
The Stack and Heap
CS392: Rust, in Theory and in Practice

September 9, 2025 (Lecture 3)

Outline

Introduction

The Stack

The Heap

Memory Management

References

Borrowing

Workshop

The Punchline: Ownership

The notion of ownership is based on two simple rules:

1. Every value has one owner at a given time
2. When the owner of a value goes out of scope, any memory

associated with the value is freed

Areas of Memory

1. Static Memory. Where global variables are stored
2. The Stack. Where data local to a function call are stored
3. The Heap. Where persistent dynamically-sized data are stored

We will focus on the last two: the stack and the heap

Typical Memory Layout

The stack typically grows down
and the heap grows up

The stack is often very small,
something like 8MB

https://martinlwx.github.io/

https://martinlwx.github.io/

Outline

Introduction

The Stack

The Heap

Memory Management

References

Borrowing

Workshop

The Stack

The stack store local variables for
function calls

It holds activation records or call
frames which include extra data required
by the function

It’s fast to access, it’s "right there"

It’s well-organize, no wasted space https://commons.wikimedia.org

https://commons.wikimedia.org

What goes on the stack?

Anything whose size is fixed and known at compile time:

§ primitives like numbers, string slices, arrays
§ references

and which is not needed after control is returned to the function caller

Basic Example

fn bar() {
let _z = 4;
let _a = 5;

}

fn foo() {
let _x = 2;
let _y = 3;
bar();

}

fn main() {
let _w = 1;
foo()

}

The "Problem" with the Stack

Not everything has fixed size known at compile time

We often want data that we can refer to after a function has returned
control

These are things we do when we program

Growing Data

fn foo(n: i32, s: &mut String) {
let _y = 2;
for _ in 0..n {

*s += "okay";
}

}
fn main() {

let mut x = String::default();
foo(10, &mut x);
println!("{x}");

}

Disappearing Data

fn fill(z : &mut &i32) {
let w = 42;
*z = &w;

}

fn main() {
let x = 10;
let mut y = &x;
fill(&mut y);
println!("{y}")

}

Outline

Introduction

The Stack

The Heap

Memory Management

References

Borrowing

Workshop

The Heap

The heap stores data that cannot be put on the stack (or in static
memory)

It’s slow to access, we have to follow references

It’s less efficiently organized, it may become fragmented over time

But there’s a lot of it and it’s very flexible

What goes on the heap?

Dynamically-sized persistent data:

§ Strings, Vectors, Hashmaps
§ Pretty much everything other than references and primitive data.

We need the the heap to do "real" programming

Memory Allocation

In rough terms, a memory allocator figures out how to layout data in
the heap. This means:

§ finding an open spot of the right size
§ returning the address of the beginning of the spot chosen

Memory Allocator (C)

int main(void) {
int *x = (int*)malloc(sizeof(int));
int *y = (int*)malloc(sizeof(int));
int *z = (int*)malloc(sizeof(int));
free(y);
int *a =

(int*)malloc(sizeof(int) * 10);
int *b = (int*)malloc(sizeof(int));
free(x);
free(z);
free(a);
free(b);
return 0;

}

Memory Bugs

Once we start referring to data on the heap, we’re also able to create
more problems:

§ Dangling Pointers. references to invalid data
§ Memory Leaks. Losing references to valid data
§ Data Races. undefined behavior caused by changing the same

data with multiple processes

Outline

Introduction

The Stack

The Heap

Memory Management

References

Borrowing

Workshop

Four Kinds of Memory Management

1. Explicit allocation/deallocation (C)
2. Ownership (Rust)
3. Automatic Reference Counting (Swift)
4. Garbage Collection (Python, Java, OCaml,. . .)

Explicit Allocation

int main(void) {
int *x = (int*)malloc(sizeof(int)); // allocation
printf("%d\n", *x);
free(x); // deallocation
return 0;

}

The approach of "traditional" systems languages like C: the
programmer is in charge of managing allocation/deallocation

malloc allocates data on the heap and free deallocates it so it can be
used again.

Benefits: It’s simple and general

Downsides: It’s highly prone to error

Dangling Pointer (C)

int main(void) {
int *x = (int*)malloc(sizeof(int));
*x = 2;
free(x);
printf("%d\n", *x);
return 0;

}

Memory Leak (C)

void leak(void) {
int *x = (int*)malloc(sizeof(int));
*x = 2;
printf("%d\n", *x);

}

int main(void) {
leak();
return 0;

}

Garbage Collection

The approach of modern high-level languages: periodically check the
stack for what heap data is still valid and then clean up the heap

Benefits: Easy on the programmer, works fine in most cases

Downsides: Very little programmer control, difficult to performance
optimize

Rough Sketch

1. DFS from stack and mark "alive" data
2. Sweep the heap and clear unmarked data

Automatic Reference Counting

class Stuff {
init() { print("allocating") }
deinit() { print("deallocating") }

}
var r1 : Stuff? = Stuff()
var r2 : Stuff? = r1
r1 = nil
r2 = nil

The approach taken by Swift (and C++ and Rust via smart pointers):
Count the number of references to a piece of heap data, free when it’s
down to zero

