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Practice Problem

Suppose  is a  matrix. What is the 
smallest possible value for ? What is 
the largest possible value?


What is the smallest possible value for ? 
What is the largest possible value?

A 234 × 300
dim(𝖭𝗎𝗅(A))

𝗋𝖺𝗇𝗄(A)



Answer



Objectives

1. Motivate and introduce the fundamental notion 
of eigenvalues and eigenvectors


2. Determine how to verify eigenvalues and 
eigenvectors


3. Look at the subspace generated by eigenvectors


4. Apply the study of eigenvectors to dynamical 
linear systems
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How can matrices transform vectors?

In 2D and 3D we've seen:


» rotations 
» projections 
» shearing 
» reflection 
» scaling/stretching 
» ...

*

* square matrices

} All matrices do 
some combination 
of these things

Today's focus



What's special about scaling?



What's special about scaling?

We don't need a whole matrix to do scaling

x ↦ cx



What's special about scaling?

We don't need a whole matrix to do scaling

x ↦ cx
So if  then it's "easy to describe" what  
does to .

Av = cv A
v
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Eigenvectors (Informal)

Eigenvectors of  are stretched by  without 
changing their direction.

A A

The amount they are stretched is called the 
eigenvalue.

Av = λv
eigenvector

eigenvalue



Example: Unequal Scaling
It's "easy to describe" how 
unequal scaling transforms 
vectors.


It transforms each entry 
individually and then combines 
them. [1.5 0

0 0.7]
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Eigenbases (Informal)
Imagine if  and  are 
eigenvectors of . Then

v = 2b1 − b2 − 5b3 b1, b2, b3
A

Av = 2λ1b1 − λ2b2 − 5λ3b3



Eigenbases (Informal)
Imagine if  and  are 
eigenvectors of . Then

v = 2b1 − b2 − 5b3 b1, b2, b3
A

Av = 2λ1b1 − λ2b2 − 5λ3b3

It's "easy to describe" how  transforms .A v

It transforms each "component" individually and 
then combines them.

Verify:



Eigenvalues and Eigenvectors
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Formal Definition

A nonzero vector  in  and real number  are an 
eigenvector and eigenvalue for a  matrix  if

v ℝn λ
n × n A

Av = λv

= 2v



Formal Definition

A nonzero vector  in  and real number  are an 
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v ℝn λ
n × n A

Av = λv
We will say that  is an eigenvector of/for the eigenvalue 
, and that  is the eigenvalue of/corresponding to .

v
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Formal Definition

A nonzero vector  in  and real number  are an 
eigenvector and eigenvalue for a  matrix  if

v ℝn λ
n × n A

Av = λv
We will say that  is an eigenvector of/for the eigenvalue 
, and that  is the eigenvalue of/corresponding to .

v
λ λ v

Note. Eigenvectors must be nonzero, but it is possible for 
 to be an eigenvalue.0

= 2v



What if 0 is an eigenvalue?



What if 0 is an eigenvalue?

If  has the eigenvalue  with the eigenvector 
, then

A 0
v

Av = 0v = 0



What if 0 is an eigenvalue?

If  has the eigenvalue  with the eigenvector 
, then

A 0
v

Av = 0v = 0

In other words,

  »  
  »  is a nontrivial solution to 

v ∈ 𝖭𝗎𝗅(A)
v Av = 0
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Theorem. A  matrix is invertible if and only 
if it does not have  as an eigenvalue.

n × n
0



Extending the IMT (Again)
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Extending the IMT (Again)

Theorem. A  matrix is invertible if and only 
if it does not have  as an eigenvalue.

n × n
0

To reiterate. An eigenvalue  is equivalent to0

  »  has no nontrivial solutions 
  » the columns of  are linearly dependent 
  »  
  » ...

Ax = 0
A

𝖢𝗈𝗅(A) ≠ ℝn

edwar
Pencil



Example: Unequal Scaling
Let's determine it's eigenvalues 
and eigenvectors:

[1.5 0
0 0.7]



Example: Shearing
Let's determine it's eigenvalues 
and eigenvectors:

[1 0.5
0 1 ]



Example (Algebraic)

A = [3 −2
1 0 ] u = [1

1] v = [ 1
0.5]



How do we verify eigenvalues 
and eigenvectors?



Verifying Eigenvectors



Verifying Eigenvectors

Question. Determine if  or  are 

eigenvectors of  and determine the 

corresponding eigenvalues.

