
CAS CS 392 (M1)

Structs, Enums, Collections
Rust, in Practice and in Theory
Lecture 4

Outline

Recap ownership and borrowing

Discuss structures, enumerations, and collections

Look at issues of ownership and borrowing with
regards to structures and enumerations

Workshop: Assignment 2

Recap: Ownership

Ownership

There are two rules:

1. Every value has exactly one owner

2. When the owner of a value goes out of scope,
any memory associated with the value is freed

The Big Question

If we're not explicitly allocating/deallocating
memory, when should it happen?

1. When it's owner goes out of scope

2. When it no longer has an owner

Who can be an owner?

Mostly variables and parameters, and return values

fn foo(x : String) -> String {
 x.clone() + &x
}

fn main() {
 let y = foo(String::from("bar"));
 println!("{}", y);
}

Drop

When a variable goes out of scope, Rust calls a
function called drop on its value to return the
memory

(It's kind of like adding free(x) at the end of the block)

fn main() {
 let x = String::from("x");
}

Drop

drop is also call when a value is replaced

The original string no longer has an owner

fn main() {
 let mut x = String::from("x");
 x = String::from("y");
 println!("{x}");
}

Drop

What about this case? Should we drop the String "x"?

Should we drop before or after evaluating the RHS of
the assignment?

fn main() {
 let mut x = String::from("x");
 x = String::from("y") + &x;
 println!("{x}");
}

Move

Data on the heap must be moved on assignment (really,
the pointer must be given up)

y owns the one copy of the string that x originally
owned

fn main() {
 let x = String::from("x")
 let y = x;
 println!("{x}");
 println!("{y}");
}

Move

Moves also happen at return values

Ownership is transferred to the parameter of foo,
and then given to y from return value of foo

fn foo(mut x : String) -> String {
 x.push_str("y");
 x
}

fn main() {
 let x = String::from("x");
 let y = foo(x);
 println!("{0}", y);
}

Copy

For data on the stack, there is no memory to
return. Data on stack can be copied on assignment

x and y both own a copy of the value 5

fn main() {
 let x = 5;
 let y = x;
 println!("{x}");
 println!("{y}");
}

Clone

It is possible to copy data on the heap but we
must explicitly call the function clone

y owns a deep copy of the string that x still owns

fn main() {
 let x = String::from("x")
 let y = x.clone();
 println!("{x}");
 println!("{y}");
}

What's copied and what's moved?

Short answer: Stack data is copied, heap data
is moved

Long answer: Everything is moved except for
those types which implement the Copy trait

(we'll talk about traits later)

Borrowing

Immutable References

A reference is like a pointer, guaranteed to
point at a valid value

fn length(x : &String) -> i32 {
 let mut count = 0;
 for _ in x.chars() { count += 1; }
 count
}

fn main() {
 let x : String = String::from("xyz");
 let y = length(&x);
 println!("{}", y);
}

The Picture

In the above picture s has access without taking ownership

We can have as many immutable references we want

A Note on Dereferencing

It is also possible to dereference, and this looks a
bit more like a pointer, but the behavior can be a bit
unclear

Deref is a trait (like Copy) and the behavior of
dereferencing can include implicit coercions

fn foo(x : &String) {
 let _ : &String = x;
 let _ : String = *x;
 let _ : str = **x;
}

Mutable References

Mutable references are the same, except that
we're allowed to update the associated value

We can only have one mutable reference at a time

fn main() {
 let mut s = String::from("hello");

 change(&mut s);
}

fn change(some_string: &mut String) {
 some_string.push_str(", world");
}

Slices

Slices let you refer to a contiguous chunk of a
collection like a string

They're a special kind of reference, and they
follow similar rules as references

fn main() {
 let s = String::from("long string");
 println!("{}", &s[2..8]) // prints: ng str
}

Slices and Borrowing

A slice still counts a reference. We can't
mutably borrow a string if someone else is
borrowing a slice

fn main() {
 let mut s = String::from("long string");
 let a : &mut str = &mut s[1..4];
 a.make_ascii_uppercase();
 let _c : &mut String = &mut s;
 println!("{}", &a)
}

Structures and
Enumerations

Structures

Structures are unordered, named, fixed-size
groups of data

struct Player {
 name: String,
 score: i32,
}

let p = Player {
 name: String::from("Ash"),
 score: 0,
}

Field Access/Update

We can use dot notation to access and update fields of a structure

Accessing can move values

struct User {
 a: String,
 b: String,
}

fn main() {
 let mut u = User {a: "test".to_string(), b: "ing".to_string()};
 let x : String = u.a;
 u.b = String::from("er");
 println!("{}", u.a)
}

Borrowing Structure Fields

We can have both mutable and immutable
references to fields in a structure

struct User {
 a: String,
 b: String,
}

fn main() {
 let mut u = User {a: "test".to_string(), b: "ing".to_string()};
 let x : &String = &u.a;
 let y : &mut String = &mut u.b;
 *y = String::from("er");
 println!("{}", {x})
}

struct User {
 a: String,
 b: String,
}

fn update(u : &mut User) {
 u.b = String::from("er")
}

fn main() {
 let mut u = User {a: "test".to_string(), b: "ing".to_string()};
 let x : &String = &u.a;
 update(&mut u);
 println!("{}", {x})
}

