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Geometry Processing

* Applying ideas from differential geometry and topology
to computer graphics and machine learning

i generate knit graph /
k fabricate knitted model 1

automatically match singular triangles
k via optimal assiginment LP

3

TV = 540.44

» k-means

TV =1707.65 ’
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CS 480/680 CS 581 CS 591
Intro to Computer Graphics Computational Fabrication Geometry Processing

Next offering: Next offering: Next offering:
Fall ‘26 or Spring 27 Spring ‘26 Fall ‘26 or Spring 27

Gra d uate Courses And Chang Xiao’s course!



Geometry Processing

Numerical linear
algebra
+
Optimization
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adaptive meshing curvature visualization

geodesic distances
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computational fabrication: what is it?

traditional
computer graphics
simulate reality

computational

fabrication
digital to physical




Practice Problem

2 1 3
2 0 —4
6 3 9

Find the LU decomposition of the above matrix.
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Objectives

1. Look at linear algebraic methods 1in graphics

2. Briefly discuss Heméwonkz8 Lab
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Keywords

elementary matrices

LU factorization
wireframe objects
homogeneous coordinates
translation

perspective projections



Recap: Solving Systems using the
LU Factorization




Connecting back to Matrix Equations

Ax =Db

Question. Solve the above matrix equation (in
other words, find a general form solution).



Connecting back to Matrix Equations

Ax =Db

Question. Solve the above matrix equation (in
other words, find a general form solution).

What does the LU factorization give us?



Connecting back to Matrix Equations

(LU)X =Db

Question. Solve the above matrix equation (in
other words, find a general form solution).

Substitute LU for A



Connecting back to Matrix Equations

L(UX)=Db

Question. Solve the above matrix equation (in
other words, find a general form solution).

Rearrange matrix-vector multiplications



Connecting back to Matrix Equations

Ux = L~ 'b

Question. Solve the above matrix equation (in
other words, find a general form solution).

Multiply by L' on both sides



Connecting back to Matrix Equations

Ux = L~ 'b

Question. Solve the above matrix equation (in
other words, find a general form solution).

A solution to Ax=Db 1s the
same as a solution to Ux=L""D



Solving systems with the LU (Pictorially)

Multiplication

by A

\ //

Multlphcatlon ;, Multiplication
by L

Ux=y=L""b

IT A maps x to b, then U maps x to some vector y
which 1s mapped to b by L.



FLOPS for/x =D

L is a lower triangular matrix. The system can
be solved in ~n? FLOPS by forward substitution.

1 0O O bl X1 = b1
azy az 1 b; X3 = by — a3 x) — apx,



FLOPS forUx =v

U 1s 1n echelon form. We only need to perform
back substitution, which can be done in ~ n?
FLOPS.

m o k% k| 1 0 * (0 *
0O m * * * ] back substitution 01 * 0 * .
O 0 0 m ~ 00 0 I =

0 00 0 0 | 00 0 0 0 |



FLOP Comparison

Preprocessing

Solving

Gaussian Elimination

Matrix Inversion

LU Factorization




Graphics



Disclaimer

I am #% an expert in this field.
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Motivation (or Pretty Pictures)

Graphics doesn't need much motivation.

We spend so much time 1interacting graphics 1n
one form or another.

But 1n case you haven't thought too much about
1t, some examples...

source: (CS184 Lecture Slides, UC Berkeley, Ng Ren



Jurassic Park (1993)

Alice 1n Wonderland

2 ’
s . - ) . ,
. ‘1 "5 | 1'2;

/;/'

(2010)

’

-

v &




Motion Capture

Two Towers (2002)




Video Games

Unreal Engine 5 (2020)




Scientific Visualization

First image of a black hole (2022)




Photography

NASA | Walter looss | Steve McCurry
Harold Edgerton | NASA | National Geographic



Graphics and Linear Algebra



3D Graphics

There are many facets
of computer graphics,
but we will be
focusing on one
problem today:

Manipulating and
Transforming 3D
objects and rendering
them on a screen.
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3D Graphics Pipeline



3D Graphics Pipeline

1. Create a 3D model of objects + scene.



3D Graphics Pipeline

1. Create a 3D model of objects + scene.

2. Convert the surfaces of the objects 1n the model

into approximations called wire frames or
tessellations built out of a massive number of

polygons (often triangles).