[ 6
−5] [ 3

−2]
[1 6

5 2]



Verifying Eigenvectors

Question. Determine if  or  are 

eigenvectors of  and determine the 

corresponding eigenvalues.

[ 6
−5] [ 3

−2]
[1 6

5 2]
Solution. Easy. Work out the matrix-vector 
multiplication.



Verifying Eigenvectors [ 6
−5] [ 3

−2] [1 6
5 2]
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Verifying Eigenvalues

This is harder...



Verifying Eigenvalues

This is harder...

Question. Show that  is an eigenvalue of .7 [1 6
5 2]
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This is harder...
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Verifying Eigenvalues

This is harder...

Question. Show that  is an eigenvalue of .7 [1 6
5 2]

What vector do we check???

Before we go over how to do this...



Verifying Eigenvalues (Warm Up)

Question. Verify that  is an eigenvalue of





Hint. Recall our discussion of Markov Chains.


Solution:

1

[0.1 0.7
0.9 0.3]



Steady-States and Eigenvectors

Steady-state vectors of stochastic matrices are 
eigenvectors corresponding to the eigenvalue .


How did we find steady-state vectors?:


1



 is a steady-state vector     v ≡ v ∈ 𝖭𝗎𝗅(A − I)

Steady-States and Eigenvectors

*

*It must also be a probability vector



Verifying Eigenvalues

This is harder...


Question. Show that  is an eigenvalue of .


Solution:

λ A



 is an eigenvector for     v λ ≡ v ∈ 𝖭𝗎𝗅(A − λI)

Verifying Eigenvalues



Verifying Eigenvalues

This is harder...


Question. Show that  is an eigenvalue of .


Solution:

7 [1 6
5 2]



Problem

Verify that  is an eigenvalue of 2
4 −1 6
2 1 6
2 −1 8



Answer 4 −1 6
2 1 6
2 −1 8



How many eigenvectors can 
a matrix have?



Linear Independence of Eigenvectors

Theorem. If  are eigenvectors for 
distinct eigenvalues, then they are linearly 
independent.


So an  matrix can have at most  eigenvalues.


Why?:

v1, …, vk

n × n n

*

*We won't prove this.



Eigenspace

Fact. The set of eigenvectors for a eigenvalue 
 of  form a subspace of .


Verify:

λ A ∈ ℝn×n ℝn



Eigenspace

Definition. The set of eigenvectors for a 
eigenvalue  of  is called the eigenspace of  
corresponding to .


It is the same as .

λ A A
λ

𝖭𝗎𝗅(A − λI)



How To: Basis of an Eigenspace

Question. Find a basis for the eigenspace of  
corresponding to .


Solution. Find a basis for .

A
λ

𝖭𝗎𝗅(A − λI)

We know how to do this.



Example [
−2 0 3
1 1 −1

−4 0 5 ]
Determine a basis for the eigenspace corresponding to the eigenvalue :1



How do we find 
eigenvalues?



How do we find 
eigenvalues?

We'll cover this next time...



Eigenvalues of Triangular Matrices

Theorem. The eigenvalues of a triangular matrix 
are its entries along the diagonal.


Verify:



Example

Determine the eigenvectors and values of the above matrix:

3 6 −8
0 0 6
0 0 2



Linear Dynamical Systems



Recall: Linear Dynamical Systems



Recall: Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system 
is described by a  matrix . It's evolution 
function is the matrix transformation .

n × n A
x ↦ Ax
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Definition. A (discrete time) linear dynamical system 
is described by a  matrix . It's evolution 
function is the matrix transformation .

n × n A
x ↦ Ax

The possible states of the system are vectors in .ℝn

Given an initial state vector , we can determine the 
state vector of the system after  time steps:

v0
i

vi = Avi−1



Recall: Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system 
is described by a  matrix . It's evolution 
function is the matrix transformation .

n × n A
x ↦ Ax

The possible states of the system are vectors in .ℝn

Given an initial state vector , we can determine the 
state vector of the system after  time steps:

v0
i

vi = Avi−1

 tells us how our system evolves over time.A



Recall: State Vectors

The state vector  tells us what the system looks 
like after a number  time steps


This is also called a recurrence relation or a linear 
difference function

vk
k

v1 = Av0

v2 = Av1 = A(Av0)
v3 = Av2 = A(AAv0)
v4 = Av3 = A(AAAv0)
v5 = Av4 = A(AAAAv0)

