
CAS CS 132

Computer Graphics
Geometric Algorithms
Lecture 15

Geometry Processing

• Applying ideas from differential geometry and topology
to computer graphics and machine learning

edwar
Pencil

Graduate Courses

CS 581
Computational Fabrication

CS 591
Geometry Processing

CS 480/680
Intro to Computer Graphics

Next offering:
Fall ‘26 or Spring ‘27

Next offering:
Fall ‘26 or Spring ‘27

Next offering:
Spring ‘26

And Chang Xiao’s course!

Geometry Processing
Numerical linear

algebra
+

Optimization
+

Discrete differential
geometry

computational fabrication: what is it?

traditional
computer graphics

simulate reality

computational
fabrication

digital to physical

Practice Problem

Find the LU decomposition of the above matrix.

2 1 3
−2 0 −4
6 3 9

Answer 2 1 3
−2 0 −4
6 3 9

edwar
Pencil

edwar
Pencil

Objectives

1. Look at linear algebraic methods in graphics

2. Briefly discuss Homework 8

edwar
Pencil

Keywords

elementary matrices

LU factorization

wireframe objects

homogeneous coordinates

translation

perspective projections

Recap: Solving Systems using the

LU Factorization

Connecting back to Matrix Equations

Question. Solve the above matrix equation (in
other words, find a general form solution).

Ax = b

Connecting back to Matrix Equations

Question. Solve the above matrix equation (in
other words, find a general form solution).

Ax = b

What does the LU factorization give us?

Connecting back to Matrix Equations

Question. Solve the above matrix equation (in
other words, find a general form solution).

(LU)x = b

Substitute for LU A

Connecting back to Matrix Equations

Question. Solve the above matrix equation (in
other words, find a general form solution).

L(Ux) = b

Rearrange matrix-vector multiplications

Connecting back to Matrix Equations

Question. Solve the above matrix equation (in
other words, find a general form solution).

Multiply by on both sidesL−1

Ux = L−1b

Connecting back to Matrix Equations

Question. Solve the above matrix equation (in
other words, find a general form solution).

A solution to is the
same as a solution to

Ax = b
Ux = L−1b

Ux = L−1b

Solving systems with the LU (Pictorially)

If maps to , then maps to some vector
which is mapped to by .

A x b U x y
b L

Ux = y = L−1b

FLOPS for Lx = b

 is a lower triangular matrix. The system can
be solved in FLOPS by forward substitution.
L

∼ n2

1 0 0
a21 1 0
a31 a32 1

x =
b1

b2

b3

x1 = b1

x2 = b2 − a21x1

x3 = b3 − a31x1 − a32x2

 is in echelon form. We only need to perform
back substitution, which can be done in
FLOPS.

U
∼ n2

FLOPS for Ux = v

◼ * * * * |
0 ◼ * * *
0 0 0 ◼ *
0 0 0 0 0 |

v

1 0 * 0 * |
0 1 * 0 *
0 0 0 1 *
0 0 0 0 0 |

w
back substitution

FLOP Comparison

Preprocessing Solving

Gaussian Elimination

Matrix Inversion

LU Factorization

∼
2
3

n3

∼
2
3

n3 ∼ 2n2

∼ 2n3 ∼ 2n2

0

Graphics

Disclaimer

I am not an expert in this field.

edwar
Pencil

Motivation (or Pretty Pictures)

Graphics doesn't need much motivation.

We spend so much time interacting graphics in
one form or another.

But in case you haven't thought too much about
it, some examples...

source: CS184 Lecture Slides, UC Berkeley, Ng Ren

Movies
Jurassic Park (1993)

Alice in Wonderland (2010)

Motion Capture
Two Towers (2002)

Video Games
Unreal Engine 5 (2020)

Scientific Visualization
First image of a black hole (2022)

Photography

Graphics and Linear Algebra

3D Graphics

There are many facets
of computer graphics,
but we will be
focusing on one
problem today:

Manipulating and
Transforming 3D
objects and rendering
them on a screen.

