Midterm Exam (Version 2)

CAS CS 132: Geometric Algorithms

October 21, 2025

Name: Nathan Mull

BUID: 12345678

- ▶ You will have approximately 75 minutes to complete this exam. Make sure to read every question, some are easier than others.
- ▷ Do not remove any pages from the exam.
- > Your final solution must appear in the solution boxes for each problem. Only include your final solution in the solution box. You must show your work outside of the solution box. You will not receive credit it you don't show your work.
- ▶ We will not look at any work on the pages marked "This page is intentionally left blank." You should use these pages for scratch work.

 $This \ page \ is \ intentionally \ left \ blank.$

1 Linear Equations and Spans

(6 points) Determine a linear equation whose solution set is the span of the following two vectors. (*Note.* You may not use the cross product for this problem.)

$$\mathbf{v}_{1} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \quad \mathbf{v}_{2} = \begin{bmatrix} 3 \\ -2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & b_{1} \\ -1 & -7 & b_{1} \\ 2 & 3 & b_{3} \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & b_{1} \\ 0 & 1 & b_{1} + b_{1} \\ 0 & -3 & b_{3} - 7b_{1} \\ +3(b_{1} + b_{1}) \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & b_{1} \\ 0 & -1 & b_{1} + b_{1} \\ 0 & 0 & b_{3} - 7b_{1} + 3(b_{2} + b_{1}) \end{bmatrix}$$

$$\times_{3} \sim 7 \times_{1} + 3 \times_{2} + 3 \times_{3} = 0$$

$$\times$$
, + $3 \times_2 + \times_3 = 0$

Pseudoinverses $\mathbf{2}$

(6 points) Determine a matrix A and two values k and h such that

$$A\begin{bmatrix}1 & -1\\3 & -2\\-1 & 3\end{bmatrix} = \begin{bmatrix}1 & 0\\0 & 1\end{bmatrix} \quad \text{ and } \quad \begin{bmatrix}1 & -1\\3 & -2\\-1 & 3\end{bmatrix}A = \begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\h & k & 0\end{bmatrix}$$
 (*Hint.* First determine the rightmost column of A .)

APPROACH 1:

$$A \in \mathbb{R}^{2\times3} \quad BA = B \left[\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \right] = \left[B\vec{a}_1 \ B\vec{a}_3 \ B\vec{a}_3 \right]$$

$$B\vec{a}_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \vec{a}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 6 & 0 \end{bmatrix} \Rightarrow A\vec{a}_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 9 & 6 & 0 \\ c & d & 0 \end{bmatrix} \Rightarrow AB = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 - 1 \\ 3 - 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix}$$

$$A = \begin{bmatrix} -7 & 1 & 0 \\ -3 & 1 & 0 \end{bmatrix} \quad B\vec{a}_1 = \begin{bmatrix} 1 & -1 \\ 3 & -7 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} -7 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -7 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & 1 \\ -3 & 1 \end{bmatrix}$$

$$\beta \bar{a}_{2} = \begin{bmatrix} 1 & -1 \\ 3 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

APPROACH Z:

$$\begin{bmatrix}
1 & -1 & 1 & 0 \\
3^{-1} & -2^{-1} & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & 1 & 0 \\
0 & 1 & -3 & 1 \\
0 & 2^{-1} & k+1 & k^{-1}
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -1 & 1 & 0 \\
0 & 1 & -3 & 1 \\
0 & 0 & k+7 & k-7
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -3 & 1 \\
0 & 0 & k+7 & k-7
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -3 & 1 \\
0 & 0 & k+7 & k-7
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -3 & 1 \\
0 & 0 & k+7 & k-7
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -3 & 1 \\
0 & 0 & k+7 & k-7
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -3 & 1 \\
0 & 0 & k+7 & k-7
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -3 & 1 \\
0 & 0 & 0 & k+7 & k-7
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\sim
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Solution.

$$A = \begin{bmatrix} -7 & 1 & 0 \\ -3 & 1 & 0 \end{bmatrix} \qquad h = -7 \qquad k = 7$$

 $This \ page \ is \ intentionally \ left \ blank.$

3 Linear Transformations

Consider the following linear transformations.

