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Practice Problem

Determine the inverse of the above matrix in 
every way that we've discussed

[1 2
3 7]



Answer [1 2
3 7]



Answer [1 2
3 7]



Objectives

» Motivate matrix factorization in general, and 
the LU factorization in specific 

» Recall elementary row operations and connect 
them to matrices 

» Look at the LU factorization, how to find it, 
and how to use it



LU Factorization



Matrix Factorization



Matrix Factorization

A factorization of a matrix  is an equation which 
expresses  as a product of one or more matrices, 
e.g.,

A
A

A = BC



Matrix Factorization

A factorization of a matrix  is an equation which 
expresses  as a product of one or more matrices, 
e.g.,

A
A

A = BC

So far, we've been given two factors and asked to 
find their product

Factorization is the harder direction



Reasons to Factorize
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Reasons to Factorize

Writing  as the product of multiple matrices canA

» make computing with  fasterA

» make working with  easierA

» expose important information about A

LU Decomposition



The Problem

Question. For an matrix , solve the equations 

 ,   ...   ,  

In other words: we want to solve several matrix 
equations over the same matrix

A

Ax = b1 Ax = b2 Ax = bk−1 Ax = bk



The Problem

Question. For a matrix , solve (for ) in the 
equation 

 
where  and  are matrices of appropriate 
dimension 

This is (essentially) the same question

A X

AX = B
X B



The Problem

Question. Solve  

If  is invertible, then we have a solution: 

Find  and then 

AX = B

A

A−1 X = A−1B



The Problem

Question. Solve  

If  is invertible, then we have a solution: 

Find  and then 

AX = B

A

A−1 X = A−1B

What if  is not invertible?A−1

Even if it is, can we do it faster?



LU Factorization at a High Level

Given a  matrix , we are going to 
factorize  as 

m × n A
A echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0



LU Factorization at a High Level

Given a  matrix , we are going to 
factorize  as 

m × n A
A

Note. This applies to non-square matrices

echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0



What are "L" and "U"?

L stands for "lower" as in lower triangular 

U stands for "upper" as in upper triangular 

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * *
0 ◼ * *
0 0 ◼ *
0 0 0 ◼
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The Fundamental Question

We know how to build , that's just the forward 
phase of Gaussian elimination

U

How do we build ?L

The idea.  "implements" the row operations of 
the forward phase

L

A = LU echelon form of A



Elementary Matrices



Recall: Elementary Row Operations

scaling        multiply a row by a number 

interchange    switch two rows 

replacement    add a scaled equation to another



The First Key Observation
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The First Key Observation

Elementary row operations are linear transformations 
(viewed as transformation on columns)

Example: Scale row 2 by 5      

R2 ← 5R2
a11 a12 a13
a21 a22 a23
a31 a32 a33

a11 a12 a13
5a21 5a22 5a23
a31 a32 a33



Example: Scaling

Restricted to one column, we see this is the 
above linear transformation

v1
v2
v3

↦
v1
5v2
v3



Example: Scaling
v1
v2
v3

↦
v1
5v2
v3

Let's build the matrix which implements it:



Another Example: Scaling + Replacement

          
a11 a12 a13
a21 a22 a23
a31 a32 a33

a11 a12 a13
a21 a22 a23

(a31 − 2a11) (a32 − 2a12) (a33 − 2a13)

R3 ← (R3 − 2R1)



Another Example: Scaling + Replacement
R3 ← (R3 − 2R1)



Elementary row operations are 
linear, so they are implemented 

by matrices



General Elementary Scaling Matrix

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1



General Elementary Scaling Matrix

If we want to perform  then we need the identity matrix 
but with the entry .

R3 ← kR3
A33 = k

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1



General Elementary Scaling Matrix

If we want to perform  then we need the identity matrix 
but with the entry .

R3 ← kR3
A33 = k

If we want to perform  then we need the identity matrix 
but with then entry .

Ri ← kRi
Aii = k

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1



General Replacement Matrix
1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1



General Replacement Matrix

If we want to perform , then we need the 
identity matrix but with the entry .

R4 ← R4 + kR1
A41 = k

1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1



General Replacement Matrix

If we want to perform , then we need the 
identity matrix but with the entry .

R4 ← R4 + kR1
A41 = k

If we want to perform , then we need the 
identity matrix but with the entry .

Ri ← Ri + kRj
Aij = k

1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1



General Swap Matrix

If we want to swap  and , then we need the 
identity matrix, but with  and  swapped.

R2 R3
R2 R3

1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0



Elementary Matrices

Definition. An elementary matrix is a matrix 
obtained by applying a single row operation to 
the identity matrix  

Example.

