
CAS CS 132

LU Factorization
Geometric Algorithms
Lecture 12

Practice Problem

Determine the inverse of the above matrix in
every way that we've discussed

[1 2
3 7]

Answer [1 2
3 7]

Answer [1 2
3 7]

Objectives

» Motivate matrix factorization in general, and
the LU factorization in specific

» Recall elementary row operations and connect
them to matrices

» Look at the LU factorization, how to find it,
and how to use it

LU Factorization

Matrix Factorization

Matrix Factorization

A factorization of a matrix is an equation which
expresses as a product of one or more matrices,
e.g.,

A
A

A = BC

Matrix Factorization

A factorization of a matrix is an equation which
expresses as a product of one or more matrices,
e.g.,

A
A

A = BC

So far, we've been given two factors and asked to
find their product

Factorization is the harder direction

Reasons to Factorize

Reasons to Factorize

Writing as the product of multiple matrices canA

Reasons to Factorize

Writing as the product of multiple matrices canA

» make computing with fasterA

Reasons to Factorize

Writing as the product of multiple matrices canA

» make computing with fasterA

» make working with easierA

Reasons to Factorize

Writing as the product of multiple matrices canA

» make computing with fasterA

» make working with easierA

» expose important information about A

Reasons to Factorize

Writing as the product of multiple matrices canA

» make computing with fasterA

» make working with easierA

» expose important information about A

LU Decomposition

The Problem

Question. For an matrix , solve the equations

 , ... ,

In other words: we want to solve several matrix
equations over the same matrix

A

Ax = b1 Ax = b2 Ax = bk−1 Ax = bk

The Problem

Question. For a matrix , solve (for) in the
equation

where and are matrices of appropriate
dimension

This is (essentially) the same question

A X

AX = B
X B

The Problem

Question. Solve

If is invertible, then we have a solution:

Find and then

AX = B

A

A−1 X = A−1B

The Problem

Question. Solve

If is invertible, then we have a solution:

Find and then

AX = B

A

A−1 X = A−1B

What if is not invertible?A−1

Even if it is, can we do it faster?

LU Factorization at a High Level

Given a matrix , we are going to
factorize as

m × n A
A echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0

LU Factorization at a High Level

Given a matrix , we are going to
factorize as

m × n A
A

Note. This applies to non-square matrices

echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0

What are "L" and "U"?

L stands for "lower" as in lower triangular

U stands for "upper" as in upper triangular

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * *
0 ◼ * *
0 0 ◼ *
0 0 0 ◼

The Fundamental Question

A = LU echelon form of A

The Fundamental Question

We know how to build , that's just the forward
phase of Gaussian elimination

U

A = LU echelon form of A

The Fundamental Question

We know how to build , that's just the forward
phase of Gaussian elimination

U

How do we build ?L

A = LU echelon form of A

The Fundamental Question

We know how to build , that's just the forward
phase of Gaussian elimination

U

How do we build ?L

The idea. "implements" the row operations of
the forward phase

L

A = LU echelon form of A

Elementary Matrices

Recall: Elementary Row Operations

scaling multiply a row by a number

interchange switch two rows

replacement add a scaled equation to another

The First Key Observation

The First Key Observation

Elementary row operations are linear transformations
(viewed as transformation on columns)

The First Key Observation

Elementary row operations are linear transformations
(viewed as transformation on columns)

Example: Scale row 2 by 5

R2 ← 5R2
a11 a12 a13
a21 a22 a23
a31 a32 a33

a11 a12 a13
5a21 5a22 5a23
a31 a32 a33

Example: Scaling

Restricted to one column, we see this is the
above linear transformation

v1
v2
v3

↦
v1
5v2
v3

Example: Scaling
v1
v2
v3

↦
v1
5v2
v3

Let's build the matrix which implements it:

Another Example: Scaling + Replacement

a11 a12 a13
a21 a22 a23
a31 a32 a33

a11 a12 a13
a21 a22 a23

(a31 − 2a11) (a32 − 2a12) (a33 − 2a13)

R3 ← (R3 − 2R1)

Another Example: Scaling + Replacement
R3 ← (R3 − 2R1)

Elementary row operations are
linear, so they are implemented

by matrices

General Elementary Scaling Matrix

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1

General Elementary Scaling Matrix

If we want to perform then we need the identity matrix
but with the entry .

R3 ← kR3
A33 = k

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1

General Elementary Scaling Matrix

If we want to perform then we need the identity matrix
but with the entry .

