Eigenvalues and Eigenvectors

Geometric Algorithms Lecture 18

Practice Problem

Suppose A is a 234×300 matrix. What is the smallest possible value for $\dim(Nul(A))$? What is the largest possible value?

What is the smallest possible value for rank(A)? What is the largest possible value?

Answer

Objectives

- 1. <u>Motivate</u> and introduce the fundamental notion of eigenvalues and eigenvectors
- 2. Determine how to <u>verify</u> eigenvalues and eigenvectors
- 3. Look at the <u>subspace</u> generated by eigenvectors
- 4. Apply the study of eigenvectors to <u>dynamical</u> <u>linear systems</u>

Keyword

Eigenvalues

Eigenvectors

Null Space

Eigenspace

Linear Dynamical Systems

Closed-Form Solutions

Motivation

demo

How can matrices transform vectors?*

```
In 2D and 3D we've seen:
```

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- **>>** . . .

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- **»** . . .

All matrices do some combination of these things

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- » Today's focus

All matrices do some combination of these things

What's special about scaling?

What's special about scaling?

We don't need a whole matrix to do scaling

$$\mathbf{X} \mapsto c\mathbf{X}$$

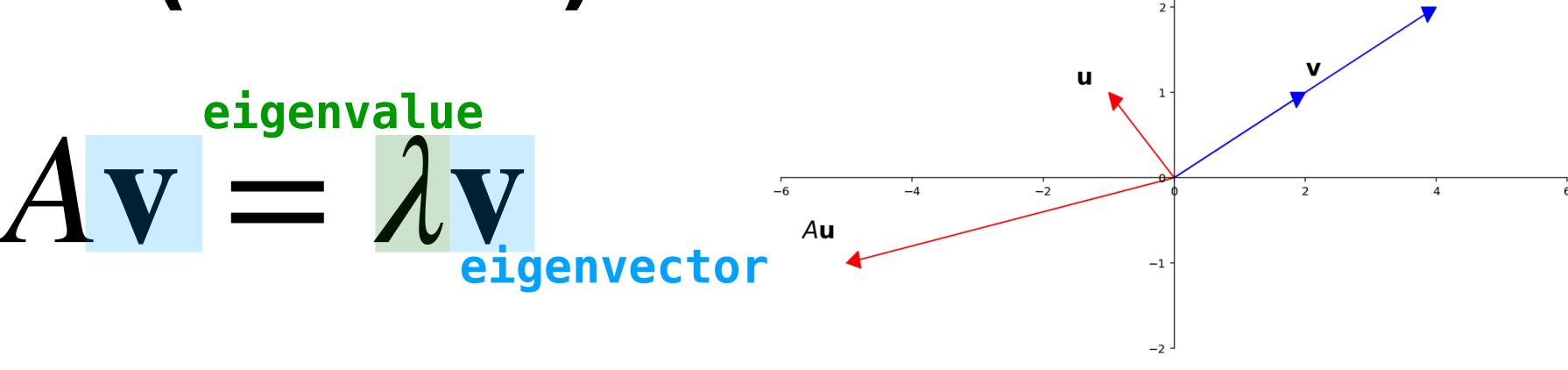
What's special about scaling?

