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Practice Problem
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(For what values of b 1s the above transformation

lsingularF Explain your answer

Find the 1inverse of the matrix implementing the above
transformation, given b =1
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Objectives

1. Motivate Llinear dynamical systems
2. Analyze Markov chains and their properties

3. Learn to solve for steady-states of Markov
chailns

4, Connect this to graphs and random walks
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recurrence relations

linear difference equations
state vector
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Algebraic Graph Theory



Graphs

Definition (Informal). A graph is a collection
of nodes with edges between them




Directed vs. Undirected Graphs

A graph is directed if its edges have a
direction

A and B
are there 1s an edge
connected from B to A
by an edge
undirected @ directed




Weighted vs Unweighted graphs

A graph is weighted if its edges have
assoclated values

unweighted welghted



Weighted vs Unweighted graphs

A graph is weighted if its edges have

assoclated values |
edge weights
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Simple Graphs

A graph is simple if it is undirected, has no
self loops, and no multi-edges




Four Kinds of Graphs

directed undirected

nodes are traffic lights nodes are musicians
' edges are streets edges are collaborations
WE lg h t ed weights are number of lanes weights are number of collaborations

nodes are instagram users

nodes are bodies of land

Uunwe ]_g h 't Ed edges are follows edges are pedestrian bridges
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Four Kinds of Graphs

directed undirected

nodes are traffic lights nodes are musicians
' edges are streets edges are collaborations
WE lg h t ed weights are number of lanes weights are number of collaborations

Markov Chains

nodes are instagram users .
J nodes are bodies of land

Uunwe ]_g h 't Ed edges are follows edges are pedestrian bridges
Today




Fundamental Question



Fundamental Question

How do we represent a graph
formally 1n a computer?



Fundamental Question

How do we represent a graph
formally 1n a computer?

There are a couple ways, but one
way 1S to use matrices



Adjacency Matrices

O 1 O

1 O 1

O 1 0O
Let G be an simple graph with Az [0 0 1
its nodes labeled by numbers 1 1 1 0
through n Aes |0 0 O
We can create the adjacency
matrix A for G as follows

A _”{1 there is an edge between i and ]
L0 otherwise



Symmetric Matrices

Definition. A nxn matrix is symmetric if
Al =A

Example.




Once we have an adjacency matrix,
we can do linear algebra on
graphs



Example: Squared Adjacency Matrices

Given an adjacency matrix A, can we
interpret anything meaningful from
A%?



Example: Squared Adjacency Matrices

R
o O - O O O

WA
ok b <0

(A%)53 =[1(0))+ 1(1) + 0(0) + 1(1) + 0(0) + 0(0) = 2

D ¢\



Example: Squared Adjacency Matrices

(A% = AjA| +ApAs + ... +A,A

in‘ “nj
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Example: Squared Adjacency Matrices

(A% = AjA +ApAs + ...+ ALA,

in‘ "nj

A~ {1 there are edges i to k and k to ]
910 otherwise

(Az)“ __|number of 2-step paths
/ from i to j




Application: Triangle Counting

A triangle in an undirected
graph 1s a set of three
distinct nodes with edges
between every pair of nodes

Triangles 1n a social
network represent mutual
friends and tight cohesion
(among other things)




Application: Triangle Counting (Naive)

FUNCTION tri_count naive(A):
count = 0
for 1 from 1 to n:
for 3 from 1 + 1 to n:

for K from j + 1 to n:

if A;=1 and A, =1 and A,;=1: # an edge between each pair

count += 1:

RETURN count



Application: Triangle Counting

Theorem. For an adjacency matrix A, the number
of triangle containing the edge (i,j) 1S

2
(A%);* A,

Verify:



Application: Triangle Counting

FUNCTION tri count(A):
compute A~

count « sum of (A%),;*A; for all distinct i and ;

RETURN count / © # why divided by 67



Application: Triangle Counting

FUNCTION tri count(A):
# 1n NumPy 'x' 1s entry-wise multiplication
# also called the HADAMARD PRODUCT

count < sum of the entries of A? x A

RETURN count / ©



Application: Triangle Counting

FUNCTION tri count(A):
# 1n NumPy 'x' 1s entry-wise multiplication
# also called the HADAMARD PRODUCT

# and 'np.sum’ sums the entry of a matrix

RETURN np.sum((A @ A) x A) / 6
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Change

Things change

Things change from one state of affairs to
another state of affairs

Things change often 1n unpredictable ways

If something changes unpredictably, what can we
say about 1t?



