Eigenvalues and Eigenvectors

Geometric Algorithms Lecture 18

Practice Problem

Suppose A is a 234×300 matrix. What is the smallest possible value for $\dim(Nul(A))$? What is the largest possible value?

What is the smallest possible value for rank(A)? What is the largest possible value?

Answer

A is 234x300

dim((col H) t dim(Nul H) = h "rount" inullity"

 $66 \le dim(NulA) \le 300$ $0 \le dim((olA) \le 234$ if sim(NulA)=300 & dim(ColA)=0 A is 0 matrix

Objectives

- 1. <u>Motivate</u> and introduce the fundamental notion of eigenvalues and eigenvectors
- 2. Determine how to <u>verify</u> eigenvalues and eigenvectors
- 3. Look at the <u>subspace</u> generated by eigenvectors
- 4. Apply the study of eigenvectors to <u>dynamical</u> <u>linear systems</u>

Keyword

Eigenvalues

Eigenvectors

Null Space

Eigenspace

Linear Dynamical Systems

Closed-Form Solutions

Motivation

demo

How can matrices transform vectors?*

```
In 2D and 3D we've seen:
```

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- **>>** . . .

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- **»** . . .

All matrices do some combination of these things

How can matrices transform vectors?*

In 2D and 3D we've seen:

- » rotations
- » projections
- » shearing
- » reflection
- » scaling/stretching
- » Today's focus

All matrices do some combination of these things

What's special about scaling?

What's special about scaling?

We don't need a whole matrix to do scaling

$$\mathbf{X} \mapsto c\mathbf{X}$$

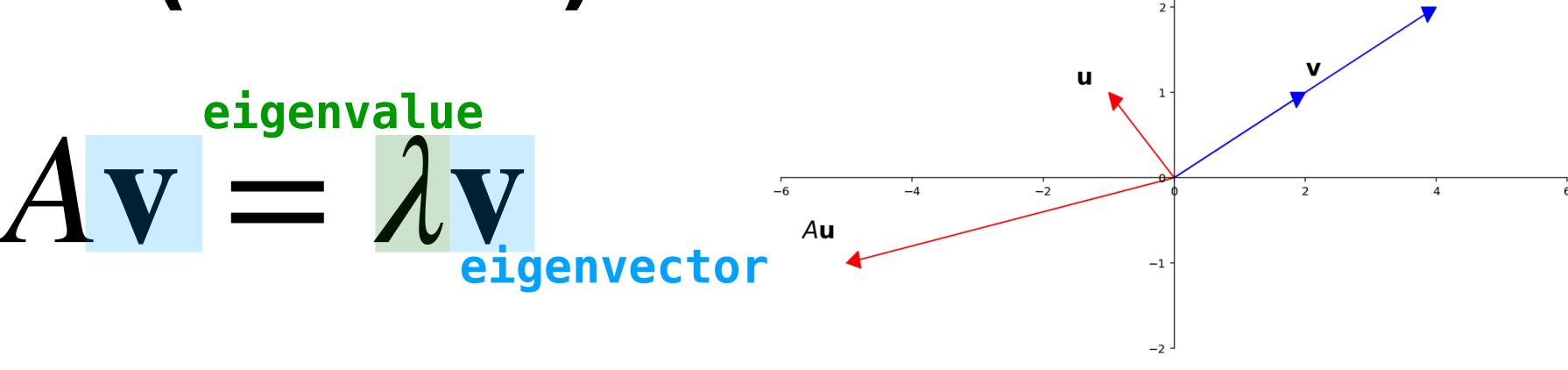
What's special about scaling?

We don't need a whole matrix to do scaling

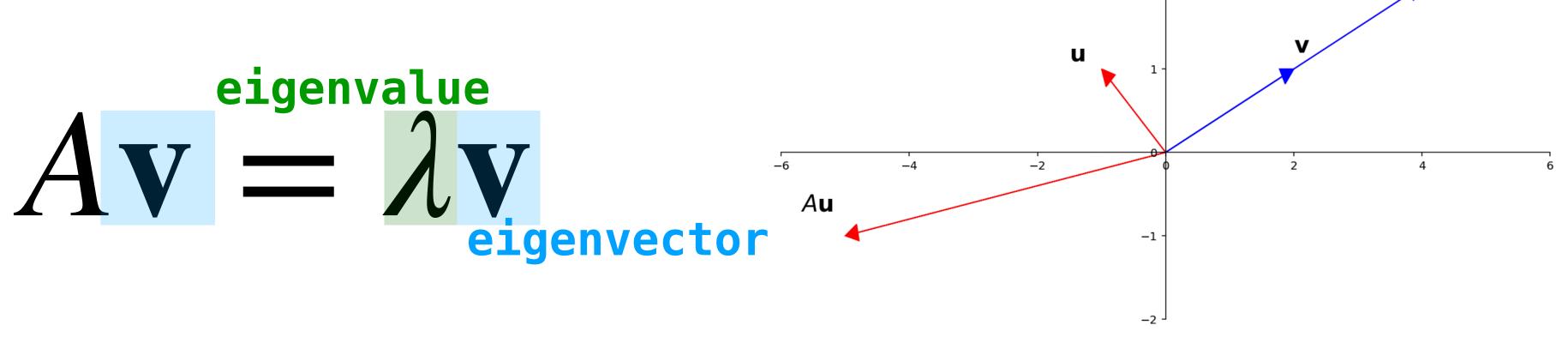
$$\mathbf{X} \mapsto c\mathbf{X}$$

So if $A\mathbf{v} = c\mathbf{v}$ then it's "easy to describe" what A does to \mathbf{v}_{\bullet}