We don't need a whole matrix to do scaling

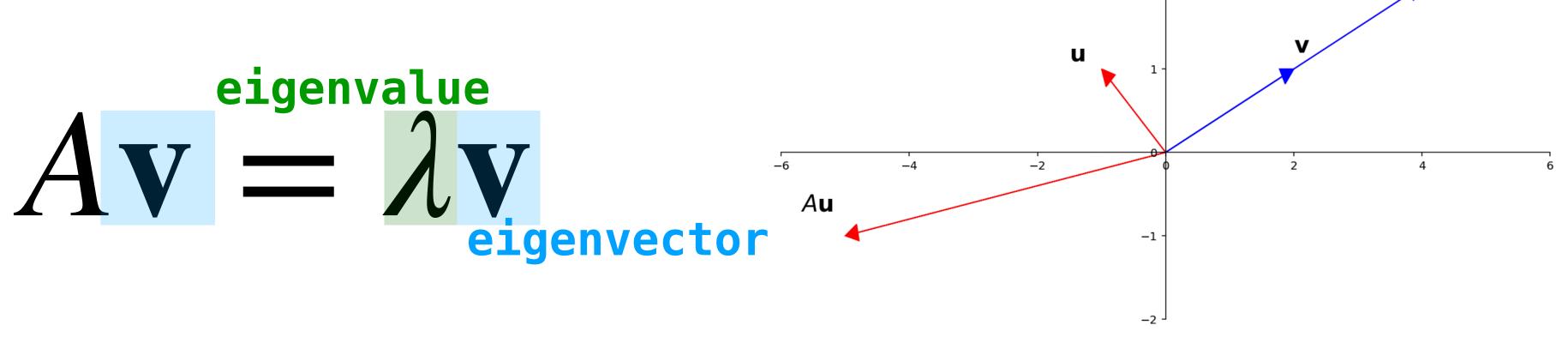
$$\mathbf{X} \mapsto c\mathbf{X}$$

So if $A\mathbf{v} = c\mathbf{v}$ then it's "easy to describe" what A does to \mathbf{v}_{\bullet}

Eigenvectors (Informal)

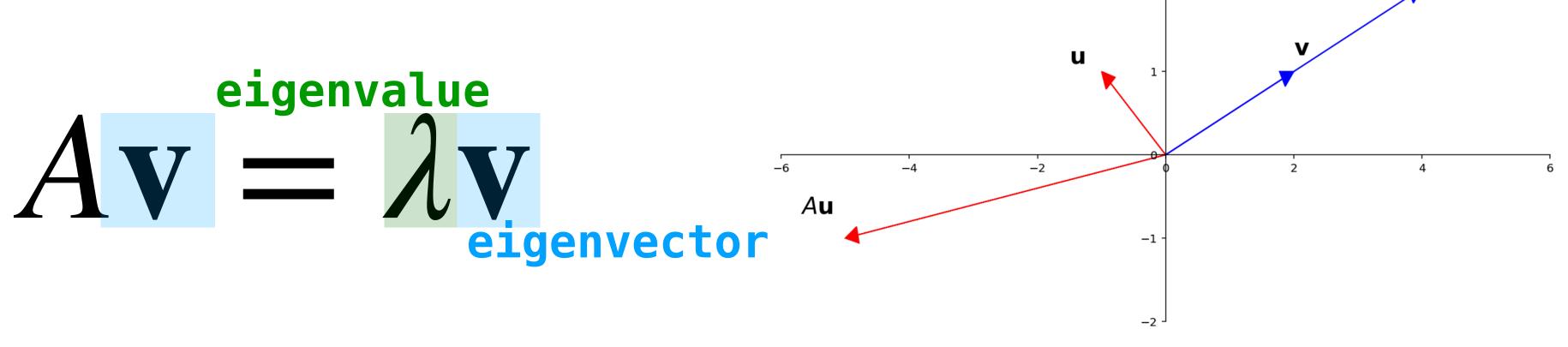


Eigenvectors (Informal)



Eigenvectors of A are stretched by A without changing their direction.

Eigenvectors (Informal)



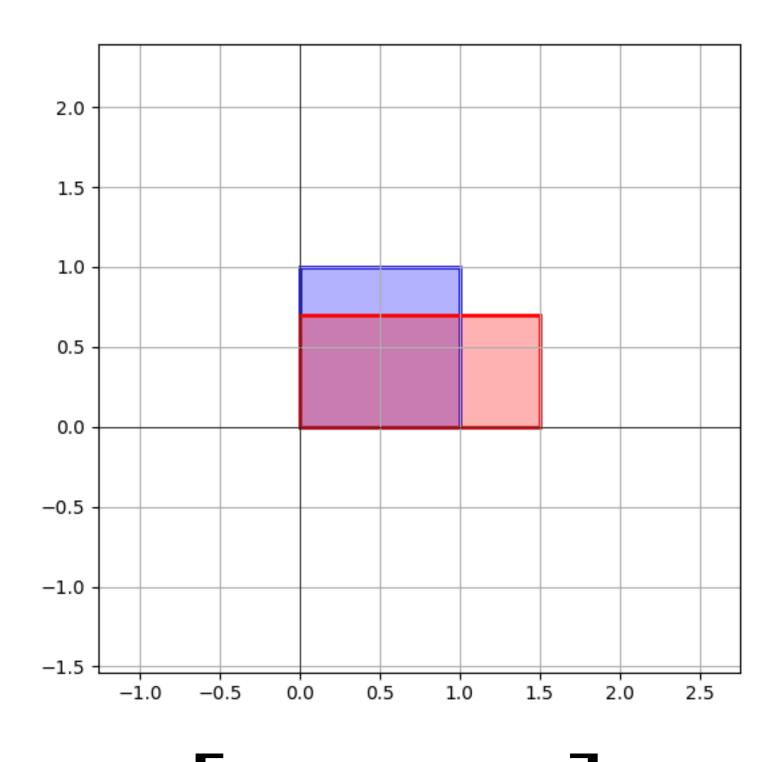
Eigenvectors of A are stretched by A without changing their direction.