Benefits: Easy on the programmer like GC

Downsides: Reference cycles, overhead (?), still not much control

Ownership

The approach taken by Rust: follow these two rules:

1. Every value has one owner at any given time
2. When the owner of a value goes out of scope, any memory

associated with the value is freed

Benefits: User-control without requiring explicit allocation

Downsides: Has a learning curve, often needs to be side-stepped

The Big Question

fn foo() {
x = String::from("foo");
println!("x: {x}");
// the data associated with x is dropped here

}

If we’re not explicitly allocating/deallocating memory, when should it
happen?

Rust’s answer: as soon as a variable/parameter referring to it goes
out of scope

This allowes for a stupid-simple, cheap deallocation pattern, at the
expense of not being able to do "intuitive" things

No References to the Same Data

fn main() {
let x = String::from("hello world");
let y = x;
println!("{x}");
println!("{y}");

}

It’s not possible to have two references to the same piece of data

A Note on the Philosophy of Rust

int main(void) {
char* x = "hello world";
char* y = x;
printf("%s\n", x);
printf("%s\n", y);
return 0;

}

The type/borrow checker disallows a lot of "natural" programs

Working with your hand tied behind your back makes you better with
that one hand

Outline

Introduction

The Stack

The Heap

Memory Management

References

Borrowing

Workshop

Drop

fn main() {
let x = String::from("x");

}

For data on the heap, when a variable goes out of scope, Rust calls a
function called drop on its value to return the memory

It’s like adding free(x) at the end of the block

Drop

fn main() {
let mut x = String::from("x");
x = String::from("y");
println!("{x}");

}

There is also an implicit drop call when a value is replaced

Again, drop applies to values

Move

// THIS DOES NOT COMPILE
fn main() {

let x = String::from("x")
let y = x;

println!("{x}");
println!("{y}");

}

For data on the heap, memory needs to be returned when the owner
goes out of scope

Data on the heap must be moved on assignment (really, the pointer
must be given up)

In this example, y owns the one copy of the string that x originally
owned

Move

fn foo(mut x : String) -> String {
x.push_str("y");
x

}

fn main() {
let x = String::from("x");
let y = foo(x);
println!("{0}", y);

}

Moves also happen at return values

Ownership is transferred to the parameter of foo, and then given to y
as the return value of foo

Copy

fn main() {
let x = 5;
let y = x;
println!("{x}");
println!("{y}");

}

For data on the stack, there is no memory to return

Data on stack can be copied on assignment

x and y both own a copy of the value 5

What’s copied and what’s moved?

Short answer: Stack data is copied, heap data is moved

Long answer: Everything is moved except for those types which
implement the Copy trait

We’ll talk about traits later, they’re like type classes or interfaces

Outline

Introduction

The Stack

The Heap

Memory Management

References

Borrowing

Workshop

Immutable References

fn length(x : &String) -> i32 {
let mut count = 0;
for _ in x.chars() {

count += 1
}
count

}

fn main() {
let x = String::from("xyz");
let y = length(&x);
println!("{}", y);

}

A reference is like a pointer, except that it’s guaranteed to point at a
valid value

A Note on Dereferencing

fn foo(x : &String) {
let _ : &String = x;
let _ : String = *x;
let _ : str = **x;
}

It is also possible to dereference, and this looks a bit more like a
pointer, but the behavior can sometimes be unclear

Deref is a trait (like Copy) and the behavior of dereferencing can
include implicit coercions

Mutable References

fn main() {
let mut s = String::from("hello");
change(&mut s);

}

fn change(some_string: &mut String) {
some_string.push_str(", world");

}

Mutable references are the same, except that we’re allowed to update
the associated value

We can only have one mutable reference at a time

No Data Races

fn main() {
let mut s = String::from("hello");
let r1 = &s;
let r2 = &s;
let r3 = &mut s;
println!("{}, {}, and {}", r1, r2, r3);

}

There can be no immutable references if there is a single mutable
reference

No immutable reference can get different "views" of the same data

No Dangling Pointers

fn main() {
let reference_to_nothing = dangle();

}

fn dangle() -> &String {
let s = String::from("hello");
&s

}

We cannot use references data within the scope of the function as
return values

We’ll see that lifetimes are actually what cause the compile-time error

Summary

Ownership allows for simple (but restrictive) memory management

References gives us a convenient (but restrictive) interface to owned
values without having to pass around ownership

We’re allowed either one mutable reference or multiple
immutable references

These restrictions give us strong guarantees about memory allocation

Outline

Introduction

The Stack

The Heap

Memory Management

References

Borrowing

Workshop

Task

§ Finish up Assignment 1
§ Get ahead of reading for the next class

	Introduction
	The Stack
	The Heap
	Memory Management
	References
	Borrowing
	Workshop

