Closures and Iterators

Rust, in Practice and in Theory
Lecture 8

CAS CS 392

Closures

High Level

fn main() {
fn square (x : i32) — i32 { x * x }
let square_cls = [x| { x *x x };
assert_eq!(square(2), 4);
assert_eq!(square_cls(2), 4);

h

Closures are anonymous functions, like 1n 0Caml or Python

The big difference: Closures can capture values, and this
can affect ownership

Common Use-case

fn main() {
let v: Vec<i32> = vec![1, 2, 3, 4, 5];
for s in v.into_iter().map(|x| x * x) {
print!("{s}")
}

h

The most common use case of closures 1S 1n
functional patterns Llike mapping and and
1terating

Example: Counters

fn mk_counter() —> impl FnMut() —> i32 {
let mut count = 0;
return move || {1 count += 1; count }
s
fn main() {
let mut f = mk counter();
assert_eq!(f(), 1);
assert_eq!'(f(), 2);
+

The types get wonky very fast for basic
examp les.

Type Inference

fn main() {
let v = vec![1, 2, 3];
let w = vec![1, 2, 3];
let id = |x]| X;
assert_eq!(id(v), w);

h

Rust does some type inference for closures, we
rarely need to include type annotations

That said, closures are monomorphic

Borrow Inference

fn main() {

let mut v = vec![1, 2, 3, 4, 5];
let mut f = || { v.push(6) };
v.push(8);

f();
+

Rust also determines to what extent captured values
need to be borrowed or moved

Moving/Borrowing happens when the closure 1s defined

Closures and Traits

fn main() {
let mut v = vec![1, 2, 3];:
let f = || v;

}

Closures are structures which satisfy a trait. There are three kinds of
closures:

» FnOnce: moves out captured values
» FnMut: does not move out captured values, but mutates them

» Fn: does not move out values, does not mutate them ("purely"
functional)

let's take a look at
these traits

example

(using closures, existential types)

Iterators

High Level

fn main() {

(0..5).flat_map(|x| x x 100 .. x x 110)
.enumerate()
filter(|&(1, x)| (1 + x) % 3 == 0)
.for_each(](i, x)| printin!("{i}:{x}"));

We can use closures and 1terators to write
"functional style" Rust

Creating Iterators

There are three common methods which can create
1terators from a collection:

» 1ter() for immutable references to elements
» 1ter mut() for mutable references to elements

» 1nto_1ter() for consuming and iterating over
the elements

Common Design Pattern

There 1s a common pattern for defining 1iterators in Rust:

1. Define a separate struct to house the iterator (e.g.,
std::VecDeque::Iter)

2. Implement the Iterator trait for this struct

3. Implement an iter() method to construct an iterator
from a value

4, (Implement the IntoIterator trait)

let's take a look at
these traits

example

(using closures, existential types)