The amount they are stretched is called the eigenvalue.

Example: Unequal Scaling

It's "easy to describe" how unequal scaling transforms vectors.

It transforms each entry individually and then combines them.



Eigenbases (Informal)

Eigenbases (Informal)

Imagine if $\mathbf{v}=2\mathbf{b}_1-\mathbf{b}_2-5\mathbf{b}_3$ and $\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3$ are eigenvectors of A. Then

$$A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$$

Eigenbases (Informal)

Imagine if $\mathbf{v}=2\mathbf{b}_1-\mathbf{b}_2-5\mathbf{b}_3$ and $\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3$ are eigenvectors of A. Then

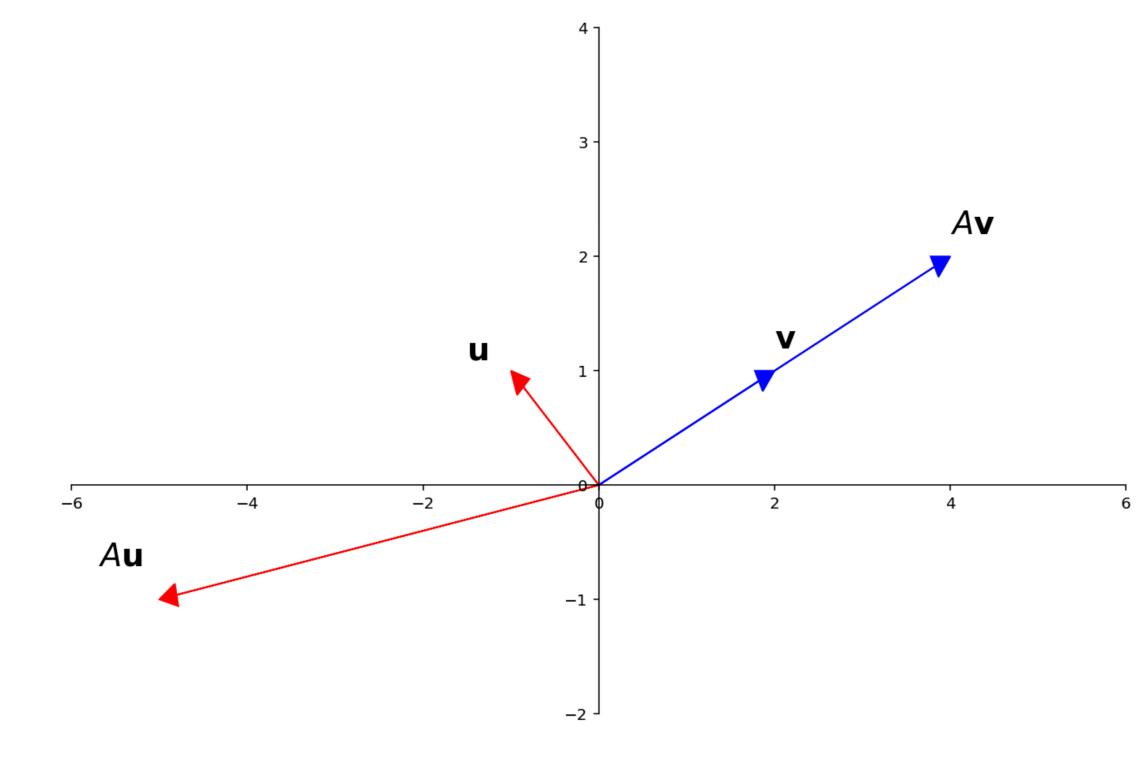
$$A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$$