3D Graphics Pipeline

3D Graphics Pipeline

1. Create a 3D model of objects + scene.

3D Graphics Pipeline

1. Create a 3D model of objects + scene.

2. Convert the surfaces of the objects in the model
into approximations called wire frames or
tessellations built out of a massive number of
polygons (often triangles).

3D Graphics Pipeline

1. Create a 3D model of objects + scene.

2. Convert the surfaces of the objects in the model
into approximations called wire frames or
tessellations built out of a massive number of
polygons (often triangles).

3. Manipulate the polygons via linear transformations
and then linearly render it in 2D (in a way that
preserves perspective).

3D Graphics Pipeline

1. Create a 3D model of objects + scene.

2. Convert the surfaces of the objects in the model
into approximations called wire frames or
tessellations built out of a massive number of
polygons (often triangles).

3. Manipulate the polygons via linear transformations
and then linearly render it in 2D (in a way that
preserves perspective).

Today

Wire Frames
A wire frame is
representation of a
surface as a collection
of polygons and line
segments.

Transformations on line
segments and polygons
are linear.

https://commons.wikimedia.org/wiki/File:Wireframe_Render_of_Digital_Clothing_Bathingrobe_3D_Model.jpg

Transformations

We've seen many 2D transformations

» Reflections 
» Expansion 
» Shearing 
» Projection

We've seen some 3D transformations

» Rotations 
» Projections

edwar
Pencil

Composing Transformations

Recall. Multiplying
matrices composes their
associated
transformations.

So complex graphical
transformations can be
combined into a single
matrix.

edwar
Pencil

edwar
Pencil

Shearing and Reflecting (Geometrically)

reflectshear

edwar
Pencil

edwar
Pencil

More Transformations

What we're adding today:

» More on rotations 
» translations 
» perspective projections

More Transformations

What we're adding today:

» More on rotations 
» translations 
» perspective projections

These aren't linear, but they are incredibly
important so we have to address them.

3D Rotation Matrices

Rθ
x =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

Rθ
y =

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ
Rθ

z =
cos θ −sin θ 0
sin θ cos θ 0

0 0 1

edwar
Pencil

3D Rotation Matrices

These are the matrices for counterclockwise rotation
around x, y, and z axes.

Rθ
x =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

Rθ
y =

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ
Rθ

z =
cos θ −sin θ 0
sin θ cos θ 0

0 0 1

3D Rotation Matrices

These are the matrices for counterclockwise rotation
around x, y, and z axes.

(note the change in sign for y)

Rθ
x =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

Rθ
y =

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ
Rθ

z =
cos θ −sin θ 0
sin θ cos θ 0

0 0 1

3D Rotation Matrices

These are the matrices for counterclockwise rotation
around x, y, and z axes.

(note the change in sign for y)

Fact. Any rotation can be done by some matrix of the form

Rθ
z Rγ

y Rη
x

Rθ
x =

1 0 0
0 cos θ −sin θ
0 sin θ cos θ

Rθ
y =

cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ
Rθ

z =
cos θ −sin θ 0
sin θ cos θ 0

0 0 1

edwar
Pencil

Roll, Pitch and Yaw

x

y

z

roll changes the
side-to-side tilt

pitch changes the
up-down tilt

yaw changes
direction

https://commons.wikimedia.org/wiki/File:Yaw_Axis_Corrected.svg

General Rotations

Rθ
z Rγ

yRη
x

yaw pitch roll

General Rotations

Exactly what rotation you get is not obvious (this a
hard problem in control theory).

Rθ
z Rγ

yRη
x

yaw pitch roll

General Rotations

Exactly what rotation you get is not obvious (this a
hard problem in control theory).

Remember. !!Matrix multiplication does not commute!!

Rθ
z Rγ

yRη
x

yaw pitch roll

General Rotations

Exactly what rotation you get is not obvious (this a
hard problem in control theory).

Remember. !!Matrix multiplication does not commute!!

So changing above doesn't just rotate the object
around the -axis (that axis might be tilted along
the pitch axis, for example).