Eigenvectors (Informal)

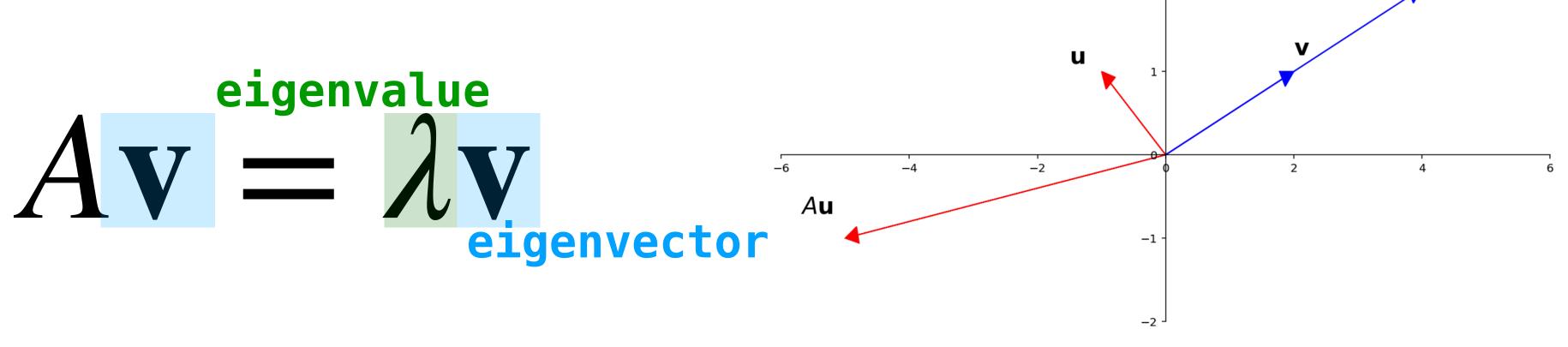


Eigenvectors (Informal)



Eigenvectors of A are stretched by A without changing their direction.

Eigenvectors (Informal)



Eigenvectors of A are stretched by A without changing their direction.

The amount they are stretched is called the eigenvalue.

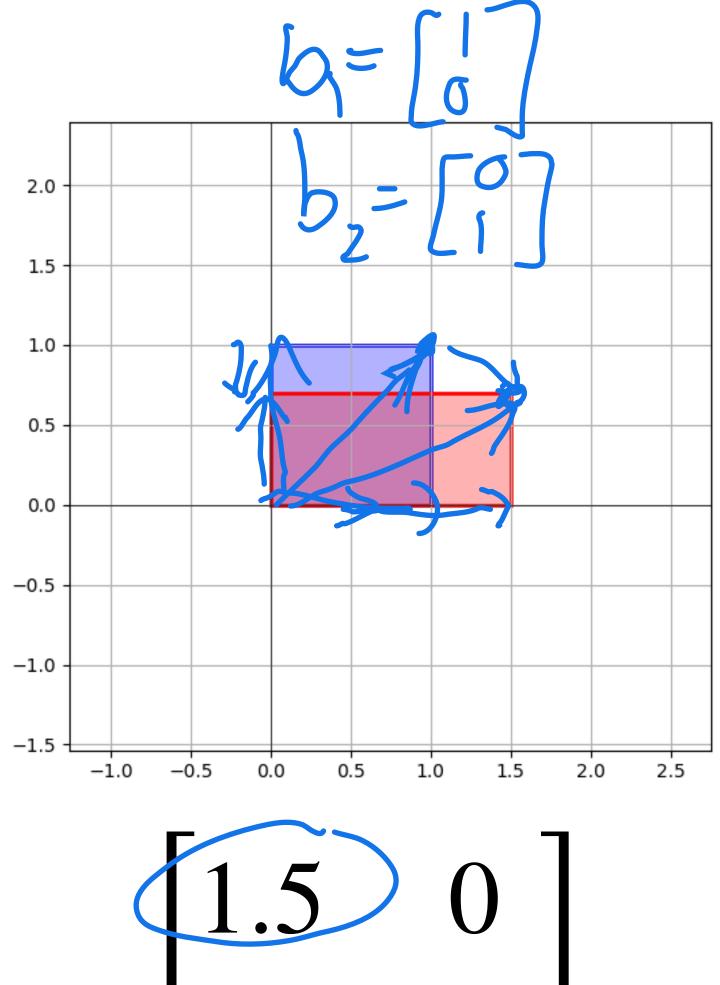
Example: Unequal Scaling

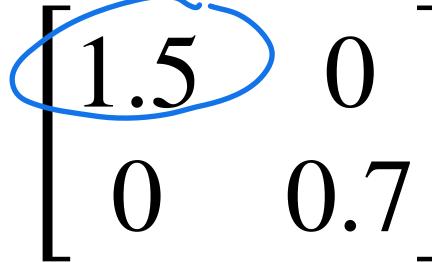
It's "easy to describe" how unequal scaling transforms vectors.