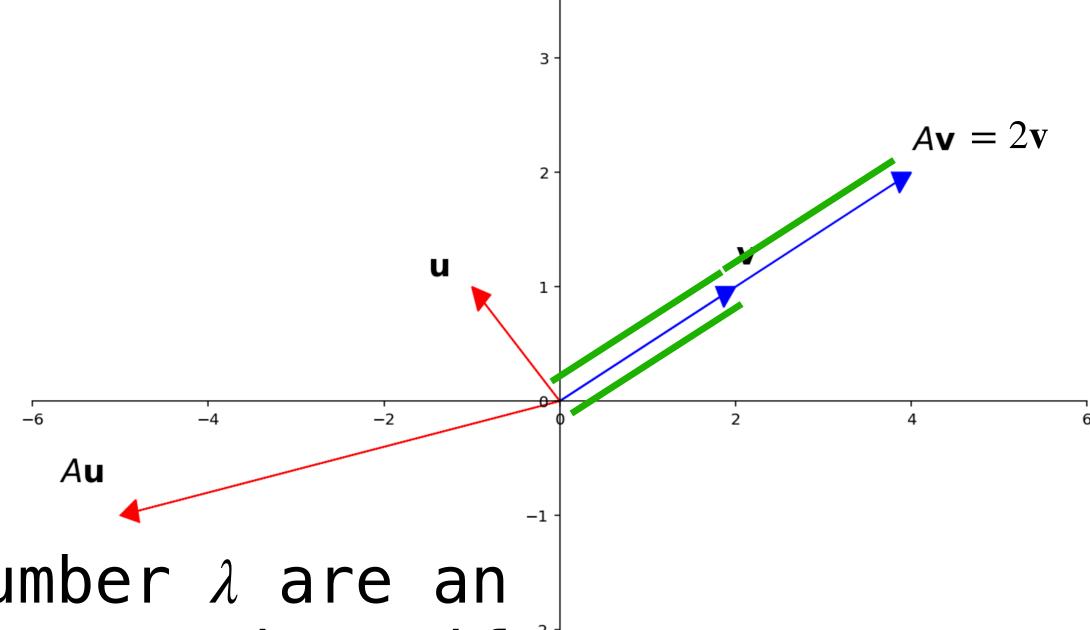
It's "easy to describe" how A transforms v.

It transforms each "component" individually and then combines them.

Verify:

