Traits

Rust, in Practice and in Theory
Lecture 7

CAS CS 392



Generic Types

use std::collections: :VecDeque;

fn reverse<Ii>(v: Vec<IT>) -> VecDeque<T> {
let mut out = VecDeque::new();
for 1tem 1n v {
out.push front(item);

;

out

;

Generic types allow us to write parametrically
polymorphic functions



Generic Structs and Enums

struct Point<T> { enum Result<T, E> {
X: T, Ok (T),
y: T, Err(E),

; ;

We can also define generic structures and
enumerations (just like parametric types in
0Caml)

Note the syntax for multiple type parameters



Generic Methods

TmpL<T> Point<T> { impl Point<f32> {
fn x(&self) -> &T { fn norm(&self) -> 32 {
&self.xX (self.x.powi(2)
} + self.y.powi(2))
} .sqrt()
;
;

We can define generic methods, we can give type
parameters to 1mplementations

We can also specify concrete types for generic structures
and enumerations



Monomorphization

enum Option 132 {

Some(i132),
enum Option<T> { None,
Some(T),
None, : }
} enum Option f64 |
Some (f64),
None,
}

Rust's compiler performs monomorphization on generic structures and
functions

This means fast code, but (potentially) slow compile times and
(potentially) large binaries






High Level

pub trait Summary {
fn summarize(&self) -> String;

;

Traits allow us to define shared behavior of types

On the surface they are very simple, but Rust
provides quite a bit of functionality with Traits



Implementing Traits

pub struct NewsArticle {
oub headline: String,
oub location: String,
oub author: String,
oub content: String,

;

impl Summary for NewsArticle {
fn summarize(&self) -> String {
format! ("{}, by {} ({})", self.headline, self.author, self.location)

;
;

We can implement traits for any type using

impl <Trait_id> for <Typeld> <Block>



Useful Traits

» Copy: copying 1instead of moving on assignment
» Clone: cloning

» Display: user—end printing

» Debug: programmer—end printing

» Deref: dereferencing operator (a bit tricky)
» PartialEq: (==

» PartialOrd: (<), (<=), (=), (>=)...



Copying and Cloning

struct MyStruct;
impl Copy for MyStruct { }

impl Clone for MyStruct {
fn clone(&self) -> MyStruct {
*self

J
;

Copy is not overloadable (it's bit-wise)

Cloning is explicit (but can be derived)



Derived Traits

#[derive(Copy, Clone)]
struct MyStruct;

Many basic traits can be derived (only traits
with derive pragmas)

Example: A structure 1s copyable/clonable 1if
all of 1ts fields are




Existential Types

pub fn notify(item: &impl Summary) {
println! ("Breaking news! {}", item.summarize());

}
fn returns summarizable() -> 1mpl Summary {
Tweet {
username: String::from("horse ebooks"),
content: String::from(
"of course, as you probably already know, people”,
)
reply:. false,
retweet: false,
;
}

Rust supports a kind of existential type by
allowing us to specify a trait as a type



Existential Types

pub fn notify(item: &impl Summary) {

}...

fn returns summarizable() -> impl Summary {

}...

We should think of impl Summary as "3 T . T 1is
summarizable"

As noted 1n the text, this does not allow for
dynamic dispatch (why?)



Using Traits




Trait Bounds

pub fn notify<T: Summary>(item: &T) {
println! ("Breaking news! {}", 1tem.summarize());

;

Trait bounds allow us to restrict type
parameters

We should read "<T: Trait>" as "for any T which
implements Trait"



Where can we put Trait Bounds?

struct Foo<T> {
value: T

;

impl<T: Clone> Foo<T> { }

1 f

okay not okay

Seemingly anywhere

We can have a trait bound wherever we've
introduced a type parameter



"where" Syntax

fn some function<T: Display + Clone, U: Clone + Debug>(t: &I, u: &U) -> 132 {

fn some function<T, U>(t: &I, u: &U) -> 132
where

T: Display + Clone,

U: Clone + Debug,

When 1n doubt, we can write all trait bounds 1n
where clauses (including trait bounds on Self)



Advanced: Blanket Implementations

Tmpl<T: Display> ToString for T {
// --snip--
;

Blanket Implementations allow us to implement a
trait for apply types satisfying another trait



Advanced: Supertraits

pub trait Ord: Eq + PartialOrd {
// Required method
fn cmp(&self, other: &Self) -> Ordering;

We can also put trait bounds on traits, giving
us a notion of supertraits

This allows us to build trait hierarchies


https://doc.rust-lang.org/stable/std/cmp/trait.Eq.html
https://doc.rust-lang.org/stable/std/cmp/trait.PartialOrd.html
https://doc.rust-lang.org/stable/std/cmp/enum.Ordering.html