⋮



Recall: State Vectors

The state vector  tells us what the system looks 
like after a number  time steps


This is also called a recurrence relation or a linear 
difference function

vk
k

v1 = Av0

v2 = Av1 = A(Av0)
v3 = Av2 = A(AAv0)
v4 = Av3 = A(AAAv0)
v5 = Av4 = A(AAAAv0)

⋮

vk = Akv0



The Issue



The Issue

The equation  is okay but it doesn't tell 
us much about the nature of 

vk = Akv0
vk



The Issue

The equation  is okay but it doesn't tell 
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It's defined in terms of  itself, which 
doesn't tell us much about how the system 
behaves

A



The Issue

The equation  is okay but it doesn't tell 
us much about the nature of 

vk = Akv0
vk

It's defined in terms of  itself, which 
doesn't tell us much about how the system 
behaves

A

It's also difficult computationally because 
matrix multiplication is expensive



(Closed-Form) Solutions



(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical 
system  is an expression for  which is 
does not contain  or previously defined terms

vi+1 = Avi vk
Ak



(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical 
system  is an expression for  which is 
does not contain  or previously defined terms

vi+1 = Avi vk
Ak

In other word, it does not depend on  and is 
not recursive

Ak



Example

Determine a closed for the above linear 
dynamical system.

vk = [1 1
1 0] vk−1 v0 = [1

1]



Solutions with Eigenvectors as Initial States



Solutions with Eigenvectors as Initial States

It's easy to give a closed-form solution if the 
initial state is an eigenvector:

vk = Akv0 = λkv0
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No dependence on  or Ak vk−1



Solutions with Eigenvectors as Initial States

It's easy to give a closed-form solution if the 
initial state is an eigenvector:

vk = Akv0 = λkv0

The Key Point. This is still true of sums of 
eigenvectors.

No dependence on  or Ak vk−1



Solutions in terms of eigenvectors

Let's simplify , given we have eigenvectors 
 for  which span all of :

Akv
b1, b2 A ℝ2



Eigenvectors and Growth in the Limit

Theorem. For a linear dynamical system  with initial state , 
if  can be written in terms of eigenvectors  of  
with eigenvalues





then  for some constant  (in other words, in the long 
term, the system grows exponentially in ).


Verify:

A v0
v0 b1, b2, …, bk A

λ1 > λ2… ≥ λk

vk ∼ λk
1c1b1 c1

λ1
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Eigenbases

Definition. An eigenbasis of  for a  
matrix  is a basis of  made up entirely of 
eigenvectors of .
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A ℝn
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Eigenbases

Definition. An eigenbasis of  for a  
matrix  is a basis of  made up entirely of 
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A

We can represent vectors as unique linear 
combinations of eigenvectors.



Eigenbases

Definition. An eigenbasis of  for a  
matrix  is a basis of  made up entirely of 
eigenvectors of .

ℝn n × n
A ℝn

A

We can represent vectors as unique linear 
combinations of eigenvectors.

Not all matrices have eigenbases.



Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system  with 
initial state , if  has an eigenbasis , then




for some constant , where where  is the largest 
eigenvalue of  and  is its eigenvalue.

A
v0 A b1, …, bk

vk ∼ λk
1c1b1

c1 λ1
A b1



Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system  with 
initial state , if  has an eigenbasis , then




for some constant , where where  is the largest 
eigenvalue of  and  is its eigenvalue.

A
v0 A b1, …, bk

vk ∼ λk
1c1b1

c1 λ1
A b1

The largest eigenvalue describes the long-term 
exponential behavior of the system.



Another Example: Golden Ratio



A Special Linear Dynamical System

Consider the system given by the above matrix.


What does this matrix represent?:

vk+1 = [1 1
1 0] vk v0 = [1

0]



Fibonacci Numbers

The Fibonacci numbers are defined in terms of a 
recurrence relation.


They seem to crop-up in nature. 

F0 = 0
F1 = 1
Fk = Fk−1 + Fk−2

https://commons.wikimedia.org/wiki/File:FibonacciChamomile.PNG

define fib(n):

  curr, next  0, 1

  repeat n times:

    curr, next  next, curr + next

  return curr


←

←



Golden Ratio

The "long term behavior" is the Fibonacci 
sequence is defined by the golden ratio.


This is the largest eigenvalue of .[1 1
1 0]

φ =
1 + 5

2