R3 ← kR3
A33 = k

If we want to perform then we need the identity matrix
but with then entry .

Ri ← kRi
Aii = k

1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 1

General Replacement Matrix
1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1

General Replacement Matrix

If we want to perform , then we need the
identity matrix but with the entry .

R4 ← R4 + kR1
A41 = k

1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1

General Replacement Matrix

If we want to perform , then we need the
identity matrix but with the entry .

R4 ← R4 + kR1
A41 = k

If we want to perform , then we need the
identity matrix but with the entry .

Ri ← Ri + kRj
Aij = k

1 0 0 0
0 1 0 0
0 0 1 0
k 0 0 1

General Swap Matrix

If we want to swap and , then we need the
identity matrix, but with and swapped.

R2 R3
R2 R3

1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0

Elementary Matrices

Definition. An elementary matrix is a matrix
obtained by applying a single row operation to
the identity matrix

Example.

I

How To: Finding Elementary Matrices

Question. Find the matrix implementing the
elementary row operation

Solution. Apply to the identity matrix of the
appropriate size

𝗈𝗉

𝗈𝗉

Products of Elementary Matrices

Products of Elementary Matrices

Taking stock:

Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row
operations

Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row
operations

» Remember that Matrix multiplication is transformation
composition (i.e., do one then the other)

Products of Elementary Matrices

Taking stock:

» Elementary matrices implement elementary row
operations

» Remember that Matrix multiplication is transformation
composition (i.e., do one then the other)

So we can implement any sequence of row operations as a
product of elementary matrices

How to: Matrices implementing Row Operations

Question. Find the matrix implementing a
sequence of row operations , ,...

Solution. Apply the row operations in sequence
to the identity matrix of the appropriate size

𝗈𝗉1 𝗈𝗉2

Question

Find the matrix implementing the following sequence
of elementary row operations on a matrix.

Then multiply it with the all-ones matrix.

3 × n

R2 ← 3R2

R1 ← R1 + R2

R2 ↔ R3

3 × 3

Answer

R2 ← 3R2

R1 ← R1 + R2

R2 ↔ R3

Second Key Observation

Second Key Observation

Elementary row operations are invertible linear
transformations

Second Key Observation

Elementary row operations are invertible linear
transformations

This also means the product of elementary
matrices is invertible

(E1E2E3E4)−1 = E−1
4 E−1

3 E−1
2 E−1

1
!! the order reverses !!

Question (Conceptual)

Describe the inverse transformation for each
elementary row operation

Question (Conceptual)

Describe the inverse transformation for each
elementary row operation

The inverse of scaling by is scaling by k 1/k

Question (Conceptual)

Describe the inverse transformation for each
elementary row operation

The inverse of scaling by is scaling by k 1/k

The inverse of is Ri ← Ri + kRj Ri ← Ri − kRj

Question (Conceptual)