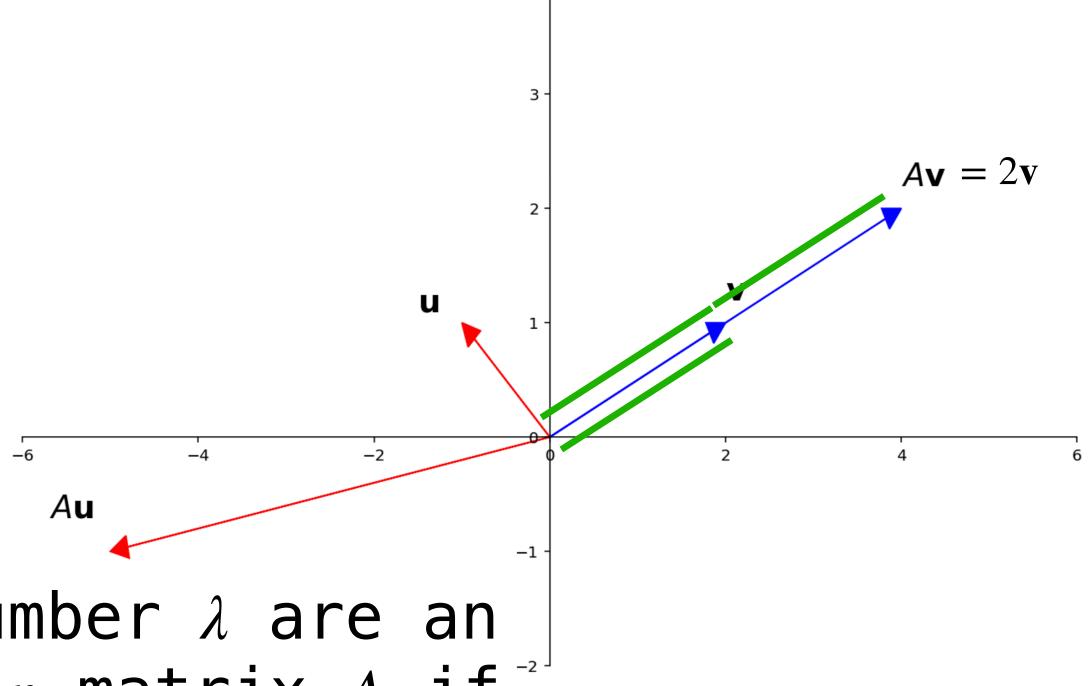
Eigenvalues and Eigenvectors





A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

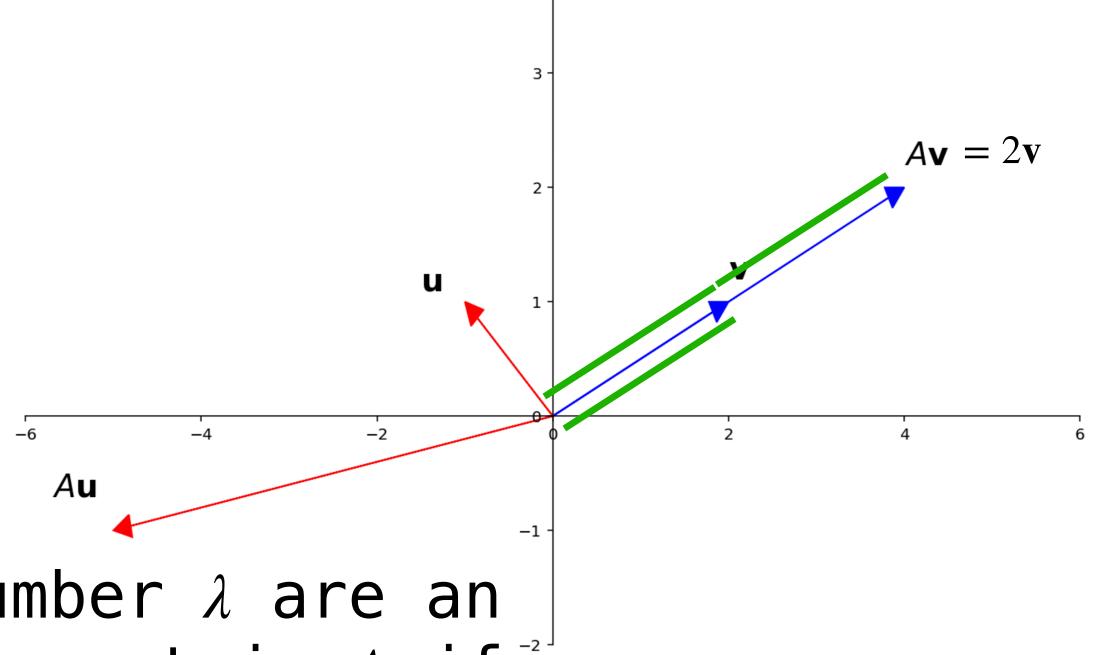
$$A\mathbf{v} = \lambda \mathbf{v}$$



A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

We will say that ${\bf v}$ is an eigenvector <u>of/for</u> the eigenvalue λ , and that λ is the eigenvalue <u>of/corresponding to</u> ${\bf v}$.



A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

We will say that ${\bf v}$ is an eigenvector <u>of/for</u> the eigenvalue λ , and that λ is the eigenvalue <u>of/corresponding to</u> ${\bf v}$.

Note. Eigenvectors <u>must</u> be nonzero, but it is possible for 0 to be an eigenvalue.

What if 0 is an eigenvalue?

What if 0 is an eigenvalue?

If A has the eigenvalue 0 with the eigenvector \mathbf{v} , then

$$A\mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0}$$

What if 0 is an eigenvalue?

If \boldsymbol{A} has the eigenvalue 0 with the eigenvector \boldsymbol{v} , then