S(T(E))

$$S\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 \\ -x_2 \\ x_1 + x_2 \end{bmatrix} \qquad T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 + x_3 \\ -x_1 - 2x_2 - 3x_3 \end{bmatrix}$$

A. (3 points) Determine the matrix that implements $S \circ T$, the composition of S and T. That is, determine the matrix A such that the transformation $\mathbf{x} \mapsto S(T(\mathbf{x}))$ is equivalent to the transformation $\mathbf{x} \mapsto A\mathbf{x}$.

APPROACH 1:

$$S\left(\begin{bmatrix} 1\\ 0 \end{bmatrix}\right) = \begin{bmatrix} 2\\ 0\\ 1 \end{bmatrix} \qquad S\left(\begin{bmatrix} 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad S\left(\frac{1}{x}\right) = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \qquad T\left(\begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1\\ 1\\ 1$$

S(T(e_1)

S(T(E,))

B. (6 points) Determine a general form solution that describes the preimages of the following vector \mathbf{b} under the linear transformation $S \circ T$. That is determine a general form solution where $S(T(\mathbf{x})) = \mathbf{b}$ if and only if \mathbf{x} is in the solution set described by your general form solution.

$$\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 & 2 & 4 \\ 1 & 2 & 3 & 1 \\ 0 & -1 & -2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1^{2} & 2^{2} & 3^{2} & 1^{2} \\ 0 & -1 & -2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution.

$$x_1 = 3 + \times_3$$

$$x_2 = -1 - 2 \times_3$$

$$x_3$$
 is free

4 True/False

Determine if each of the following statements is **True** or **False**. Bubble in your answers below. You do not need to show your work.

A.	(1 point) A system of linear equations with 3 variables and 4 equations cannot be consistent.
	○ True
	False
В.	(1 point) For any matrix $A \in \mathbb{R}^{n \times n}$, if $A = LU$ where L and U form an LU-factorization of A , and if L is invertible, then so is A .
	O True
	False
С.	(1 point) For any matrices $A, B \in \mathbb{R}^{n \times n}$, if A and B are invertible, then so is AB.
	True
	○ False
D.	(1 point) If A is the augmented matrix of a linear system and it has a pivot position in every column, then the system is inconsistent.
	True
	○ False
Ε.	(1 point) If the equation $A\mathbf{x} = 0$ has a nontrivial solution, then it has infinitely many solutions.
	True
	○ False
F.	(1 point) For any vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^n$, if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent, then so is $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_3\}$.
	○ True
	False
G.	(1 point) For any matrix $A \in \mathbb{R}^{m \times n}$, the matrix AA^T is symmetric (recall that a matrix B is symmetric if $B = B^T$).
	True
	○ False
Н.	(1 point) For any matrix $A \in \mathbb{R}^{m \times n}$, if $m < n$, and the columns of A span \mathbb{R}^m , then the reduced echelon form of A has only 0s and 1s.
	○ True
	False
I.	(1 point) For any matrices $A, B \in \mathbb{R}^{n \times n}$, if $AB = I$, then $BA = I$.
	True
	○ False

5 Linear Dependence

(6 points) Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ be vectors such that

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} \sim \begin{bmatrix} 2 & -3 & 3 & 8 \\ 0 & -2 & -2 & 7 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Determine a dependence relation for the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. That is, determine coefficients $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ such that $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 = \mathbf{0}$.

$$\begin{bmatrix} 2 & -3 & 3 & 8 \\ 0 & -1 & -2 & 7 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & -3 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$X_1 = -3 \times_7$$
 $X_2 = - \times_3$
 $X_3 = -3 \times_7$
 $X_4 = 0$

Solution.

$$-3\bar{v}_{1} - \bar{v}_{2} + \bar{v}_{3} = 0$$

 $This \ page \ is \ intentionally \ left \ blank.$