I



How To: Finding Elementary Matrices

Question. Find the matrix implementing the 
elementary row operation  

Solution. Apply  to the identity matrix of the 
appropriate size

𝗈𝗉

𝗈𝗉



Products of Elementary Matrices



Products of Elementary Matrices

Taking stock:



Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row 
operations



Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row 
operations

» Remember that Matrix multiplication is transformation 
composition (i.e., do one then the other)



Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row 
operations

» Remember that Matrix multiplication is transformation 
composition (i.e., do one then the other)

So we can implement any sequence of row operations as a 
product of elementary matrices



How to: Matrices implementing Row Operations

Question. Find the matrix implementing a 
sequence of row operations , ,... 

Solution. Apply the row operations in sequence 
to the identity matrix of the appropriate size

𝗈𝗉1 𝗈𝗉2



Question

Find the matrix implementing the following sequence 
of elementary row operations on a  matrix. 

 

 

   

Then multiply it with the all-ones  matrix.

3 × n

R2 ← 3R2

R1 ← R1 + R2

R2 ↔ R3

3 × 3



Answer
 

 

   

R2 ← 3R2

R1 ← R1 + R2

R2 ↔ R3



Second Key Observation



Second Key Observation

Elementary row operations are invertible linear 
transformations



Second Key Observation

Elementary row operations are invertible linear 
transformations

This also means the product of elementary 
matrices is invertible

(E1E2E3E4)−1 = E−1
4 E−1

3 E−1
2 E−1

1
!! the order reverses !!



Question (Conceptual)

Describe the inverse transformation for each 
elementary row operation
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Question (Conceptual)

Describe the inverse transformation for each 
elementary row operation

The inverse of scaling by  is scaling by k 1/k

The inverse of  is Ri ← Ri + kRj Ri ← Ri − kRj

The inverse of swapping is swapping again



Recall: Elementary Row Operations

scaling        multiply a row by a number 

interchange    switch two rows 

replacement    add a scaled equation to another



Recall: Elementary Row Operations

interchange    switch two rows 

replacement    add a scaled equation to another

We only need these two for the forward phase



Recall: Elementary Row Operations

replacement    add a scaled equation to another

We'll assume we only need this



Reminder: LU Factorization at a High Level

Given a  matrix , we are going to 
factorize  as 

m × n A
A Echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0



Gaussian Elimination and Elementary Matrices

Consider a sequence of elementary row 
operations from  to an echelon form 

Each step can be represent as a product with an 
elementary matrix

A

A ∼ A1 ∼ A2 ∼ … ∼ Ak



Gaussian Elimination and Elementary Matrices

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A



Gaussian Elimination and Elementary Matrices

This exactly tells us that if  is the final echelon form we get thenB

B = (EkEk−1…E2E1)A = EA

where  implements a sequence of row operations. So:E

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A
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This exactly tells us that if  is the final echelon form we get thenB

B = (EkEk−1…E2E1)A = EA

where  implements a sequence of row operations. So:E
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Gaussian Elimination and Elementary Matrices

This exactly tells us that if  is the final echelon form we get thenB

B = (EkEk−1…E2E1)A = EA

where  implements a sequence of row operations. So:E

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A

Invertible

A = E−1B = (E−1
1 E−1

2 …E−1
k−1E−1

k )B
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1  FUNCTION LU_Factorization( ):A

2      L  identity matrix←

3      U  ← A

4      convert U to an echelon form by GE forward step # without swaps

5      FOR each row operation OP in the prev step:

6          E  the matrix implementing OP←

7          L  L @ E     # note the multiplication on the right← −1



LU Factorization Algorithm

1  FUNCTION LU_Factorization( ):A

2      L  identity matrix←

3      U  ← A

4      convert U to an echelon form by GE forward step # without swaps

5      FOR each row operation OP in the prev step:

6          E  the matrix implementing OP←

7          L  L @ E     # note the multiplication on the right← −1

8      RETURN (L, U)



LU Factorization Algorithm

1  FUNCTION LU_Factorization( ):A

2      L  identity matrix←

3      U  ← A

4      convert U to an echelon form by GE forward step # without swaps

5      FOR each row operation OP in the prev step:

6          E  the matrix implementing OP←

7          L  L @ E     # note the multiplication on the right← −1

8      RETURN (L, U) we'll see how to do this more efficiently



The forward part of Gaussian 
elimination is matrix 

factorization



The "L" Part

This a product of elementary matrices 

So  !! the order reverses !! 

