),;*A; for all distinct i and ;

RETURN count / © # why divided by 67



Application: Triangle Counting

FUNCTION tri count(A):
# 1n NumPy 'x' 1s entry-wise multiplication
# also called the HADAMARD PRODUCT

count < sum of the entries of A? x A

RETURN count / ©



Application: Triangle Counting

FUNCTION tri count(A):
# 1n NumPy 'x' 1s entry-wise multiplication
# also called the HADAMARD PRODUCT

# and 'np.sum’ sums the entry of a matrix

RETURN np.sum((A @ A) x A) / 6



demo



Another Application: Reachability

Question: If A’ gives us information about
length 2 paths, then what about A*?

A* gives us information about k-length paths.
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Example

G
(2

adjacency matrix for G

1 1 O
0 0 1
0 0 1
1 1 O

1

AN O O A
S AN A O
O AN A O
AN O O A
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Example

0100

1 010 - .

01 0 1 = adjacency matrix for G
0010




O

€

adjacency matrix for G

Example
1 0 O
O 1 O
1 O lw
O 1 O

O

O

O — OO o — O O

—



O

€

Example

adjacency matrix for G

o — O O
—

1

— O A O

O — O O




Another Application: Reachability

Theorem: Let G be a simple graph.

* (A5); 1s the number of paths of length exactly

k from v, To v.

.(Q%f+[%hiis nonzero if and only if there is a

path of length at at most k from v. to v.

J
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Example

G
(2

(adjacency matrix for G) + I

1

O v v
_— OO v v
_— o O v

_— o - OO

|

1

AN AN AN o
AN AN N A
AN N AN A
¢ AN AN A

|

T

O v v
_— O v
_— e O v

_— o - OO

|



Example

G
(2

(adjacency matrix for G) + I

1

O v v
_— OO v v
_— o O v

_— o - OO

|

1

AN AN AN o
AN AN N A
AN N AN A
¢ AN AN A

|

T

O v v
_— O v
_— e O v

_— o - OO

|

_— o -—— OO

AN AN AN on
AN AN N A
AN N AN A



How To: Reachability

Question: Given a simple graph G determine how
many nodes v; can reach 1n at least k steps.

Answer: Find (A.+ D and count the number of
nonzero elements 1n column i.



Question

Determine the (A;+1)* and (A;+1)° and
interpret the results.




Summary

Matrix inverses allow us to easily solve many
matrixes equations over the same A

LU Factorizations allows us to do the same, but
more generally more efficiently

Adjacency matrices are linear algebraic
representations of graphs