$$A\mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0}$$

In other words,

- $v \in Nul(A)$
- > v is a nontrivial solution to Av = 0

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 is equivalent to

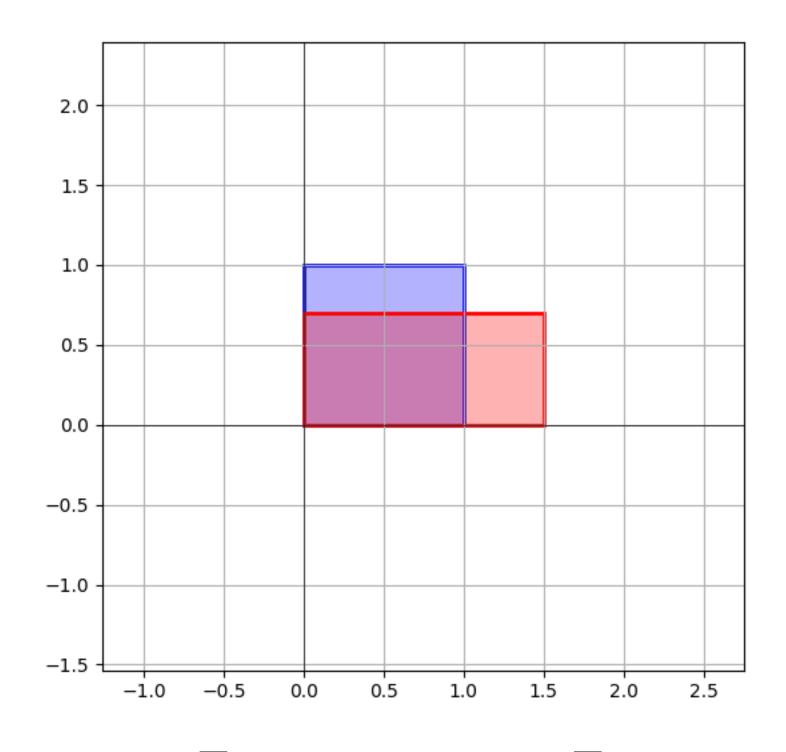
Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 is equivalent to

- Ax = 0 has montrivial solutions
- \gg the columns of A are linearly dependent
- $\gg \operatorname{Col}(A) \neq \mathbb{R}^n$
- **>>**

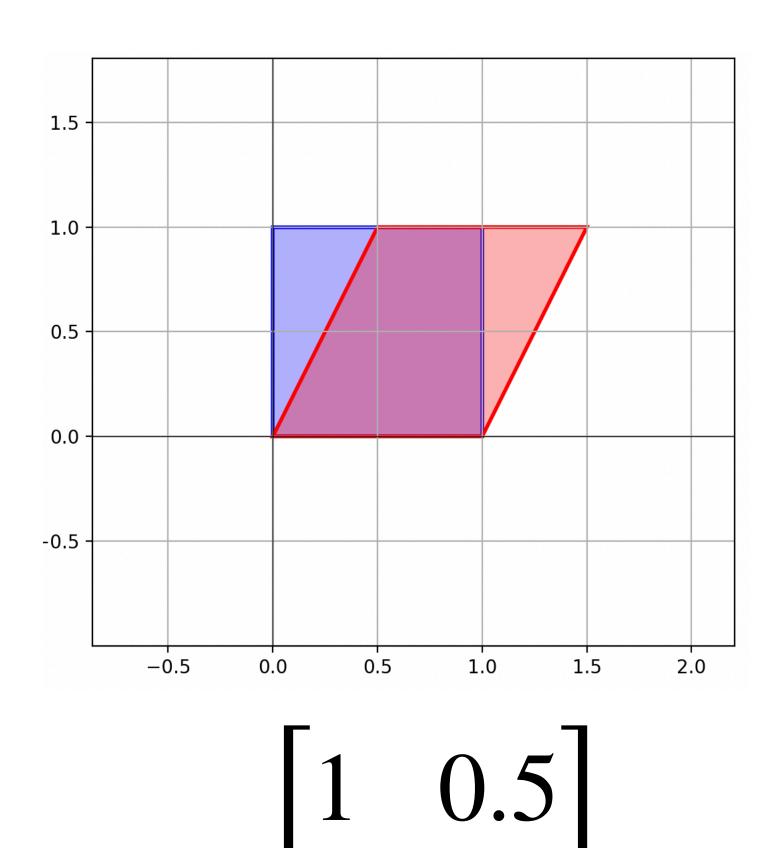
Example: Unequal Scaling

Let's determine it's eigenvalues and eigenvectors:



