Common Programming Concepts
(CS392: Rust, in Theory and in Practice

September 4, 2025 (Lecture 2)

Outline

Basics of Rust

Variables and Constants

let x = 2; // immutable variable

let x : i8 = 2; // type annotated (immutable) wartable
let mut x = 2.0 // mutable vartable

x = 3.0 // assignment of mutable variable

// (new value must be same type)
const X : i32 = 2; // constant
Variable are immutable by default, and can be shadowed

Variables are written in snake_case by convention and constants in
SCREAMING_SNAKE_CASE

Constants are hard-coded by the compiler so their type, size, and value
must be known at compile time

Primitive Types

Rust has all the usual primitive types with all the usual operators (see RPL
for more details)

Integers 132 is the default 1,2, -52
Floats £64 is the default 1.0,2.0, -5.2
Characters char ’x?
Booleans bool true or false
Tuples (t1, t2,..., t_k) (1, 2.3, true)
(p.iis i component accessor)
Arrays [ty; usize] [1, 2, 3]

(1[41] is i element accessor)

Note: Arrays are not the same as vectors which we'll see more of later. In
particular, arrays are fixed length.

Functions

fn sum_of_squares(x : u32, y : u32) -> u32 {
let x_squared = x * X;
let y_squared = y * y;
x_squared + y_squared // NO SEMICOLON

}

Function definitions are standard. Parameters types and output type are
required

The body of a function is called a block which consists of a sequence of
;-separated statements

The last statement (if it is an expression) is the return value of function. If
no last statement is given, then it's equivalent to writing return ()

Control Flow

fn is_prime(n: i32) -> bool {
for i in 2..n {
ifn%i==0{
return false

}

true

Control flow is standard, we have for-loops, 1oop-loops, while-loops, and
if-else-expressions

Blocks

fn main() {

let mut x = 2;

assert_eq! (x, 2);

let y = 4;

{
let y = 3; // this "y only exzists within
X =y // the block

}

assert_eq! (x, 3);

assert_eq! (y, 4);

Blocks aren't all that useful in everyday programming

We'll use them extensively to stress-test the type system and make sure
that our own implementations of the type system behave correctly

Expressions vs. Statements

// THIS DOES NOT COMPILE
fn id(x: i32) {
let _y = x // missing semicolon

}
fn main() {

let _ = id(2);
}

Rust is an expression-based language. There are very few proper statements:

» function declarations
» variable and constant declarations

> loops

Statements do not have values, so they cannot be used at the end of
"non-returning" functions (Actually, there are no non-returning functions!
Every function has a return value, but it might be a unit, kinda like OCaml)

Fancy Tricks

There's a lot of fun stuff we're glossing over:

> if-let-expressions
» Inclusive ranges
> Labelled loops

» (How does looping over a collection actually work?)

We're gonna ignore all this for now. If you're interested, you should
definitely start looking into it, but we can get away with a minimal subset of
rust for a while.

Outline

Workshop: Programming Practice

Task

1. Practice Problem: Write a function is_perfect_cube which
determines if an 132 is a perfect cube. Write it both in terms of simple

control flow and in terms of type casting (this will require lookup in,
say, Rust by Example). Please work in groups of 2-3.

2. Look over Assignment 1 and begin working on it

	Basics of Rust
	Workshop: Programming Practice