Dynamical Systems



Dynamical Systems

Definition (Informal). A dynamical system is a thing (typically
with interacting parts) that changes over time
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Dynamical Systems

Definition (Informal). A dynamical system is a thing (typically
with interacting parts) that changes over time

A dynamical system has possible states which 1t can be 1n as
time elapses and its behavior 1s defined by a evolution function

Examples.

» economics (stocks)

» physical/chemical systems
» populations

» weather



An Aside: Chaos Theory

https://commons.wikimedia.org/wiki/File:Frl37.jpg
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An Aside: Chaos Theory

Complex systems like the weather
or the economy look nearly random

But even 1n chaotic systems there
are underlying patterns and
repeated structures

Often 1t's useful to consider
chaotic systems 1n terms of
global properties

https://commons.wikimedia.org/wiki/File:Frl37.jpg
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diffusion)



Motivating Questions

What does a dynamical system look Llike "1in the
long view?"

Does it reach a kind of equilibrium? (think heat
diffusion)

Or does some part of the system dominate over
time? (think the population of rabbits without a
predator)



Linear Dynamical Systems




Linear Dynamical Systems



Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system 1is
a described a nxn matrix A. It's evolution function is
the matrix transformation x — Ax
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Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system 1is
a described a nxn matrix A. It's evolution function is
the matrix transformation x — Ax

T A tells us how our system evolves over time

Given an 1initial state vector v,, we can determine the
state vector of the system after i time steps:

Vv, = AV



State Vectors
vV, = Ay,
vV, = Av; = A(Avy)
vy = Av, = A(AAvV)
v, =Av; = A(AAAV))
Vs = Av, = A(AAAAV,)

The state vector v, tells us what the system looks like after a number k
time steps

This 1s also called a recurrence relation or a linear difference
function



How to: Determining State Vectors

Question. Determine the state vector v, for the
Llinear dynamical system with matrix A given the
initial state vector v,

Solution. Compute

Al
V. = AV,



warm up:
Population Dynamics




The Setup
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We're working for the census. We have population
measurements for a city and a suburb which are
geographically coincident




The Setup

We're working for the census. We have population
measurements for a city and a suburb which are
geographically coincident

We find by analyzing previous data that each year:
» 5% of the population moves from city — suburb

» 3% of the population moves from suburb — city



Fundamental Question

Can we make any predictions about the
population of the city and suburb 1n 20 years?

Assumptions: No immigration, emigration, birth,
death, etc. The overall population stays fixed.



Setting up Linear Equations
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Setting up Linear Equations

It  city, = c1ity pop. = 600,000
and suburbp = suburb pop. = 400,000

then the populations next year are given by.:
city, = (0.95)city, + (0.03)suburb

suburb; = (0.05)city, + (0.97)suburb

people who stayed
people who left



Setting up a Matrix
’ city, ] B [0.95 0.3] [ city,, ] - [582,000]
suburb; 0.05 0.97] [suburb 418,000

We expect the population of the city to
decrease 1n a year



Setting up a Matrix

’ city, ] B [0.95 0.3] [ ity ] B [565,44()]
suburb, 0.05 0.97| |suburb, 434,560
The next year, we expect the population of the
city to continue to decrease

Will 1t decrease indefinitely?