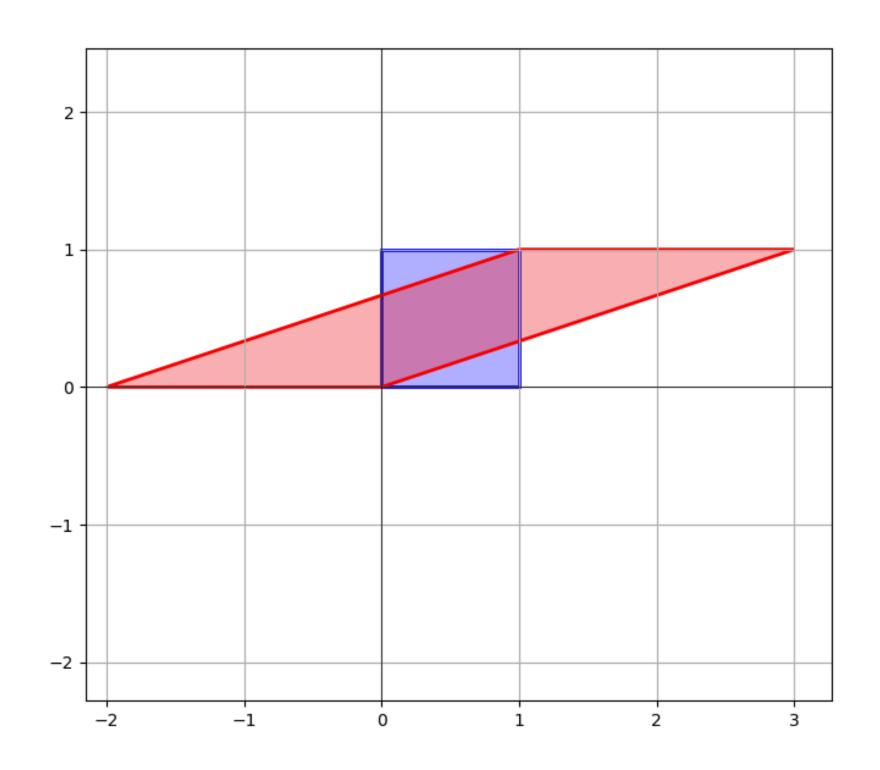
Example: Shearing

Let's determine it's eigenvalues and eigenvectors:



Example (Algebraic)

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$



How do we verify eigenvalues and eigenvectors?

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication.

$$\begin{bmatrix} 6 \\ -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

This is harder...

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

What vector do we check???

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

What vector do we check???

Before we go over how to do this...

Verifying Eigenvalues (Warm Up)

Question. Verify that 1 is an eigenvalue of

Hint. Recall our discussion of Markov Chains. Solution:

Steady-States and Eigenvectors

Steady-state vectors of stochastic matrices are eigenvectors corresponding to the eigenvalue 1.

How did we find steady-state vectors?:

Steady-States and Eigenvectors

 \mathbf{v} is a steady-state vector $\mathbf{v} \equiv \mathbf{v} \in \mathrm{Nul}(A - I)$

This is harder...

Question. Show that λ is an eigenvalue of A.

Solution:

v is an eigenvector for $\lambda \equiv v \in Nul(A - \lambda I)$

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

Solution:

Problem

Verify that 2 is an eigenvalue of $\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$

Answer

4	— 1	6
	1	
2	— 1	8

How many eigenvectors can a matrix have?

Linear Independence of Eigenvectors

Theorem. * If $\mathbf{v}_1, ..., \mathbf{v}_k$ are eigenvectors for distinct eigenvalues, then they are linearly independent.

So an $n \times n$ matrix can have at most n eigenvalues.

Why?:

Eigenspace

Fact. The set of eigenvectors for a eigenvalue λ of $A \in \mathbb{R}^{n \times n}$ form a subspace of \mathbb{R}^n .

Verify:

Eigenspace

Definition. The set of eigenvectors for a eigenvalue λ of A is called the **eigenspace** of A corresponding to λ .

It is the same as $Nul(A - \lambda I)$.

How To: Basis of an Eigenspace

Question. Find a basis for the eigenspace of A corresponding to λ .

Solution. Find a basis for $Nul(A - \lambda I)$.

We know how to do this.

Example

Determine a basis for the eigenspace corresponding to the eigenvalue 1:

How do we find eigenvalues?

How do we find eigenvalues?

We'll cover this next time...

Eigenvalues of Triangular Matrices

Theorem. The eigenvalues of a triangular matrix are its entries along the diagonal.

Verify:

Example

$$\begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$

Determine the eigenvectors and values of the above matrix:

Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $x \mapsto Ax$.

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $x \mapsto Ax$.

The possible states of the system are vectors in \mathbb{R}^n .

Definition. A **(discrete time) linear dynamical system** is described by a $n \times n$ matrix A. It's **evolution function** is the matrix transformation $x \mapsto Ax$.

The possible states of the system are vectors in \mathbb{R}^n .

Given an **initial state vector** \mathbf{v}_0 , we can determine the **state vector** of the system after i time steps:

$$\mathbf{v}_i = A\mathbf{v}_{i-1}$$

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

A tells us how our system evolves over time.