It transforms each entry individually and then combines them.

$$\begin{bmatrix}
1.5 & 0 \\
0 & 0.7
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} = \begin{bmatrix}
1.5 \\
0
\end{bmatrix} = (1.5)\begin{bmatrix}
1 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
1 \\
0
\end{bmatrix} = \begin{bmatrix}
0 \\
0.7
\end{bmatrix} = (0.7)\begin{bmatrix}
0 \\
1
\end{bmatrix}$$





Eigenbases (Informal)

Eigenbases (Informal)

Imagine if $\mathbf{v}=2\mathbf{b}_1-\mathbf{b}_2-5\mathbf{b}_3$ and $\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3$ are eigenvectors of A. Then

$$A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$$

Imagine if $\mathbf{v} = 2\mathbf{b}_1 - \mathbf{b}_2 - 5\mathbf{b}_3$ and $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$ are eigenvectors of A. Then

$$A\mathbf{v} = 2\lambda_1\mathbf{b}_1 - \lambda_2\mathbf{b}_2 - 5\lambda_3\mathbf{b}_3$$

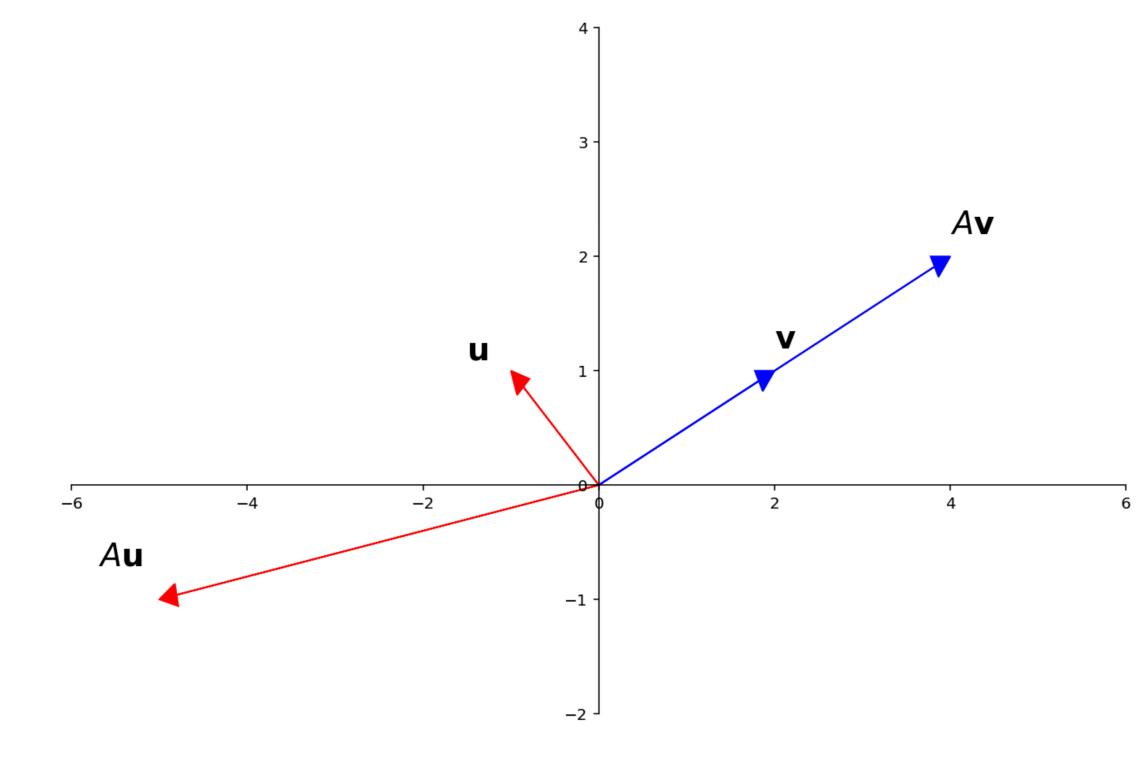
It's "easy to describe" how A transforms v.

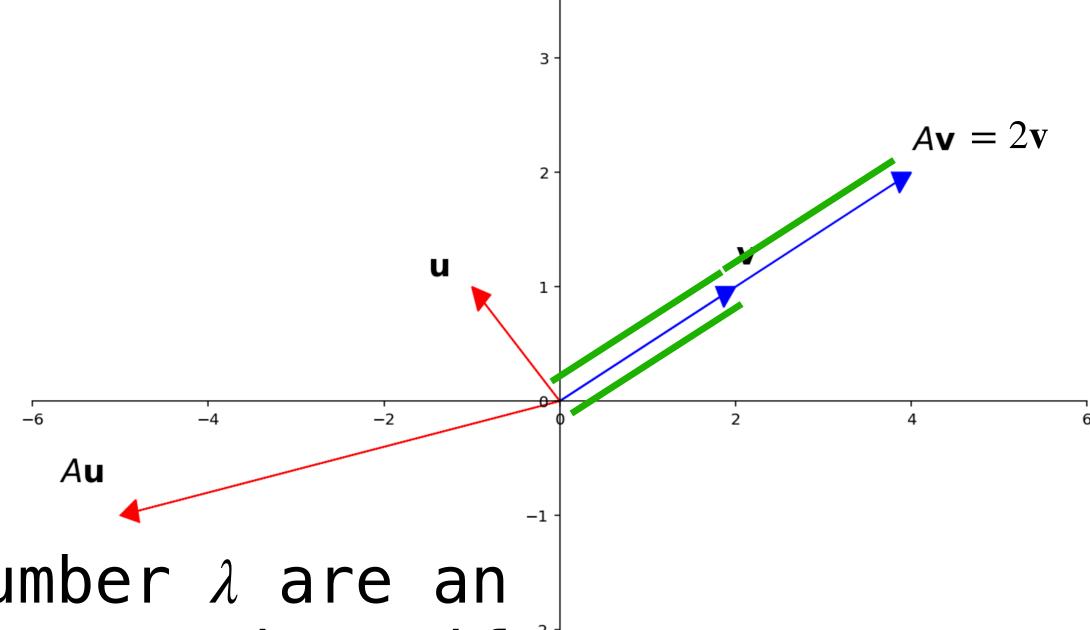
It transforms each "component" individually and then combines them.