We won't prove this, but it's worth thinking about: why 
is this lower triangular? 

And can we build this in a more efficient way?

L = E−1 = E−1
1 E−1

2 …E−1
k−1E−1

k

E = EkEk−1…E2E1



demo



How To: LU Factorization by hand

Question. Find a LU Factorization for the 
matrix  (assuming no swaps) 

Solution. 

» Start with  as the identity matrix 
» Find  by the forward part of GE 
» For each operation , set  to 

A

L
U

Ri ← Ri + kRj Lij −k



Practice Problem

Determine an LU factorization of the above 
matrix using this procedure

[1 2
3 7]



Answer

Determine an LU factorization of the above 
matrix using this procedure

[1 2
3 7]
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Analyzing Linear Algebra Algorithms

We will not use  notation!O( ⋅ )

For numerics, we care about number of FLoating-oint 
OPerations (FLOPs):

  >> addition 
  >> subtraction 
  >> multiplication 
  >> division 
  >> square root

 vs.  is very different 
when 

2n n
n ∼ 1020
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Dominant Terms

That said, we don't care about exact bounds

A function  is asymptotically equivalent to  iff(n) g(n)

lim
i→∞

f(i)
g(i) = 1



Dominant Terms

That said, we don't care about exact bounds

A function  is asymptotically equivalent to  iff(n) g(n)

lim
i→∞

f(i)
g(i) = 1

For polynomials, they are equivalent to their 
dominant term



Dominant Terms

the dominant term of a polynomial is the monomial with the highest 
degree 

 

 dominates the function even though the coefficient for  is so 
large

lim
i→∞

3x3 + 100000x2

3x3 = 1

3x3 x2



How To: Solving systems with the LU

Question. Solve the equation  given that 
 is a LU factorization. 

Solution. First solve  to get a solution , 
then solve  to get a solution . 

Verify: 

Ax = b
A = LU

Lx = b c
Ux = c d



How To: Solving systems with the LU

Question. Solve the equation  given that 
 is a LU factorization. 

Solution. First solve  to get a solution , 
then solve  to get a solution . 

Ax = b
A = LU

Lx = b c
Ux = c d

Why is this better than just solving ?Ax = b
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FLOPs for Solving General Systems

The following FLOP estimates are based on  matricesn − n

Gaussian Elimination:  FLOPS× 2n3

3

GE Forward:  FLOPS× 2n3

3

GE Backward:  FLOPS× 2n2

Matrix Inversion:  FLOPS× 2n3

Matrix-Vector Multiplication:  FLOPS× 2n2

Solving by matrix inversion:  FLOPS× 2n3

Solving by Gaussian elimination:  FLOPS× 2n3

3



FLOPS for solving LU systems

LU Factorization:  FLOPS 

Solving :  FLOPS (by "forward" elimination) 

Solving :  FLOPS (already in echelon form) 

Solving by LU Factorization:  FLOPS 

× 2n3

3

Lx = b × 2n2

Ux = c × 2n2

× 2n3

3



If you solve several matrix equations for the same 
matrix, LU factorization is faster than matrix inversion 
on the first equation, and the same (asymptotically) in 
later equations (and it works for rectangular matrices).



Other Considerations: Density
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Other Considerations: Density

If  doesn't have to many entries (  is 
sparse), then its likely that  and  won't 
either.

A A
L U

But  may have many entries (  is dense)A◼1 A◼1

Sparse matrices are faster to compute with and 
better with respect to storage.



Algebraic Graph Theory



Graphs

Definition (Informal). A graph is a collection 
of nodes with edges between them. 



Directed vs. Undirected Graphs

A graph is directed if its edges have a 
direction. 

undirected directed

A

B

A

B

A and B 
are 

connected 
by an edge

there is an edge 
from B to A



Weighted vs Unweighted graphs

A graph is weighted if its edges have 
associated values.

weightedunweighted



Weighted vs Unweighted graphs

A graph is weighted if its edges have 
associated values.

weightedunweighted

edge weights



Simple Graphs

A graph is simple if it is undirected, has no 
self loops, and no multi-edges.



Four Kinds of Graphs

nodes are traffic lights

edges are streets


weights are number of lanes

nodes are musicians

edges are collaborations
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nodes are instagram users

edges are follows
 nodes are bodies of land


edges are pedestrian bridges

directed undirected

weighted
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Four Kinds of Graphs

nodes are traffic lights

edges are streets


weights are number of lanes

nodes are musicians

edges are collaborations


weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land


edges are pedestrian bridges

directed undirected

weighted

unweighted
Today

Markov Chains
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Fundamental Question
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Fundamental Question

How do we represent a graph 
formally in a computer?