η
x

Rθ
z Rγ

yRη
x

yaw pitch roll

demo

Translation

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D

Translation
Given a vector a translation
is the transformation

t

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D

Translation
Given a vector a translation
is the transformation

t

T(x) = x + t

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D

Translation
Given a vector a translation
is the transformation

t

T(x) = x + t

As we've seen, translation is
not linear:

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D

edwar
Pencil

edwar
Pencil

Translation
Given a vector a translation
is the transformation

t

T(x) = x + t

As we've seen, translation is
not linear:

T(0) = t

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D

Translation
Given a vector a translation
is the transformation

t

T(x) = x + t

As we've seen, translation is
not linear:

T(0) = t
For this to be interesting

 will be nonzerot

https://commons.wikimedia.org/wiki/File:Traslazione_OK.svg

In 2D

Translation (3D)

Observation. This would be linear if we had
another variable.

[
x
y
z] ↦

x + a
y + b
z + c

Translation (3D)
x
y
z
q

↦

x + aq
y + bq
z + cq

q
Observation. This would be linear if we had
another variable.

Translation (3D)
1
0
0
0

↦

1
0
0
0

0
1
0
0

↦

0
1
0
0

0
0
1
0

↦

0
0
1
0

0
0
0
1

↦

a
b
c
1

Observation. This would be linear if we had
another variable.

Translation (3D)
1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

Observation. This would be linear if we had
another variable.

So if we are willing to keep around an extra
entry, we can do translation linearly.

edwar
Pencil

edwar
Pencil

edwar
Pencil

edwar
Pencil

edwar
Pencil

Homogeneous Coordinates

The homogeneous coordinate for vector in is the same
except "sheared" into the 4th dimension.

We use the extra entry to perform simple nonlinear
transformations in a linear setting.

ℝ3

[
x
y
z] ↦

x
y
z
1

Cartesian to homogeneous

For initializing to
homogeneous coordinates, we

set this to 1

Translation (3D)

Definition. The 3D
translation matrix for
homogeneous coordinates
which translates by

 is the following.

Example.

(a, b, c)T

1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 11 0 0 2

0 1 0 2
0 0 1 2
0 0 0 1

x
y
z
1

x + 2
y + 2
z + 2

1

Matrix Transformations for Homogeneous Coordinates

[
* * *
* * *
* * *]

* * * 0
* * * 0
* * * 0
0 0 0 1

Matrix Transformations for Homogeneous Coordinates

Now all our transformations need to be
matrices.

4 × 4

[
* * *
* * *
* * *]

* * * 0
* * * 0
* * * 0
0 0 0 1

edwar
Pencil

Matrix Transformations for Homogeneous Coordinates

Now all our transformations need to be
matrices.

4 × 4

But it's easy make matrices work for
homogeneous coordinates.

3 × 3

[
* * *
* * *
* * *]

* * * 0
* * * 0
* * * 0
0 0 0 1

Matrix Transformations for Homogeneous Coordinates

Now all our transformations need to be
matrices.

4 × 4

But it's easy make matrices work for
homogeneous coordinates.

3 × 3

[
* * *
* * *
* * *]

* * * 0
* * * 0
* * * 0
0 0 0 1

If a transformation is linear, it doesn't
need the extra coordinate.

Example: Homogeneous Rotation

Rotating counterclockwise about the -axis in
homogeneous coordinates is given by

x

1 0 0 0
0 cos θ −sin θ 0
0 sin θ cos θ 0
0 0 0 1

edwar
Pencil

Perspective Projections

Vanishing Points

Parallel lines in space
don't necessarily look
parallel at a distance,
they angle towards a
point in the distance.

This is a side effect
of perspective
projection.

https://commons.wikimedia.org/wiki/File:Railroad-Tracks-Perspective.jpg

edwar
Pencil

Vanishing Point
The School of Athens (~1510)

Computing Perspective

Light enters our
eyes (or camera) at
a single point from
all directions.

Closer things
"appear bigger" in
our field of vision.

edwar
Pencil

edwar
Pencil

edwar
Pencil

Computing Perspective

Problem. Given a 
viewing position (0, 0, d)
and a viewing plane 
(xy-axis) determine how a
point (x, y, z) is
projected onto the viewing
plane.