Verify:
$$A\sqrt[3]{-}A(2\vec{b}_1 - \vec{b}_2 - 5\vec{b}_3) = A(2\vec{b}_1) - A\vec{b}_2 - A(5\vec{b}_3)$$

= 2A5,-A6,-5Ab3, $=2\lambda_{1}b_{1}-\lambda_{2}b_{1}-5\lambda_{3}b_{3}$

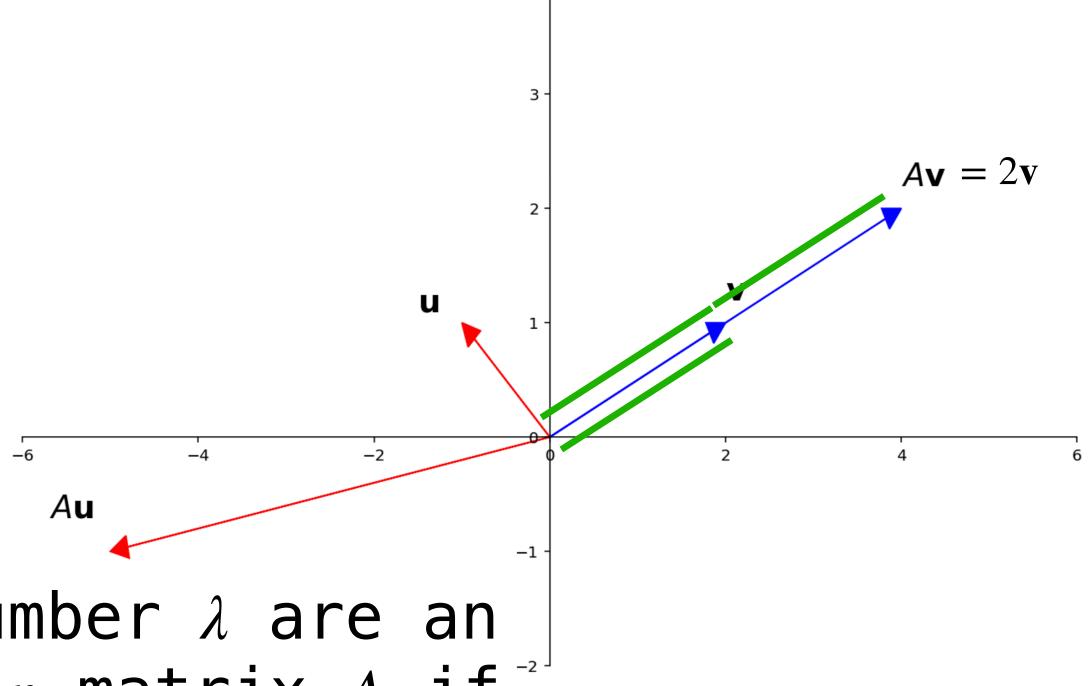
Eigenvalues and Eigenvectors





A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$A\mathbf{v} = \lambda \mathbf{v}$$



A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

We will say that ${\bf v}$ is an eigenvector <u>of/for</u> the eigenvalue λ , and that λ is the eigenvalue <u>of/corresponding to</u> ${\bf v}$.

 $\mathbf{A}\mathbf{v}=2\mathbf{v}$ $\mathbf{A}\mathbf{v}=2\mathbf{v}$

A nonzero vector \mathbf{v} in \mathbb{R}^n and real number λ are an eigenvector and eigenvalue for a $n \times n$ matrix A if

$$A\mathbf{v} = \lambda \mathbf{v}$$

We will say that ${\bf v}$ is an eigenvector <u>of/for</u> the eigenvalue λ , and that λ is the eigenvalue <u>of/corresponding to</u> ${\bf v}$.

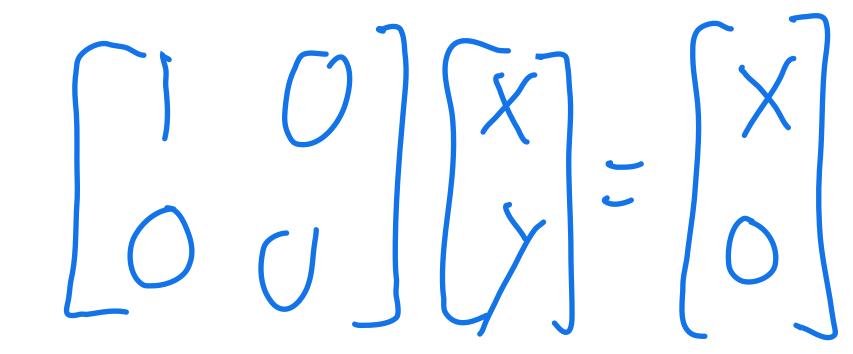
Note. Eigenvectors <u>must</u> be nonzero, but it is possible for 0 to be an eigenvalue.

What if 0 is an eigenvalue?

What if 0 is an eigenvalue?

If \mathbf{A} has the eigenvalue $\mathbf{0}$ with the eigenvector \mathbf{v} , then

What if 0 is an eigenvalue?