3D Graphics Pipeline

1. Create a 3D model of objects + scene.

2. Convert the surfaces of the objects 1n the model
into approximations called wire frames or
tessellations built out of a massive number of
polygons (often triangles).

3. Manipulate the polygons via linear transformations
and then linearly render it in 2D (in a way that
preserves perspective).



3D Graphics Pipeline

1. Create a 3D model of objects + scene.

2. Convert the surfaces of the objects 1n the model
into approximations called wire frames or
tessellations built out of a massive number of
polygons (often triangles).

3. Manipulate the polygons via linear transformations
and then linearly render it in 2D (in a way that
preserves perspective).

Today



Wire Frames
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Transformations

We've seen many 2D transformations

» Reflections //ﬁ
» EXpansion

» Shearing

» Projection

We've seen some 3D transformations

» Rotations
» Projections \\\\\\\\
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Composing Transformations

Recall. Multiplying
matrices composes their *
assoclated

transformations.

So complex graphical
transformations can be
combined into a single -

matrix. =7


edwar
Pencil

edwar
Pencil


Shearing and Reflecting (Geometrically)

2D Matrix Transformations
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More Transformations

What we're adding today.:

» More on rotations
» translations
» perspective projections



More Transformations

What we're adding today.:

» More on rotations
» translations
» perspective projections

These aren't linear, but they are incredibly
important so we have to address them.



Z
. . Y
3D Rotation Matrices %%m

1 O 0 cosd 0 sind cosd —smé@ 0
R'= 10 cosf® —sinf| R 0 1 0 RY=|sin® cos® O

y
O sin@ cosd —sin@ O cosd 0 0 1
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3D Rotation Matrices

1 0 0 cos@é 0O sind cosfd —smf 0O
R!= [0 cos® —sin@| RV/=] 0 1 O R! = [sinf cos® O
O smmé@ cosd —sin@ O cosd 0 0 1

These are the matrices for counterclockwilise rotation
around x, y, and z axes.



3D Rotation Matrices

1 0 0 cos@é 0O sind cosfd —smf 0O
R!= [0 cos® —sin@| RV/=] 0 1 O R! = [sinf cos® O
O smmé@ cosd —sin@ O cosd 0 0 1

These are the matrices for counterclockwilise rotation
around x, y, and z axes.

(note the change in sign for y)



3D Rotation Matrices

1 0 0 cos@é 0O siné cos@ —sin@ 0O
R!= [0 cos® —sin@| RY=] 0 1 O R! = [sinf cos® O
O smmé@ cosd —sin@ O cosd 0 0 1

These are the matrices for counterclockwilise rotation
around x, y, and z axes.

(note the change in sign for y)

Fact. Any rotation can be done by some matrix of the form

7~ % ()
Ef ]32/?), Z RYR’R

z
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Roll, Pitch and Yaw

roll changes the ypitch Axis
side-to-side tilt ‘V\Y/l

pitch changes the
up—down tilt

yaw changes
direction ‘,f?ﬁ CT”
.X Roll Axis YawvAxis

<

https://commons.wikimedia.org/wiki/File:Yaw_Axis_Corrected.svg



General Rotations

Opy RN
RIRGK,

pitch ro



General Rotations

0
RUR'R”

yaw pitch roll

Exactly what rotation you get is not obvious (this a
hard problem in control theory).



General Rotations

0
RUR'R”

yaw pitch roll

Exactly what rotation you get is not obvious (this a
hard problem in control theory).

Remember. !'!Matrix multiplication does not commute!!



General Rotations

0
RUR'R”

yaw pitch roll

Exactly what rotation you get is not obvious (this a
hard problem in control theory).