Setting up a Matrix

[ city, ] B [0.95 0.3] [ city, | ]
SUbUFbk 0.05 0.97 suburbk_l

This 1s a linear dynamical system

So we want to gquess what the population will look Llike
in 20 years, we need to compute

[0.95 0.03] 20[ city, ]
0.05 0.97 suburb



demo



Markov Chains




Stochastic Matrices

0.95 0.03
0.05 0.97

What's special about this matrix?

» Its entries are nonnegative
» Its columns sum to 1

This should make us think probability



Stochastic Matrices

Definition. A nxn matrix is stochastic if its
entries are nonnegative and 1ts columns sum to 1

0.7 0.1 0.3
0.2 0.8 0.3

0.1 0.1 04

Example.



Markov Chains

Definition. A Markov chain is a linear dynamical
system whose evolution function 1s given by a
stochastic matrix

(We can construct a "chain" of state vectors,
where each state vector only depends on the one
before it)



Key Property of Stochastic Matrices



Key Property of Stochastic Matrices

Stochastic matrices redistribute the "stuff" 1n
a vector.




Key Property of Stochastic Matrices

Stochastic matrices redistribute the "stuff" 1n
a vector.

Theorem. For a stochastic matrix A and a vector v,

sum of entries of v
1

sum of entries of Av



Key Property of Stochastic Matrices

The sum of the entries of v can be computed as

\
\
)
\

I

1'v = (1, v) L

So the previous statement can be written

17(Av) = 1'v



Key Property of Stochastic Matrices

| . 17(Av) = 1'v
Let's verify this: A 1s stochastic
AN [‘8“... OTV‘—X
T o s A -
l <A‘(‘3 = l(v'a\\ +.”+\/‘\-;‘n\
= lT v)g) LA f\lv\;"\
V|la\+ r o Vo j:ra“’t =V vV 1’)“\;
\j_ssvw o et
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More General Solutions

In our example, we analyzed the dynamics of a
particular population

What 1f we're interested more generally 1n the
behavior of the process for any population?

We need to shift from a population vector to a
population distribution vector



Returning to the Example
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suburb; 0.05 0.97| |suburb,_,
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Returning to the Example

city, 1 [0.95 0.3]" [600,000
suburb,|  [0.05 0.97| [400,000

But what 1f we start of with a different
population?

Do we have to do all our work over again?



Returning to the Example

suburb,| ~ [0.05 0.97| |0.4

40% of pop. 1n suburb

[ city, ] _ [0.95 0.3 r [O.6] 6w of pop. in city

Not really

But rather than thinking in terms of
populations, we need to think about how the
population 1s distributed
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Definition. A probability vector is a vector of
nonnegative values that sum to 1
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Probability Vectors

Definition. A probability vector is a vector of
nonnegative values that sum to 1

They represent
» discrete probability distributions

» distributions of collections of things
These are really the same thing



Probability Vectors (Example)

1/3
The vector'|1/6l represents the distribution where we

1/2
choose:

1 with probability 1/3
2 with probability 1/6

3 with probability 1/2



Probability Vectors (Example)

0.6
0.4

population, but we can also think of this as:

The vector [ ] represented the distribution of the

If we choose a random person from the population
we'll get someone:

i1n the city with probability 0.6

in the suburbs with probability 0.4



The point
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We'll be interested 1in the dynamics of Markov
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The point

We'll be interested 1in the dynamics of Markov
chains on probability vectors /9”" o omkbas
~ 3
Since stochastic matrices preserve 1'v, they
transform one distribution 1nto another

Can we say something about how the distribution
changes 1in the long run?



Steady-State Vectors




Steady-State Vectors

Definition. A steady-state vector for a

stochastic matrix A 1s a|probability vector q
such that

Aq=q

A steady-state vector 1s not changed by the
stochastic matrix. They describe equilibrium
distributions




Returning to the Example




Returning to the Example

How do we 1nterpret a steady-state vector for
our example?



Returning to the Example

How do we 1nterpret a steady-state vector for
our example?

The populations 1in the city and the suburb stay
the same over time



Returning to the Example

How do we 1nterpret a steady-state vector for
our example?