If A has the eigenvalue 0 with the eigenvector \mathbf{v} , then

$$A\mathbf{v} = \mathbf{0}\mathbf{v} = \mathbf{0}$$

In other words,

- $v \in Nul(A)$
- > v is a nontrivial solution to $A\mathbf{v}=\mathbf{0}$

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 is equivalent to

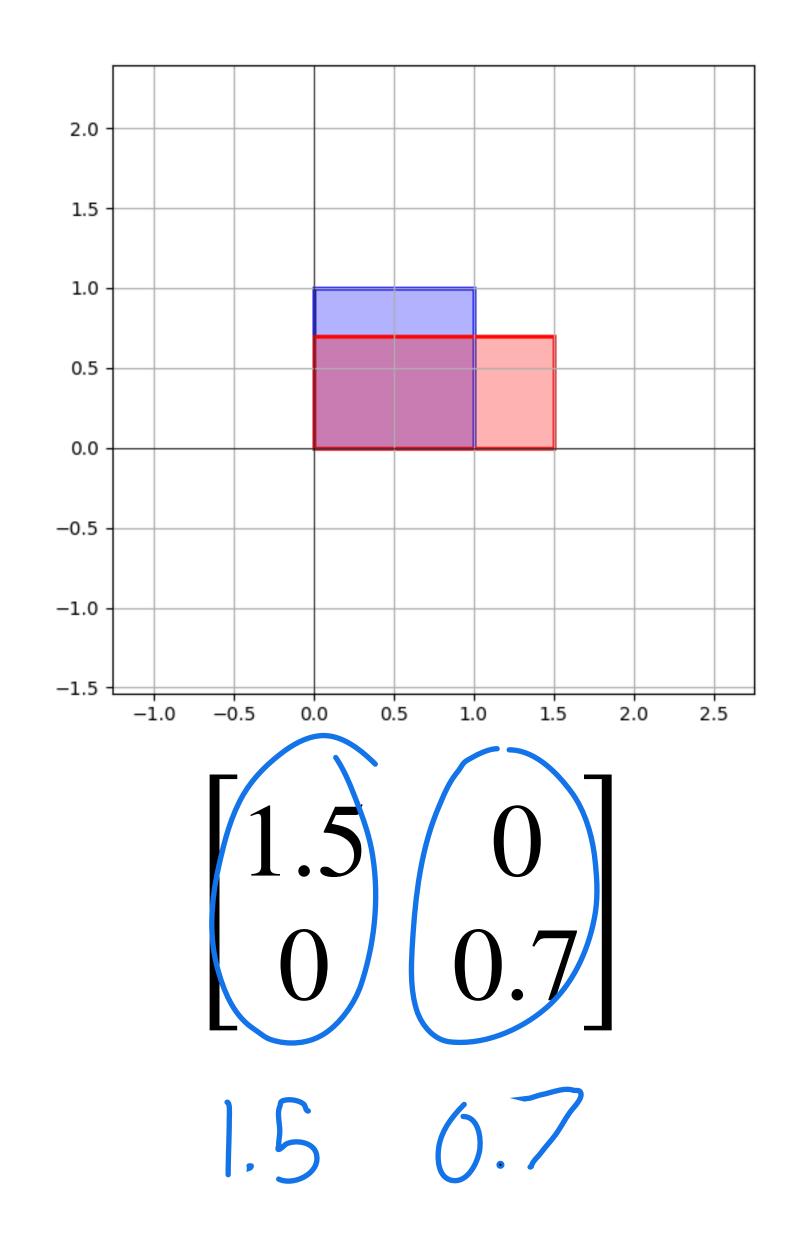
Theorem. A $n \times n$ matrix is invertible if and only if it does not have 0 as an eigenvalue.

To reiterate. An eigenvalue 0 is equivalent to

- Ax = 0 has montrivial solutions
- \gg the columns of A are linearly dependent
- $\gg \operatorname{Col}(A) \neq \mathbb{R}^n$
- **>>**

Example: Unequal Scaling

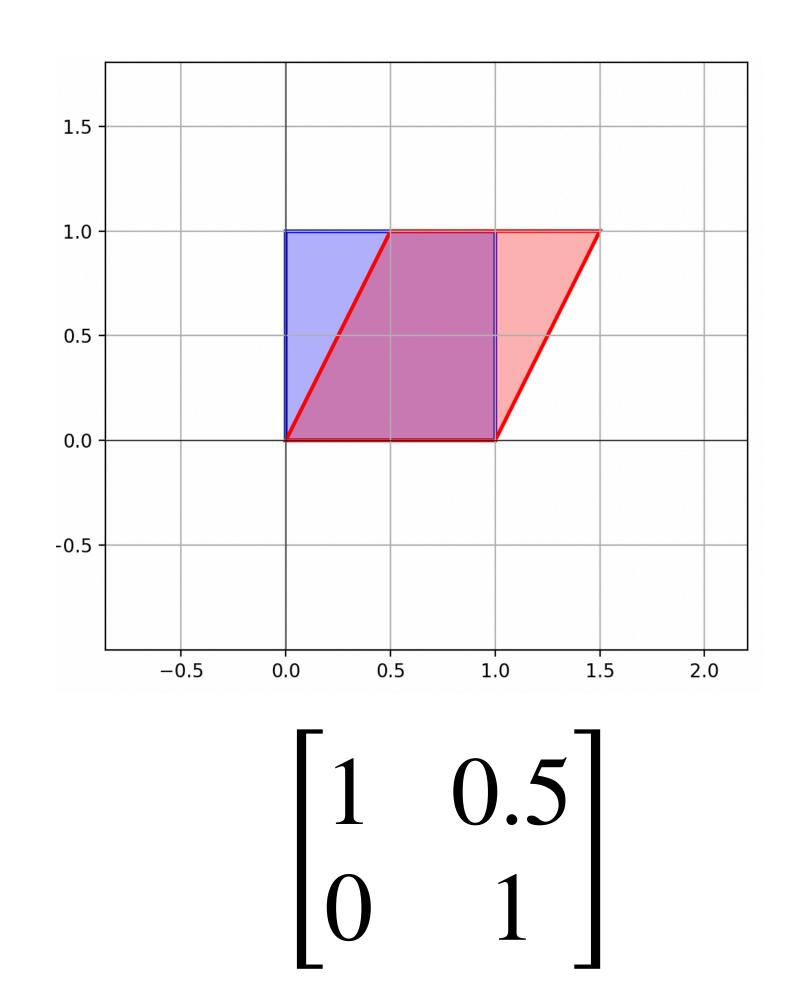
Let's determine it's eigenvalues and eigenvectors:



Example: Shearing

Let's determine it's eigenvalues and eigenvectors:

$$\begin{bmatrix} 0 & 0.5 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$



Example (Algebraic)

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$A\vec{u} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A\vec{y} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0.5 \end{bmatrix}$$

How do we verify eigenvalues and eigenvectors?

Verifying Eigenvectors

Verifying Eigenvectors

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Verifying Eigenvectors

Question. Determine if $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$ or $\begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are eigenvectors of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ and determine the corresponding eigenvalues.

Solution. Easy. Work out the matrix-vector multiplication.

Verifying Eigenvectors
$$\vec{v}_{1} = \begin{bmatrix} 6 \\ -5 \end{bmatrix} \vec{v}_{2} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} -24 \\ 26 \end{bmatrix} = (-4) \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} = \overrightarrow{v}_z \quad \text{rot an eigenvector}$$

This is harder...

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

What vector do we check???

This is harder...

Question. Show that 7 is an eigenvalue of $\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$.

What vector do we check???

Before we go over how to do this...

Verifying Eigenvalues (Warm Up)

Question. Verify that 1 is an eigenvalue of

$$A = \begin{bmatrix} 0.1 \\ 0.9 \\ 0.3 \end{bmatrix} \begin{pmatrix} 0.7 \\ 0.3 \end{bmatrix} \qquad (A - T) \vec{X} = 0$$

Hint. Recall our discussion of Markov Chains.

Solution: A is regular \Rightarrow there is a unique steady state $A(\vec{x} = \vec{x} = (1)\vec{x})$ $A(\vec{x} = \vec{x} = (1)\vec{x})$ $A(\vec{x} = \vec{x} = 0)$ $A(\vec{x} = 0)$

$$A(x) = \hat{x} = (1)\hat{x}$$

 $A(x) = \hat{x} = (1)\hat{x}$
 $A(x) = \hat{x} = 0$ $A(x) = 0$

Steady-States and Eigenvectors

Steady-state vectors of stochastic matrices are eigenvectors corresponding to the eigenvalue 1.

How did we find steady-state vectors?:

 $(\text{nontrivial}) \text{ Sol'ns to} \qquad (A-I) \overrightarrow{X} = 0$

Steady-States and Eigenvectors

 \mathbf{v} is a steady-state vector $\mathbf{v} \equiv \mathbf{v} \in \mathrm{Nul}(A - I)$

This is harder...

Question. Show that λ is an eigenvalue of A. Solution: $\lambda = \lambda = \lambda$

$$A\overrightarrow{J} = \lambda \overrightarrow{V}$$

$$A\overrightarrow{J} - \lambda \overrightarrow{V} = O$$

$$(A - \lambda \overrightarrow{I}) \overrightarrow{V} = O$$

$$\overrightarrow{V} \in \text{Nul}(A - \lambda \overrightarrow{I})$$

```
v is an eigenvector for \lambda \equiv v \in \text{Nul}(A - \lambda I) (and \vec{v} \neq 0) if just \frac{2}{3} \frac{1}{3} an eigenvalue \frac{1}{3} and an eigenvalue
```

This is harder...

$$\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$

Question. Show that 7 is an eigenvalue of
$$\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
.

Solution: $A-7I = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Yes:

Nonzero

Solins

 $X_1 = X_2$
 X_2 free

Problem

$$(A - 2I)\hat{x} = 0$$

$$A\hat{x} = 2\hat{x}$$

Verify that
$$\overset{7}{2}$$
 is an eigenvalue of $\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$

$$A-2J = \begin{cases} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{cases} \sim \begin{cases} 2 & -1 & 6 & 20 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases} = \begin{cases} 2 & -1 & 8 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$$

$$\begin{bmatrix} x \\ x_2 \\ x_3 \end{bmatrix} = x = x_2 \begin{bmatrix} x_2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

$$2x_{1} - X_{2} + 6X_{3} = 0$$

$$2x_{1} = X_{2} - 6x_{3}$$

$$X_{1} = /\frac{1}{2} \times 2 - 3x_{3}$$

Xz tree Xz tree Xz tree

Answer

4	— 1	6
	1	
2	— 1	8

How many eigenvectors can a matrix have?

Linear Independence of Eigenvectors

Theorem.* If $\mathbf{v}_1,...,\mathbf{v}_k$ are eigenvectors for distinct eigenvalues, then they are linearly independent.

So an $n \times n$ matrix can have at most n eigenvalues.

Why?: more than n eigenvalues > more than n lin ind.
eigenvectors

*We won't prove this.

Eigenspace

Fact. The set of eigenvectors for a eigenvalue λ of $A \in \mathbb{R}^{n \times n}$ form a subspace of \mathbb{R}^n .