Remember. !'Matrix multiplication does not commute!!

So changing n above doesn't just rotate the object
around the x—axis (that axis might be tilted along
the pitch axis, for example).



demo



Translation

In 2D

https://commons.wikimedia.org/wiki/File:Traslazione_OK. svg



Translation

Given a vector t a translation
1s the transformation

In 2D

https://commons.wikimedia.org/wiki/File:Traslazione_OK. svg



Translation

Given a vector t a translation
1s the transformation

IxX)=x+t

In 2D

https://commons.wikimedia.org/wiki/File:Traslazione_OK. svg



Translation

Given a vector t a translation
1s the transformation

IxX)=x+t

As we've seen, translation 1is
not linear:

In 2D

https://commons.wikimedia.org/wiki/File:Traslazione_OK. svg
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Translation

Given a vector t a translation
1s the transformation

IxX)=x+t

As we've seen, translation 1is
not linear:

In 2D

10) =t

https://commons.wikimedia.org/wiki/File:Traslazione_OK. svg



Translation

Given a vector t a translation
1s the transformation

IxX)=x+t

As we've seen, translation 1is

not linear:
For this to be interesting In 2D

T(O) —t t will be nonzero

https://commons.wikimedia.org/wiki/File:Traslazione_OK. svg



Translation (3D)

X X+ d
VI — |y+0b
< Z+cC

Observation. This would be linear if we had
another variable.



Translation (3D)

X X + aq
M N y + bg
< Z+cq
! q

Observation. This would be linear if we had
another variable.



Translation (3D)

OO O =
OO O =
OO = O
OO = O
O = O O
O = O O
— O O O

Observation. This would be linear if we had
another variable.

—_ 0 S Q



Observation. This would be linear if we had
another variable.

So 1f we are willing to keep around an extra
entry, we can do translation linearly.
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Homogeneous Coordinates

X
Y y
Y| —
4 e
7 For 1n1t1a1121_.ng to
1_ homogeneous coordinates, we

set this to 1

Cartesian to homogeneous

The homogeneous coordinate for vector in R’ is the same
except '"sheared" 1into the 4th dimension.

We use the extra entry to perform simple nonlinear
transformations 1n a linear setting.



Translation (3D)

Definition. The 3D
translation matrix for

homogeneous coordinates
which translates by

(a,b,c)! is the following.

Example. x4+ 2

O 21 |x

0O 2| Y| |y+2
1 20 1< |z+2
0 1| LI

1 O
0 1
0 O
0O O 1

o OO =

o O = O

o= O O

—_ 0O & Q



Matrix Transformations for Homogeneous Coordinates

K
K K K

K
K K K —_— .
K K K

—_ O O O

O ¥ ¥
O ¥ ¥



Matrix Transformations for Homogeneous Coordinates

B I
B I
B R

-
-
-
— O O

Now all our transformations need to be 4 x4
matrices.
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Matrix Transformations for Homogeneous Coordinates

S
S S S
S
[* k *] —
S
S S S
0
Now all our transformations need to be 4 x4
matrices.

—_ O O O

O ¥ ¥
O ¥ ¥

But 1t's easy make 3x3 matrices work for
homogeneous coordinates.



Matrix Transformations for Homogeneous Coordinates

S
S S S
S
[* k *] -
S
S S S
0
Now all our transformations need to be 4 x4
matrices.

—_ O O O

O ¥ ¥
O ¥ ¥

But 1t's easy make 3x3 matrices work for
homogeneous coordinates.

If a transformation 1s linear, 1t doesn't
need the extra coordinate.



Example: Homogeneous Rotation

Rotating counterclockwise about the x—axi1is 1n
homogeneous coordinates is given by 7

y L2
| 0 0 Ol | X S
X —~ @
7 O cos@ —smndg 0O )/ - Px v
0 sin@ «cosdl 0| |Z \
| I
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Perspective Projections



Vanishing Points

Parallel lines 1n space  —
don't necessarily Llook

arallel at a distance,

they angle towards a '
point 1n the distance. ) ,

This 1s a side effect 7
of perspective
projection.

https://commons.wikimedia.org/wiki/File:Railroad-Tracks—Perspective. jpg
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Vanishing Point

The School of Athens (~1510)




Computing Perspective

Light enters our
eyes (or camera) at
a single point from
all directions.