Describe the inverse transformation for each
elementary row operation

The inverse of scaling by is scaling by k 1/k

The inverse of is Ri ← Ri + kRj Ri ← Ri − kRj

The inverse of swapping is swapping again

Recall: Elementary Row Operations

scaling multiply a row by a number

interchange switch two rows

replacement add a scaled equation to another

Recall: Elementary Row Operations

interchange switch two rows

replacement add a scaled equation to another

We only need these two for the forward phase

Recall: Elementary Row Operations

replacement add a scaled equation to another

We'll assume we only need this

Reminder: LU Factorization at a High Level

Given a matrix , we are going to
factorize as

m × n A
A Echelon form of A

UL

A =
1 0 0 0
* 1 0 0
* * 1 0
* * * 1

◼ * * * *
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0

Gaussian Elimination and Elementary Matrices

Consider a sequence of elementary row
operations from to an echelon form

Each step can be represent as a product with an
elementary matrix

A

A ∼ A1 ∼ A2 ∼ … ∼ Ak

Gaussian Elimination and Elementary Matrices

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A

Gaussian Elimination and Elementary Matrices

This exactly tells us that if is the final echelon form we get thenB

B = (EkEk−1…E2E1)A = EA

where implements a sequence of row operations. So:E

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A

Gaussian Elimination and Elementary Matrices

This exactly tells us that if is the final echelon form we get thenB

B = (EkEk−1…E2E1)A = EA

where implements a sequence of row operations. So:E

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A

Invertible

Gaussian Elimination and Elementary Matrices

This exactly tells us that if is the final echelon form we get thenB

B = (EkEk−1…E2E1)A = EA

where implements a sequence of row operations. So:E

A ∼ E1A ∼ E2E1A ∼ … ∼ EkEk−1…E2E1A

Invertible

A = E−1B = (E−1
1 E−1

2 …E−1
k−1E−1

k)B

LU Factorization Algorithm

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

2 L identity matrix←

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

2 L identity matrix←

3 U ← A

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

2 L identity matrix←

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

2 L identity matrix←

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps

5 FOR each row operation OP in the prev step:

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

2 L identity matrix←

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps

5 FOR each row operation OP in the prev step:

6 E the matrix implementing OP←

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

2 L identity matrix←

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps

5 FOR each row operation OP in the prev step:

6 E the matrix implementing OP←

7 L L @ E # note the multiplication on the right← −1

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

2 L identity matrix←

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps

5 FOR each row operation OP in the prev step:

6 E the matrix implementing OP←

7 L L @ E # note the multiplication on the right← −1

8 RETURN (L, U)

LU Factorization Algorithm

1 FUNCTION LU_Factorization():A

2 L identity matrix←

3 U ← A

4 convert U to an echelon form by GE forward step # without swaps

5 FOR each row operation OP in the prev step:

6 E the matrix implementing OP←

7 L L @ E # note the multiplication on the right← −1

8 RETURN (L, U) we'll see how to do this more efficiently

The forward part of Gaussian
elimination is matrix

factorization

The "L" Part

This a product of elementary matrices

So !! the order reverses !!

We won't prove this, but it's worth thinking about: why
is this lower triangular?

And can we build this in a more efficient way?

L = E−1 = E−1
1 E−1

2 …E−1
k−1E−1

k

E = EkEk−1…E2E1

demo

How To: LU Factorization by hand

Question. Find a LU Factorization for the
matrix (assuming no swaps)

Solution.

» Start with as the identity matrix
» Find by the forward part of GE
» For each operation , set to

A

L
U

Ri ← Ri + kRj Lij −k

Practice Problem

Determine an LU factorization of the above
matrix using this procedure

[1 2
3 7]

Answer

Determine an LU factorization of the above
matrix using this procedure

[1 2
3 7]

Analyzing LU Factorization

Analyzing Linear Algebra Algorithms

Analyzing Linear Algebra Algorithms

We will not use notation!O(⋅)

Analyzing Linear Algebra Algorithms

We will not use notation!O(⋅)

For numerics, we care about number of FLoating-oint
OPerations (FLOPs):

 >> addition
 >> subtraction
 >> multiplication
 >> division
 >> square root

Analyzing Linear Algebra Algorithms

We will not use notation!O(⋅)

For numerics, we care about number of FLoating-oint
OPerations (FLOPs):

 >> addition
 >> subtraction
 >> multiplication
 >> division
 >> square root

 vs. is very different
when

2n n
n ∼ 1020

Dominant Terms

Dominant Terms

That said, we don't care about exact bounds

Dominant Terms

That said, we don't care about exact bounds

A function is asymptotically equivalent to iff(n) g(n)

lim
i→∞

f(i)
g(i) = 1

Dominant Terms

That said, we don't care about exact bounds

A function is asymptotically equivalent to iff(n) g(n)

lim
i→∞

f(i)
g(i) = 1

For polynomials, they are equivalent to their
dominant term

Dominant Terms

the dominant term of a polynomial is the monomial with the highest
degree

 dominates the function even though the coefficient for is so
large

lim
i→∞

3x3 + 100000x2

3x3 = 1

3x3 x2

How To: Solving systems with the LU

Question. Solve the equation given that
 is a LU factorization.

Solution. First solve to get a solution ,
then solve to get a solution .

Verify:

Ax = b
A = LU

Lx = b c
Ux = c d

How To: Solving systems with the LU

Question. Solve the equation given that
 is a LU factorization.

Solution. First solve to get a solution ,
then solve to get a solution .