Verify: Nul(A-7I)

desure under add'n: \vec{v}, \vec{w} eigenvectors $= \lambda (\vec{v} + \vec{w}) = A\vec{v} + A\vec{w} = \lambda \vec{v} + \lambda \vec{w}$ $= \lambda (\vec{v} + \vec{w})$ closure under scaling: \vec{v} eigenvector $= \lambda (\vec{v} + \vec{w}) = A\vec{v} + A\vec{w} = \lambda \vec{v} + \lambda \vec{w}$ $= \lambda (\vec{v} + \vec{w}) = A\vec{v} + \lambda \vec{w} = \lambda (\vec{v} + \vec{w})$

Eigenspace

Definition. The set of eigenvectors for a eigenvalue λ of A is called the **eigenspace** of A corresponding to λ .

It is the same as $Nul(A - \lambda I)$.

How To: Basis of an Eigenspace

Question. Find a basis for the eigenspace of A corresponding to λ .

Solution. Find a basis for $Nul(A - \lambda I)$.

We know how to do this.

Example

$$A = \begin{bmatrix}
-2 & 0 & 3 \\
1 & 1 & -1 \\
-4 & 0 & 5
\end{bmatrix}$$

$$\frac{1}{A-I} \hat{x} = 0$$

Determine a basis for the eigenspace corresponding to the eigenvalue 1:

$$A - I = \begin{bmatrix} -3 & 0 & 37 \\ 1 & 0 & -1 \\ -4 & 0 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} 6 \\ 3 \\ 5 \\ 6 \\ 3 \end{cases} \qquad \begin{cases} 6 \\ 7 \\ 7 \\ 7 \end{cases} = \begin{cases} 7 \\ 7 \\ 7 \\ 7 \end{cases} = \begin{cases} 7 \\ 7 \\ 7 \\ 7 \end{cases}$$

$$\begin{cases} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ X = X_z \begin{pmatrix} 0 \\ 0 \end{pmatrix} + X_3 \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}$$

$$X_{1} = X_{5}$$

$$X_{2} = X_{5}$$

$$X_{2} = X_{2} = X_{2}$$

$$X_{3} = X_{5}$$

$$X_{4} = X_{5}$$

$$X_{5} = X_{5}$$

$$X_{5} = X_{5}$$

How do we find eigenvalues?

How do we find eigenvalues?

We'll cover this next time...

Eigenvalues of Triangular Matrices

(A-7T) V=0 Does this have nontrivial solver?

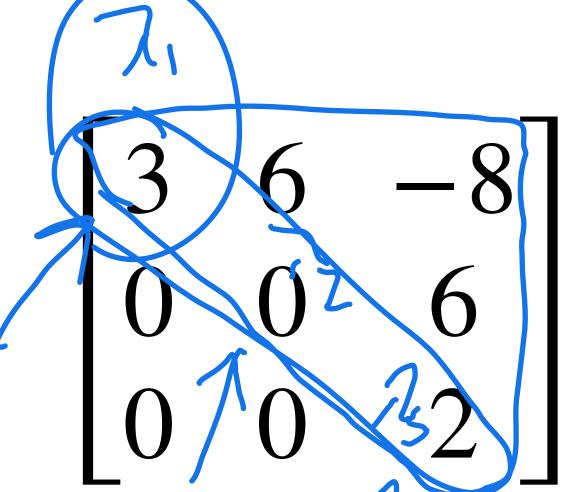
Theorem. The eigenvalues of a triangular matrix

are its entries along the diagonal.

Verify:
$$A = \begin{bmatrix} a_{11} & * & * \\ O & a_{22} & * \\ O & O & a_{33} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & * & * \\ O & a_{22} & * \\ O & O & * \\ O & O$$

$$(A - \lambda I) \vec{v} = 0$$



$$\begin{array}{c} X/Y = 0 \\ A = 11100 \\ A \Rightarrow = 0 \\ A \Rightarrow = 0$$

Determine the eigenvectors and values of the above

$$\begin{bmatrix}
0 & 6 & -8 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -3 & 6 \\
0 & -3 & 6
\end{bmatrix}$$

$$A-2I = \begin{bmatrix} 1 & 6 & -8 \\ 0 & -2 & 6 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 10 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \vec{x} = x_3 \begin{bmatrix} -10 \\ 3 \\ 1 \end{bmatrix}$$

Linear Dynamical Systems

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $x \mapsto Ax$.

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $x \mapsto Ax$.

The possible states of the system are vectors in \mathbb{R}^n .

Definition. A **(discrete time) linear dynamical system** is described by a $n \times n$ matrix A. It's **evolution function** is the matrix transformation $x \mapsto Ax$.

The possible states of the system are vectors in \mathbb{R}^n .

Given an **initial state vector** \mathbf{v}_0 , we can determine the **state vector** of the system after i time steps:

$$\mathbf{v}_i = A\mathbf{v}_{i-1}$$

Definition. A (discrete time) linear dynamical system is described by a $n \times n$ matrix A. It's evolution function is the matrix transformation $x \mapsto Ax$.

A tells us how our system evolves over time.