Closer things
‘appear bigger™ 1n
our field of vision. 4,

(0,0, d)

7.
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Computing Perspective

Problem. Given a

viewing position (0, 0, d)
and a viewing plane
(xy—axis) determine how a
point (x, vy, z) 1is
projected onto the viewing
p Lane.

(0,0, d)
Z




Similar Triangles
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Similar Triangles

Similar triangles
are triangles with
the same angles (in
the same order).




Similar Triangles

Similar triangles
are triangles with
the same angles (in
the same order).

Similar triangles
preserve side
ratios.




Similar Triangles

Similar triangles
are triangles with
the same angles (in
the same order).

Similar triangles
preserve side
ratios.
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The Transformation

ax B X
d—z 1-—1z/d
dy y
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The Transformation

Y

(x*%, y*, 0)
dx X
X* = -
ﬁ) (x,y,z)/ A\
L ay )y
y — - te_—
d—z 1-7/d

Not linear, But we will
homogeneous coordinates to
address this


edwar
Pencil


A Trick with Homogeneous Coordinates

)yc x/h
e v/ h

h zlh

homogeneous to Cartesian



A Trick with Homogeneous Coordinates

A x/h

y
e v/ h

h zlh

homogeneous to Cartesian

We can compute perspective using homogeneous
coordinates 1f we allow the extra entry to vary.



A Trick with Homogeneous Coordinates

A x/h

y
e v/ h

h zlh

homogeneous to Cartesian

We can compute perspective using homogeneous
coordinates 1f we allow the extra entry to vary.

When we convert back to normal coordinates, we divide
by the extra entry (this is consistent with before).



Perspective Projection PTR sz) _ (

]

Definition. The perspective projection (an

matrix) is given by F X | X

v 1= o

1 0 0 0] [x - -
PR i
00—1/01,1_*1; \yﬂ?[ 7

When we convert back to usual coordinates, we
divide by 1-z/d as deslred.
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The Rough Outline



The Rough Outline

1. Take 1n a wire frame, represented as a collection of m
line segments (pairs of points in R?).




The Rough Outline

1. Take 1n a wire frame, represented as a collection of m
line segments (pairs of points in R?).

2. Convert these points into a 4x2m matrix D, one column
for each endpoint, 1n homogeneous coordinates.



The Rough Outline

1. Take 1n a wire frame, represented as a collection of m
line segments (pairs of points in R?).

2. Convert these points into a 4x2m matrix D, one column
for each endpoint, 1n homogeneous coordinates.

3. Build a transformation matrix A to manipulate the
wireframe and project it onto a viewing plane.



The Rough Outline

1. Take 1n a wire frame, represented as a collection of m
line segments (pairs of points in R?).

2. Convert these points into a 4x2m matrix D, one column
for each endpoint, 1n homogeneous coordinates.

3. Build a transformation matrix A to manipulate the
wireframe and project it onto a viewing plane.

4. Convert the columns of D into points in R?, and then pair
them back up into endpoints of line segments.



The Rough Outline

1. Take 1n a wire frame, represented as a collection of m
line segments (pairs of points in R?).

2. Convert these points into a 4x2m matrix D, one column
for each endpoint, 1n homogeneous coordinates.

3. Build a transformation matrix A to manipulate the
wireframe and project it onto a viewing plane.

4. Convert the columns of D into points in R?, and then pair
them back up into endpoints of line segments.

5. Draw the resulting i1mage on the screen.



demo



A Couple Words of Warning

Check your system now. Make sure you can run
matplotlib (in particular matplotlib widgets).

Post on pliazza 1f there seems to be a platform
dependent 1ssue.
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