There are a couple ways, but one 
way is to use matrices.



Adjacency Matrices

Let  be an simple graph with 
its nodes labeled by numbers  
through . 

We can create the adjacency 
matrix  for  as follows.

G
1

n

A G

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

A12

A21

A43

A34

A64

A46

Aij = {1 there is an edge between i and j
0 otherwise



Symmetric Matrices

Definition. A  matrix is symmetric if 

 

Example. 

n − n

AT = A

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0



Once we have an adjacency matrix, 
we can do linear algebra on 

graphs.



Example: Squared Adjacency Matrices

Given an adjacency matrix , can we 
interpret anything meaningful from 
? 

A

A2



Example: Squared Adjacency Matrices

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

(A2)53 = 1(0) + 1(1) + 0(0) + 1(1) + 0(0) + 0(0) = 2



Example: Squared Adjacency Matrices

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj
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AikAkj = {1 there are edges i to k and k to j
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Example: Squared Adjacency Matrices

AikAkj = {1 there are edges i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

A34A45 = 1(1) = 1
A36A65 = 0(0) = 0



Example: Squared Adjacency Matrices

AikAkj = {1 there are edges i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

A34A45 = 1(1) = 1
A36A65 = 0(0) = 0

(A2)ij = number of 2-step paths 
from i to j



Application: Triangle Counting

A triangle in an undirected 
graph is a set of three 
distinct nodes with edges 
between every pair of nodes. 

Triangles in a social 
network represent mutual 
friends and tight cohesion 
(among other things)



Application: Triangle Counting (Naive)

FUNCTION tri_count_naive( ): 

  count = 0 

  for i from 1 to n: 

    for j from i + 1 to n: 

      for k from j + 1 to n: 

        if  and  and : # an edge between each pair 

          count += 1: 

  RETURN count

A

Aij = 1 Ajk = 1 Aki = 1



Application: Triangle Counting

Theorem. For an adjacency matrix , the number 
of triangle containing the edge  is 

 
Verify:

A
(i, j)

(A2)ij * Aij



Application: Triangle Counting

FUNCTION tri_count( ): 

  compute  

  count  sum of  for all distinct  and  

  RETURN count / 6    # why divided by 6?

A

A2

← (A2)ij * Aij i j



Application: Triangle Counting

FUNCTION tri_count( ): 

  # in NumPy '*' is entry-wise multiplication 

  #     also called the HADAMARD PRODUCT 

  count  sum of the entries of  *  

  RETURN count / 6

A

← A2 A



Application: Triangle Counting

FUNCTION tri_count( ): 

  # in NumPy '*' is entry-wise multiplication 

  #     also called the HADAMARD PRODUCT 

  # and 'np.sum' sums the entry of a matrix 

  RETURN np.sum((  @ ) * ) / 6

A

A A A



demo



Another Application: Reachability

Question: If  gives us information about 
length 2 paths, then what about ? 

 gives us information about -length paths.

A2

Ak

Ak k
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1

3

4

G



Example

2

1

3

4

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G



Example

2

1

3

4

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

2

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G



Example

2

1

3

4

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

2

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

3

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

=
0 4 4 0
4 0 0 4
4 0 0 4
0 4 4 0

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G
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Example

2

1

3

4

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G



Example

2

1

3

4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

2

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G



Example

2

1

3

4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

2

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

=
0 2 0 1
2 0 3 0
0 3 0 2
1 0 2 0



Another Application: Reachability

Theorem: Let  be a simple graph. 

•  is the number of paths of length exactly 
 from  to .  

•  is nonzero if and only if there is a 
path of length at at most k from  to .

G

(Ak
G)ij

k vi vj

((AG + I)k)ij

vi vj



Example

2

1

3

4

G



Example

2

1

3

4

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for ) + G I



Example

2

1

3

4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

2

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for ) + G I



Example

2

1

3

4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

2

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

3

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

=
6 6 6 7
6 6 7 6
6 7 6 6
7 6 6 6

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for ) + G I



How To: Reachability

Question: Given a simple graph  determine how 
many nodes  can reach in at least  steps. 

Answer: Find  and count the number of 
nonzero elements in column .

G
vi k

(AG + I)k

i



Question

2

1

3

4

G

Determine the  and  and 
interpret the results.

(AG + I)2 (AG + I)3



Summary

Matrix inverses allow us to easily solve many 
matrixes equations over the same  

LU Factorizations allows us to do the same, but 
more generally more efficiently 

Adjacency matrices are linear algebraic 
representations of graphs

A