Similar Triangles

(x, 0, z)

(x*, 0, 0)

(0, 0, z)

(0, 0, d)

edwar
Pencil

Similar Triangles

Similar triangles
are triangles with
the same angles (in
the same order).

(x, 0, z)

(x*, 0, 0)

(0, 0, z)

(0, 0, d)

Similar Triangles

Similar triangles
are triangles with
the same angles (in
the same order).

Similar triangles
preserve side
ratios.

(x, 0, z)

(x*, 0, 0)

(0, 0, z)

(0, 0, d)

Similar Triangles

Similar triangles
are triangles with
the same angles (in
the same order).

Similar triangles
preserve side
ratios.

x
d − z

=
x *
d

(x, 0, z)

(x*, 0, 0)

(0, 0, z)

(0, 0, d)

edwar
Pencil

The Transformation

x* =
dx

d − z
=

x
1 − z/d

y* =
dy

d − z
=

y
1 − z/d

edwar
Pencil

The Transformation

x* =
dx

d − z
=

x
1 − z/d

y* =
dy

d − z
=

y
1 − z/d

Not linear, But we will
homogeneous coordinates to

address this

edwar
Pencil

A Trick with Homogeneous Coordinates
x
y
z
h

↦
x/h
y/h
z/h

homogeneous to Cartesian

A Trick with Homogeneous Coordinates

We can compute perspective using homogeneous
coordinates if we allow the extra entry to vary.

x
y
z
h

↦
x/h
y/h
z/h

homogeneous to Cartesian

A Trick with Homogeneous Coordinates

We can compute perspective using homogeneous
coordinates if we allow the extra entry to vary.

When we convert back to normal coordinates, we divide
by the extra entry (this is consistent with before).

x
y
z
h

↦
x/h
y/h
z/h

homogeneous to Cartesian

Perspective Projection

Definition. The perspective projection (and
matrix) is given by

When we convert back to usual coordinates, we
divide by as desired.

1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/d 1

x
y
z
1

=

x
y
0

1 − z/d

1 − z/d

edwar
Pencil

edwar
Pencil

Homework 8

edwar
Pencil

The Rough Outline

The Rough Outline

1. Take in a wire frame, represented as a collection of
line segments (pairs of points in).

m
ℝ3

The Rough Outline

1. Take in a wire frame, represented as a collection of
line segments (pairs of points in).

m
ℝ3

2. Convert these points into a matrix , one column
for each endpoint, in homogeneous coordinates.

4 × 2m D

The Rough Outline

1. Take in a wire frame, represented as a collection of
line segments (pairs of points in).

m
ℝ3

2. Convert these points into a matrix , one column
for each endpoint, in homogeneous coordinates.

4 × 2m D

3. Build a transformation matrix to manipulate the
wireframe and project it onto a viewing plane.

A

The Rough Outline

1. Take in a wire frame, represented as a collection of
line segments (pairs of points in).

m
ℝ3

2. Convert these points into a matrix , one column
for each endpoint, in homogeneous coordinates.

4 × 2m D

3. Build a transformation matrix to manipulate the
wireframe and project it onto a viewing plane.

A

4. Convert the columns of into points in , and then pair
them back up into endpoints of line segments.

D ℝ2

The Rough Outline

1. Take in a wire frame, represented as a collection of
line segments (pairs of points in).

m
ℝ3

2. Convert these points into a matrix , one column
for each endpoint, in homogeneous coordinates.

4 × 2m D

3. Build a transformation matrix to manipulate the
wireframe and project it onto a viewing plane.

A

4. Convert the columns of into points in , and then pair
them back up into endpoints of line segments.

D ℝ2

5. Draw the resulting image on the screen.

demo

A Couple Words of Warning

Check your system now. Make sure you can run
matplotlib (in particular matplotlib widgets).

Post on piazza if there seems to be a platform
dependent issue.

	Graphics_Overview_5Min_25_Update.pdf
	Geometry Processing
	Graduate Courses
	computational fabrication: what is it?
	Geometry Processing

	15-graphics.pdf