Ax = b
A = LU

Lx = b c
Ux = c d

Why is this better than just solving ?Ax = b

FLOPs for Solving General Systems

FLOPs for Solving General Systems

The following FLOP estimates are based on matricesn × n

FLOPs for Solving General Systems

The following FLOP estimates are based on matricesn × n

Gaussian Elimination: FLOPS∼ 2n3

3

FLOPs for Solving General Systems

The following FLOP estimates are based on matricesn × n

Gaussian Elimination: FLOPS∼ 2n3

3

GE Forward: FLOPS∼ 2n3

3

FLOPs for Solving General Systems

The following FLOP estimates are based on matricesn − n

Gaussian Elimination: FLOPS× 2n3

3

GE Forward: FLOPS× 2n3

3

GE Backward: FLOPS× 2n2

FLOPs for Solving General Systems

The following FLOP estimates are based on matricesn − n

Gaussian Elimination: FLOPS× 2n3

3

GE Forward: FLOPS× 2n3

3

GE Backward: FLOPS× 2n2

Matrix Inversion: FLOPS× 2n3

FLOPs for Solving General Systems

The following FLOP estimates are based on matricesn − n

Gaussian Elimination: FLOPS× 2n3

3

GE Forward: FLOPS× 2n3

3

GE Backward: FLOPS× 2n2

Matrix Inversion: FLOPS× 2n3

Matrix-Vector Multiplication: FLOPS× 2n2

FLOPs for Solving General Systems

The following FLOP estimates are based on matricesn − n

Gaussian Elimination: FLOPS× 2n3

3

GE Forward: FLOPS× 2n3

3

GE Backward: FLOPS× 2n2

Matrix Inversion: FLOPS× 2n3

Matrix-Vector Multiplication: FLOPS× 2n2

Solving by matrix inversion: FLOPS× 2n3

FLOPs for Solving General Systems

The following FLOP estimates are based on matricesn − n

Gaussian Elimination: FLOPS× 2n3

3

GE Forward: FLOPS× 2n3

3

GE Backward: FLOPS× 2n2

Matrix Inversion: FLOPS× 2n3

Matrix-Vector Multiplication: FLOPS× 2n2

Solving by matrix inversion: FLOPS× 2n3

Solving by Gaussian elimination: FLOPS× 2n3

3

FLOPS for solving LU systems

LU Factorization: FLOPS

Solving : FLOPS (by "forward" elimination)

Solving : FLOPS (already in echelon form)

Solving by LU Factorization: FLOPS

× 2n3

3

Lx = b × 2n2

Ux = c × 2n2

× 2n3

3

If you solve several matrix equations for the same
matrix, LU factorization is faster than matrix inversion
on the first equation, and the same (asymptotically) in
later equations (and it works for rectangular matrices).

Other Considerations: Density

Other Considerations: Density

If doesn't have to many entries (is
sparse), then its likely that and won't
either.

A A
L U

Other Considerations: Density

If doesn't have to many entries (is
sparse), then its likely that and won't
either.

A A
L U

But may have many entries (is dense)A◼1 A◼1

Other Considerations: Density

If doesn't have to many entries (is
sparse), then its likely that and won't
either.

A A
L U

But may have many entries (is dense)A◼1 A◼1

Sparse matrices are faster to compute with and
better with respect to storage.

Algebraic Graph Theory

Graphs

Definition (Informal). A graph is a collection
of nodes with edges between them.

Directed vs. Undirected Graphs

A graph is directed if its edges have a
direction.

undirected directed

A

B

A

B

A and B
are

connected
by an edge

there is an edge
from B to A

Weighted vs Unweighted graphs

A graph is weighted if its edges have
associated values.

weightedunweighted

Weighted vs Unweighted graphs

A graph is weighted if its edges have
associated values.

weightedunweighted

edge weights

Simple Graphs

A graph is simple if it is undirected, has no
self loops, and no multi-edges.

Four Kinds of Graphs

nodes are traffic lights

edges are streets

weights are number of lanes

nodes are musicians

edges are collaborations

weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land

edges are pedestrian bridges

directed undirected

weighted

unweighted

Four Kinds of Graphs

nodes are traffic lights

edges are streets

weights are number of lanes

nodes are musicians

edges are collaborations

weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land

edges are pedestrian bridges

directed undirected

weighted

unweighted
Today

Four Kinds of Graphs

nodes are traffic lights

edges are streets

weights are number of lanes

nodes are musicians

edges are collaborations

weights are number of collaborations

nodes are instagram users

edges are follows
 nodes are bodies of land

edges are pedestrian bridges

directed undirected

weighted

unweighted
Today

Markov Chains

Fundamental Question

Fundamental Question

How do we represent a graph
formally in a computer?

Fundamental Question

How do we represent a graph
formally in a computer?

There are a couple ways, but one
way is to use matrices.

Adjacency Matrices

Let be an simple graph with
its nodes labeled by numbers
through .

