More Practice Problems

CAS CS 132: Geometric Algorithms

Intersection of Spans

Determine a vector with integer entries which appears in both of the following spans.

$$\operatorname{span}\left\{\begin{bmatrix}1\\2\\-1\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\right\} \qquad \operatorname{span}\left\{\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}0\\1\\3\end{bmatrix}\right\}$$

Dependence Relations

Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set of vectors and that

$$\mathbf{u}_1 = \mathbf{v}_1 + \mathbf{v}_3$$

 $\mathbf{u}_2 = -2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$
 $\mathbf{u}_3 = -3\mathbf{v}_1 - \mathbf{v}_2 - 6\mathbf{v}_3$

Determine a dependence relation with integer weights for the vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

True/False

Determine if each of the following statements are true or false. If it is false, give a counterexample.

- 1. For any matrices A and B, if AB = I then A is invertible and $B = A^{-1}$.
- 2. For any matrix A in $\mathbb{R}^{10\times15}$ and any \mathbf{b} in \mathbb{R}^{10} , the matrix equation $A\mathbf{x} = \mathbf{b}$ has a solution.

- 3. For any matrices A and B, if AB = 0, then A = 0 or B = 0.
- 4. For any vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , if $\mathbf{v}_1 \in \mathsf{span}\{\mathbf{v}_2, \mathbf{v}_3\}$ then $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_3\}$ is a linearly dependent set.
- 5. For any matrices A and B, if AB = BA, then A = B.

Inverses(?)

Multiply on the Right

Determine a matrix B with integer entries such that the following equality holds.

$$\begin{bmatrix} 1 & -1 & 2 \\ -3 & 4 & 2 \end{bmatrix} B = I$$

Multiply on the Left

Explain why it is not possible to determine a matrix B such that the following equality holds.

$$B\begin{bmatrix} 1 & -1 & 2 \\ -3 & 4 & 2 \end{bmatrix} = I$$

Linear Transformations

Suppose that $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation which reflects vectors across the xy plane (i.e., across the plane given by the linear equation z=0) and that $S: \mathbb{R}^3 \to \mathbb{R}^3$ the transformation which rotates vectors around $\text{span}\{[1 \ 1 \ 0]^T\}$ by 180 degrees. Determine the matrix which implements $S \circ T$, the composition of S and T (recall that $(S \circ T)(\mathbf{v}) = S(T(\mathbf{v}))$).