Given an **initial state vector** \mathbf{v}_0 , we can determine the **state vector** of the system after i time steps:

$$\mathbf{v}_i = A\mathbf{v}_{i-1}$$

Recall: State Vectors

$$\mathbf{v}_{1} = A\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A\mathbf{v}_{1} = A(A\mathbf{v}_{0})$$

$$\mathbf{v}_{3} = A\mathbf{v}_{2} = A(AA\mathbf{v}_{0})$$

$$\mathbf{v}_{4} = A\mathbf{v}_{3} = A(AAA\mathbf{v}_{0})$$

$$\mathbf{v}_{5} = A\mathbf{v}_{4} = A(AAAA\mathbf{v}_{0})$$

$$\vdots$$

The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps

This is also called a recurrence relation or a linear difference function

Recall: State Vectors

$$\mathbf{v}_{1} = A\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A\mathbf{v}_{1} = A(A\mathbf{v}_{0})$$

$$\mathbf{v}_{1} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{3} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{5} = A\mathbf{v}_{4} = A(AAAA\mathbf{v}_{0})$$

$$\vdots$$

The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps

This is also called a recurrence relation or a linear difference function

The Issue

The Issue

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k

The Issue

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k

It's defined in terms of A itself, which doesn't tell us much about how the system behaves

The Issue

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k

It's defined in terms of A itself, which doesn't tell us much about how the system behaves

It's also difficult computationally because matrix multiplication is expensive

(Closed-Form) Solutions

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is does not contain A^k or previously defined terms

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is does not contain A^k or previously defined terms

In other word, it does not depend on A^k and is not recursive

Example

$$\mathbf{v}_k = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{v}_{k-1} \qquad \mathbf{v}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Determine a closed for the above linear dynamical system.

It's easy to give a closed-form solution if the initial state is an eigenvector:

$$\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$$

It's easy to give a closed-form solution if the initial state is an eigenvector:

$$\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$$
 dependence on A^k or \mathbf{v}_{k-1}

It's easy to give a closed-form solution if the initial state is an eigenvector:

$$\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$$

The Key Point. This is still true of sums of eigenvectors.

Solutions in terms of eigenvectors

Let's simplify $A^k \mathbf{v}$, given we have eigenvectors $\mathbf{b}_1, \mathbf{b}_2$ for A which span all of \mathbb{R}^2 :

Eigenvectors and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if \mathbf{v}_0 can be written in terms of eigenvectors $\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_k$ of A with eigenvalues

$$\lambda_1 > \lambda_2 \dots \geq \lambda_k$$

then $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$ for some constant c_1 (in other words, in the long term, the system grows <u>exponentially in λ_1 </u>).

Verify:

Definition. An **eigenbasis** of \mathbb{R}^n for a $n \times n$ matrix A is a basis of \mathbb{R}^n made up entirely of eigenvectors of A.

Definition. An **eigenbasis** of \mathbb{R}^n for a $n \times n$ matrix A is a basis of \mathbb{R}^n made up entirely of eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

Definition. An **eigenbasis** of \mathbb{R}^n for a $n \times n$ matrix A is a basis of \mathbb{R}^n made up entirely of eigenvectors of A.

We can represent vectors as **unique** linear combinations of eigenvectors.

Not all matrices have eigenbases.

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if A has an eigenbasis $\mathbf{b}_1, ..., \mathbf{b}_k$, then

$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

for some constant c_1 , where where λ_1 is the largest eigenvalue of A and b_1 is its eigenvalue.

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if A has an eigenbasis $\mathbf{b}_1, ..., \mathbf{b}_k$, then

$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

for some constant c_1 , where where λ_1 is the largest eigenvalue of A and b_1 is its eigenvalue.

The largest eigenvalue describes the long-term exponential behavior of the system.

Another Example: Golden Ratio

A Special Linear Dynamical System

$$\mathbf{v}_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{v}_k \qquad \mathbf{v}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Consider the system given by the above matrix. What does this matrix represent?:

Fibonacci Numbers

$$F_0 = 0$$

$$F_1 = 1$$

$$F_k = F_{k-1} + F_{k-2}$$
 define fib(n): curr, next \leftarrow 0, 1 repeat n times: curr, next \leftarrow next, curr + next return curr

The Fibonacci numbers are defined in terms of a recurrence relation.

They seem to crop-up in nature.

Golden Ratio

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

The "long term behavior" is the Fibonacci sequence is defined by the golden ratio.

This is the largest eigenvalue of $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$.