The populations 1in the city and the suburb stay
the same over time

The same number of people are moving into and
out of the city each year



Fundamental Questions

Do steady states exist?
Are they unique?

How do we find them?



Finding Steady-State Vectors

AqQ=(q
Let's solve this equation for q:

\/\O \;W, 4\14-
Ag I% | (A-T) 3 =0



Finding Steady-State Vectors

AQq—q=0



Finding Steady-State Vectors

Aq—Iq=0



Finding Steady-State Vectors

(A-=Dgq=0



Finding Steady-State Vectors

A-Dq=0

This 1s a matrix equation so
we know how to solve 1t



How to: Steady-State Vectors
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Question. Determine if the Markov chain with
stochastic matrix A has a steady-state vector. If it
does, find such a vector

Solution. Solve the equation (A-IHx=0 and find a
solution whose entries sum to 1 (this will be possible

given a free variable)



How to: Steady-State Vectors

Question. Determine if the Markov chain with
stochastic matrix A has a steady-state vector. If it
does, find such a vector

Solution. Solve the equation (A-IHx=0 and find a
solution whose entries sum to 1 (this will be possible
given a free variable)

If there 1s no such solution, the system does not have
a Steady state



0.95 Tﬁ-%
A = [0.0S 0.97]
o“O;
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Existence vs Convergence

IT A-Dx=0 1nfinitely many solutions, then 1it
has a stable state

This does not mean:

» the stable state 1s unique
» the system converges to this state




Convergence



Convergence

Definition. For a Markov chain with stochastic
matrix A, an 1nlitial state v, converges to the
state v if limA%v,=v

k— o0
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and closer to v (in the 1limit)



Convergence

Definition. For a Markov chain with stochastic

matrix A, an 1nlitial state v, converges to the
state v if limA%v,=v

k— o0

As we repeatedly multiply v, by A, we get closer
and closer to v (in the 1limit)
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Example of Non-Convergence

Non-Example. / 1s a stochastic matrix and
Iv=yvV
for any choice of v

So this system does not have a unique steady state

And no vectors converge to the same stable state
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Regular Stochastic Matrices

Definition. A stochastic matrix A is regqular if A*
has all positive entries for some nonnegative k



Regular Stochastic Matrices

Definition. A stochastic matrix A is regqular if A*
has all positive entries for some nonnegative k

Theorem. A regular stochastic matrix P has a
unique steady state, and

every probability vector
converges to 1t



MixXing

This process of converging to a

unique steady state 1s called
"mix1ing" 0.6 1

»

This theorem says, after some _
Steady State

amount of mixing, we'll be 991
close to the stable state, no el
~ 0.8 )
matter where we started 10, 05 06 04 02 00



How to: Regular Stochastic Matrices

Question. Show that A is reqular, and then find
1t's unique steady state

Solution. Find a power of A which has all
positive entries, then solve the equation
(A—-DHx=0 as before



0.5 04 0.5
0 0.2 0.5

[0.5 04 0



State Diagrams

Definition. A state diagram is a directed
welghted graph whose adjacency matrix 1s
stochastic.

Example.

0.95 0.97
s 0.05 O

City suburb
A ——————————————

0.03



Naming Convention Clash

The nodes of a state diagram are often called
states

The vectors which are dynamically updated
according to a linear dynamical system are
called state vectors

This 1s an unfortunate naming clash



Example: Computer System

Imagine a computer system ’
in which tasks request ~® \
service from disk,

network or CPU 0 3

In the long term, which

' RCON
device 1s busiest?

This is about finding a '40
stable state




How To: State Diagram

Question. Given a state diagram, find the
stable state for the corresponding Llinear
dynamical system

Solution. Find the adjacency matrix for the
state diagram and go from there



.70

D
.1

10

.20

.80
30
10



Summary

Markov chains allow us to reason about
dynamical systems that are dictated by some
amount of randomness

Stable states represent global equilibrium