We can create the adjacency
matrix for as follows.

G
1

n

A G

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

A12

A21

A43

A34

A64

A46

Aij = {1 there is an edge between i and j
0 otherwise

Symmetric Matrices

Definition. A matrix is symmetric if

Example.

n − n

AT = A

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

Once we have an adjacency matrix,
we can do linear algebra on

graphs.

Example: Squared Adjacency Matrices

Given an adjacency matrix , can we
interpret anything meaningful from
?

A

A2

Example: Squared Adjacency Matrices

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

(A2)53 = 1(0) + 1(1) + 0(0) + 1(1) + 0(0) + 0(0) = 2

Example: Squared Adjacency Matrices

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

Example: Squared Adjacency Matrices

AikAkj = {1 there are edges i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

Example: Squared Adjacency Matrices

AikAkj = {1 there are edges i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

A34A45 = 1(1) = 1
A36A65 = 0(0) = 0

Example: Squared Adjacency Matrices

AikAkj = {1 there are edges i to k and k to j
0 otherwise

(A2)ij = Ai1A1j + Ai2A2j + … + AinAnj

A34A45 = 1(1) = 1
A36A65 = 0(0) = 0

(A2)ij = number of 2-step paths
from i to j

Application: Triangle Counting

A triangle in an undirected
graph is a set of three
distinct nodes with edges
between every pair of nodes.

Triangles in a social
network represent mutual
friends and tight cohesion
(among other things)

Application: Triangle Counting (Naive)

FUNCTION tri_count_naive():

 count = 0

 for i from 1 to n:

 for j from i + 1 to n:

 for k from j + 1 to n:

 if and and : # an edge between each pair

 count += 1:

 RETURN count

A

Aij = 1 Ajk = 1 Aki = 1

Application: Triangle Counting

Theorem. For an adjacency matrix , the number
of triangle containing the edge is

Verify:

A
(i, j)

(A2)ij * Aij

Application: Triangle Counting

FUNCTION tri_count():

 compute

 count sum of for all distinct and

 RETURN count / 6 # why divided by 6?

A

A2

← (A2)ij * Aij i j

Application: Triangle Counting

FUNCTION tri_count():

 # in NumPy '*' is entry-wise multiplication

 # also called the HADAMARD PRODUCT

 count sum of the entries of *

 RETURN count / 6

A

← A2 A

Application: Triangle Counting

FUNCTION tri_count():

 # in NumPy '*' is entry-wise multiplication

 # also called the HADAMARD PRODUCT

 # and 'np.sum' sums the entry of a matrix

 RETURN np.sum((@) *) / 6

A

A A A

demo

Another Application: Reachability

Question: If gives us information about
length 2 paths, then what about ?

 gives us information about -length paths.

A2

Ak

Ak k

Example

2

1

3

4

G

Example

2

1

3

4

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G

Example

2

1

3

4

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

2

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G

Example

2

1

3

4

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

2

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

3

=
2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

=
0 4 4 0
4 0 0 4
4 0 0 4
0 4 4 0

G

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

= adjacency matrix for G

Example

2

1

3

4

G

Example

2

1

3

4

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G

Example

2

1

3

4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

2

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G

Example

2

1

3

4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

2

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

G0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

= adjacency matrix for G

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

3

=
1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

=
0 2 0 1
2 0 3 0
0 3 0 2
1 0 2 0

Another Application: Reachability

Theorem: Let be a simple graph.

• is the number of paths of length exactly
 from to .

• is nonzero if and only if there is a
path of length at at most k from to .

G

(Ak
G)ij

k vi vj

((AG + I)k)ij

vi vj

Example

2

1

3

4

G

Example

2

1

3

4

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for) + G I

Example

2

1

3

4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

2

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for) + G I

Example

2

1

3

4

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

2

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

3

=
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

=
6 6 6 7
6 6 7 6
6 7 6 6
7 6 6 6

G

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

= (adjacency matrix for) + G I

How To: Reachability

Question: Given a simple graph determine how
many nodes can reach in at least steps.

Answer: Find and count the number of
nonzero elements in column .

G
vi k

(AG + I)k

i

Question

2

1

3

4

G

Determine the and and
interpret the results.

(AG + I)2 (AG + I)3

Summary

Matrix inverses allow us to easily solve many
matrixes equations over the same

LU Factorizations allows us to do the same, but
more generally more efficiently

Adjacency matrices are linear algebraic
representations of graphs

A

