Course Introduction
(CS392: Rust, in Theory and in Practice

September 2, 2025 (Lecture 1)



Outline

Course Expectations



Minutiae

Instructor: Nathan Mull
Webpage: https://nmmull.github.io/CS392-F25/index.html

Midterm Date: October 23


https://nmmull.github.io/CS392-F25/index.html

Grade Breakdown

30%
40%
20%
10%

Assignments
Final Project
Midterm (in class)
Participation




Disclaimer

This is still a new course. It's going to be a bit disorganized. | appreciate
your patience

| am not an expert of Rust, I'm an expert in type theory



Lectures

This course will be something like a flipped classroom /workshop hybrid.
You'll be expected to read before lecture and do a small amount of
pre-lecture participation

| will take attendance. You're allowed to miss 2-3 lectures

We'll spend the first part of the lecture reviewing the material you read
about, and then we'll go into a workshop-style meeting during which you'll
work on the homework assignments or final projects or other in-class tasks

| want this course to be very collaborative. I'll expect that you're working in
groups, pair/group programming, and one-on-one discussions with me and
the other students



Assignments

Assignments will consist of either programming exercises or larger
programming tasks in Rust. We may have 1-2 written assignments

There are 6-7 total, I'll drop your lowest

Even if you pair/group program a problem, try to type your own solution
and cite who you worked with




Final Project

The final project will be a self-defined, and will take up most of the second
half of the course

We'll talk more about this as we get closer to the midterm

You should start thinking now about potential projects. | will provide many
possible topics and projects if you're having a hard time coming up with
something.



Other Stuff

We'll use Piazza for course communication

We'll use Gradescope for assignment submissions

Please read the course manual on the course webpage in its entirety



Questions?

If | missing anything, please ask on Piazza

Remember: This is a small, experimental course. You'll be helping me
define the material. You'll get out of it what you put into it



Last Thing: What's your name?

Name:

Year:

Interest in CS:
Interest outside of CS:

Take a minute to think about it, then we'll go around the room.



Outline

What is this course about?



The Idea

First half: Learn enough Rust to be dangerous

*» Practically: What do we need to know about Rust in order to use it?

» Theoretically: What mental model do we need to think about how
Rust works (and how to we implement that mental model)?

Second half: Build something dangerous

> We'll also cover more advanced topics. You'll notice that the calendar
says "TBD." You will help me figure out what we're going to cover.



Another Word of Warning

This is not an introductory programming course

Some things will move very fast (I'll assume you'll be able to write
simple programs within the first week)

Some things will move very slow (We'll dwell a bit on things like memory
management)



What's Rust?

Rust is a type-safe memory-safe PL

It's possible to write simple clean code that's
guaranteed to be free of memory bugs

It's an alternative to C or C++ which can
be used in production settings for rapid
development without fear of crashes or
memory leaks




About Rust

Developed by Graydon Hoare out of Mozilla
in the 2000s (originally implemented in
OCaml)

It became stable (in particular with its type
system) in the late 2010s

The Rust Foundation was started in 2021 and
is the basis for Rust information and adoption
today

It's community members are called
Rustacians, which is the basis for the
unofficial mascot Ferris the crab




Why Rust?

1. Rust is weird. It uses a unique type system to achieve
its memory safety, which programmers often have to
wrestle with

2. Rust is becoming popular. Mozilla, Dropbox, Yelp,
Amazon (along with lots of others) are all adopting
Rust in large-scale projects



Example: Rust Weirdness

// THIS DOES NOT COMPILE
fn swap(x : &mut String, y : &mut String) {
let z : String = *x;
*x = *y;
*y = Z;

}

Rust has a notion of references, but it's not possible to write the
swap-string-pointer function (in safe Rust)

A badly defined pointer-swap could cause a memory leak. Rust's type
system disallows this by fiat



Example: Rust Sustainability

An interesting (slightly dated) article
out of AWS [link]

Rust is performant, energy efficient
and a whole lot more interesting than
many other options

Ene; Time Mb
©C 100 1.00 () Pascal .00
() Rust 1.03 104 (© Go. 105
©TH 5 1.56 ©C 1.|7I
FAWY] 10 185 (c) Fortran 124
) Java 195 189 () C++ 134
© Pas an 214 (© Ada 147
() Chapel 218 283 () Rust 154
) Lisp 227 3.02 ) Lisp 192
() Ocaml 240 3.09 (c) Haskell 245
(c) Fortran 252 314 (i) PHP 257
(e) Swift 279 3.40 (c) Swift 27
(c) Haskell 310 355 (@) Python 280
s 314 420 (c) Ocaml 282
© Go 323 4.20 ) C# 285
@ Dart 333 630 () Hack 334
) Fs 413 652 (v) Racket 352
(@ JavaScript | 445 667 @) Ruby 397
() Racket 791 11.27 (c) Chapel 400
@ TypeScript | 2150 2699 ) Fe 425
@ Hack 24.02 2764 () JavaScript | 459
@ PHP 2930 3671 (@) TypeScript | 4.69
(v) Erlang 4223 4344 ) Java 601
@) Lua 45.98 4620 (i) Perl 6.62
(@) Jruby 46.54 5934 (i) Lua 672
iR 69.91 6579 (v) Erlang 7.20
i) Pytho 75.88 7190 () Dart 864
) Perl 79.58 8291 () Jruby 19.84



https://aws.amazon.com/cn/blogs/opensource/sustainability-with-rust/

Aside: How to Learn a PL

We tend to learn and teach PLs the "wrong" (fast)
way, i.e., reading tutorials and doing examples

In this course we want to learn Rust the "right"
(slow) way, i.e., formally describe what Rust is doing

We won't learn many cool, advanced features of Rust
that are useful in practice

We will learn why Rust makes us tackle with the type
system, and how it works

LEARN

TO CODE

ONLINE IN 24 WEEKS

RUTGERS | CODING BOOTCAMP

LEARN TO CODE

ONLINE IN 24 WEEKS




How does it work?

Linear/affine types, which are based on Linear Logic of Girard (1980s)

Rough idea:

> A function of type A — B take an A and gives us a B
» A function of type A — B consumes an A and gives a B

This ensures data is never unnecessarily duplicated or thrown away

And gives us high-fidelity control of our memory in a way that's recognized
by the type system



Outline

Workshop: Install Rust



The Task

Take a look at the course webpage if you haven't already

Follow the in The Rust Programming Language (RPL) on installing rustup.
If you're using windows | highly recommend using WSL. If you finish, then
follow the tutorial in RPL called Hello, Cargo!

Note. This is how I'll take attendance, so please make sure to talk to me
before the end of lecture



	Course Expectations
	What is this course about?
	Workshop: Install Rust