Given an **initial state vector** \mathbf{v}_0 , we can determine the **state vector** of the system after i time steps:

$$\mathbf{v}_i = A\mathbf{v}_{i-1}$$

Recall: State Vectors

$$\mathbf{v}_{1} = A\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A\mathbf{v}_{1} = A(A\mathbf{v}_{0})$$

$$\mathbf{v}_{3} = A\mathbf{v}_{2} = A(AA\mathbf{v}_{0})$$

$$\mathbf{v}_{4} = A\mathbf{v}_{3} = A(AAA\mathbf{v}_{0})$$

$$\mathbf{v}_{5} = A\mathbf{v}_{4} = A(AAAA\mathbf{v}_{0})$$

$$\vdots$$

The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps

This is also called a recurrence relation or a linear difference function

Recall: State Vectors

$$\mathbf{v}_{1} = A\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A\mathbf{v}_{1} = A(A\mathbf{v}_{0})$$

$$\mathbf{v}_{1} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{2} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{3} = A^{k}\mathbf{v}_{0}$$

$$\mathbf{v}_{5} = A\mathbf{v}_{4} = A(AAAA\mathbf{v}_{0})$$

$$\vdots$$

The state vector \mathbf{v}_k tells us what the system looks like after a number k time steps

This is also called a recurrence relation or a linear difference function

The Issue

The Issue

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k

The Issue

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k

It's defined in terms of A itself, which doesn't tell us much about how the system behaves

The Issue

The equation $\mathbf{v}_k = A^k \mathbf{v}_0$ is *okay* but it doesn't tell us much about the nature of \mathbf{v}_k

It's defined in terms of A itself, which doesn't tell us much about how the system behaves

It's also difficult computationally because matrix multiplication is expensive

(Closed-Form) Solutions

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is does not contain A^k or previously defined terms

(Closed-Form) Solutions

A (closed-form) solution of a linear dynamical system $\mathbf{v}_{i+1} = A\mathbf{v}_i$ is an expression for \mathbf{v}_k which is does not contain A^k or previously defined terms

In other word, it does not depend on A^k and is not recursive

It's easy to give a closed-form solution if the initial state is an eigenvector:

$$\mathbf{v}_{k} = A^{k}\mathbf{v}_{0} = \lambda^{k}\mathbf{v}_{0}$$

$$\forall_{1} = A^{k}\mathbf{v}_{0} = \lambda^{1}\hat{\mathbf{v}}_{0}$$

$$\forall_{2} = A^{k}\mathbf{v}_{0} = \lambda^{1}\hat{\mathbf{v}}_{0}$$

$$\forall_{3} = A^{k}\hat{\mathbf{v}}_{0} = \lambda^{1}\hat{\mathbf{v}}_{0}$$

$$\forall_{4} = A^{k}\hat{\mathbf{v}}_{0} = \lambda^{1}\hat{\mathbf{v}}_{0}$$

$$\forall_{5} = A^{k}\hat{\mathbf{v}}_{0} = \lambda^{1}\hat{\mathbf{v}}_{0}$$

$$\forall_{7} = A^{k}\hat{\mathbf{v}}_{0} = \lambda^{1}\hat{\mathbf{v}}_{0}$$

It's easy to give a closed-form solution if the initial state is an eigenvector:

$$\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$$
 dependence on A^k or \mathbf{v}_{k-1}

It's easy to give a closed-form solution if the initial state is an eigenvector:

$$\mathbf{v}_k = A^k \mathbf{v}_0 = \lambda^k \mathbf{v}_0$$

The Key Point. This is still true of sums of eigenvectors.

Solutions in terms of eigenvectors

$$A^k v \sim a_{i} A^k v \quad a_{i} v \in \mathbf{r}$$

Let's simplify $A^k \mathbf{v}$, given we have eigenvectors $\mathbf{b}_1, \mathbf{b}_2$ for A which span all of \mathbb{R}^2 : $\lambda_1 > \lambda_2$ $\lambda_2 = a_1 \lambda_1 + a_2 \lambda_2$ $\lambda_3 = a_1 \lambda_1 + a_2 \lambda_2 + a_3 \lambda_2 + a_3 \lambda_3 + a_3 \lambda_4 + a_3 \lambda_5 + a_3$ $= \alpha_1 \lambda_1 \lambda_1 b_1 + \alpha_2 \lambda_2 \lambda_2 \lambda_3 b_2 = \alpha_1 \lambda_1 b_1 + \alpha_2 \lambda_2 b_2$

Eigenvectors and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if \mathbf{v}_0 can be written in terms of eigenvectors $\mathbf{b}_1,\mathbf{b}_2,...,\mathbf{b}_{k}$ of Awith eigenvalues

$$\lambda_1 > \lambda_2 \ldots \geq \lambda_R$$

then $\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$ for some constant c_1 (in other words, in the long term, the system grows <u>exponentially in λ_1 </u>).

Verify: aroned in case k=2If eigenbasis exists, this $AkV = a_1 \lambda_1^k v_1 + \cdots + a_n \lambda_n^k v_n$ is closed form

Definition. An **eigenbasis** of \mathbb{R}^n for a $n \times n$ matrix A is a basis of \mathbb{R}^n made up entirely of eigenvectors of A.

Definition. An **eigenbasis** of \mathbb{R}^n for a $n \times n$ matrix A is a basis of \mathbb{R}^n made up entirely of eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

Definition. An **eigenbasis** of \mathbb{R}^n for a $n \times n$ matrix A is a basis of \mathbb{R}^n made up entirely of eigenvectors of A.

We can represent vectors as unique linear combinations of eigenvectors.

Not all matrices have eigenbases.

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if A has an eigenbasis $\mathbf{b}_1, \dots, \mathbf{b}_k$, then

$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

for some constant c_1 , where where λ_1 is the **largest** eigenvalue of A and b_1 is its eigenvalue.

Eigenbases and Growth in the Limit

Theorem. For a linear dynamical system A with initial state \mathbf{v}_0 , if A has an eigenbasis $\mathbf{b}_1, ..., \mathbf{b}_k$, then

$$\mathbf{v}_k \sim \lambda_1^k c_1 \mathbf{b}_1$$

for some constant c_1 , where where λ_1 is the largest eigenvalue of A and b_1 is its eigenvalue.

The largest eigenvalue describes the long-term exponential behavior of the system.