Borrowing a Struct

But we can't borrow overlapping parts of a structure

This works

We can have multiple mutable references to non-
intersecting parts of a structure

struct A { b : B, i : i32}
struct B { i : i32 }

fn main() {
 let mut a = A {i: 20, b: B {i:10}};
 let n : &mut i32 = &mut a.b.i;
 let m : &mut i32 = &mut a.i;
 *n += 1;
 *m += 2;
 println!("{} {}", a.i, a.b.i);
}

No Partial Mutability

We can't selectively
choose fields to be
mutable

If we borrow a
structure, we can
mutate any part of
it

struct U { a: i32, b: i32 }

fn update (u : &mut U) {
 u.a += 1;
 u.b -= 1;
}

fn main() {
 let mut u = U {a:0, b:0};
 update(&mut u);
 println!("{}, {}", u.a, u.b);
}

Structures and the Stack

Remember, unless otherwise specified, everything
is put on the stack. This means structures as well

This means we can't create recursive structures
(yet)

struct List {
 head: i32,
 tail: Option<List>,
}

what is the size
of a List?

Aside: Derived Traits and Debug

Traits allow us to
abstract behaviors of
given types

Derived traits allow
"obvious" traits to be
implemented without any
work

#[derive(Debug)]
struct Rectangle {
 width: u32,
 height: u32,
}

fn main() {
 let scale = 2;
 let rect1 = Rectangle {
 width: dbg!(30 * scale),
 height: 50,
 };

 dbg!(&rect1);
}

Methods
We can define
methods and
associated
functions on
structures

struct Rectangle {width: u32,height: u32}

impl Rectangle {
 fn area(&self) -> u32 {
 self.width * self.height
 }
 fn square(size: u32) -> Self {
 Self {
 width: size,
 height: size,
 }
 }
}

fn main() {
 let rect1 = Rectangle {width: 30, height: 50};
 let _a = rect1.area();
 let _s = Rectangle::square(5);
}

Enumerations

Enumerates describe
possible "shapes"
(i.e., constructors)
of the data

Constructors can hold
(named) data

enum OS {
 BSD,
 MacOS(u32, u32),
 Linux {
 major: u32,
 minor: u32,
 }
}

Pattern Matching

We use match expressions to match on enumerations

Matches must be exhaustive

(There are a lot of fancy pattern matching tools, use them if
you want)

fn supported(o : OS) -> bool {
 match o {
 OS::BSD => false,
 OS::MacOS(major, minor) => major >= 10 && minor >= 3,
 OS::Linux {major, .. }=> major >= 33,
 }
}

Enumerations and Ownership

Values can be moved out of constructors

enum A {
 X(String)
}

fn main() {
 let a = A::X(String::from("inner string"));
 let s = match a { A::X(s) => s };
 println!("{}", s);
 match a { A::X(s) => println!("{}", s) };
}

References and Pattern Matching

We can bind by reference during pattern matching

enum A {
 X(String, String)
}

fn main() {
 let il = String::from("left inner string");
 let ir = String::from("right inner string");
 let mut a = A::X(il, ir);
 let s : &String = match a { A::X(ref il, _) => il };
 let a_ref : &mut A = &mut a;
 println!("{}", s);
}

Options and Results

We have the usual types for dealing with errors

(along with some nice operators like ? for
working in the monad)

enum Option<T> {
 None,
 Some(T),
}

enum Result<T, E> {
 Ok(T),
 Err(E),
}

Collections

Vectors

A vector is a contiguous collection of data in
memory

They have the usual methods (check the docs)

 let v: Vec<i32> = Vec::new(); // creating a new vector
 let mut v = vec![1, 2, 3]; // from array shorthand
 v.push(5); // append to end
 let x: Option<i32> = v.pop(); // removing from end
 let x: &i32 = &v[2]; // unsafe indexing
 let x: Option<&i32> = v.get(2); // safe indexing

Vectors and Borrowing

A reference to an element in a vector counts as
a borrow of the entire vector

(Apologies again for mixing this up in the case
of slices)

 let first = &v[0];
 v.push(6);
 let x = first;

Iteration

We can iterate over vectors in the usual way

(note the dereference operator *)

 let mut x = 0;
 for i in &v {
 x += i
 }
 for i in &mut v {
 *i += 10
 }

Question

Can we iterate over a vector that might be
updated intermittently?

Strings

Strings are complicated...

We're not going to worry about it too much...

 let hello = String::from("السلام علیكم");
 let hello = String::from("Dobrý den");
 let hello = String::from("Hello");
 let hello = String::from("שלום");
 let hello = String::from("नमस्ते");
 let hello = String::from("こんにちは");
 let hello = String::from("안녕하세요");
 let hello = String::from("你好");
 let hello = String::from("Olá");
 let hello = String::from("Здравствуйте");
 let hello = String::from("Hola");

Hash Maps

The standard library also has hash maps with the usual
interface

Note that insertion moves values whereas accessing does not

(See the docs for more examples)

 use std::collections::HashMap;
 let mut h : HashMap<String,i32> = HashMap::new(); // create
 h.insert(String::from("ten"), 10); // insert (moves values into h)
 let x : Option<&i32> = h.get("ten"); // access (does not consume key)

Workshop: Assignment 2

Workshop

If you haven't gotten started on assignment 2,
nows a good time. I'll walk around and see how
everyone is doing on it.

(And take attendance)

