
CAS CS 392

Closures and Iterators
Rust, in Practice and in Theory
Lecture 8

Closures

High Level

Closures are anonymous functions, like in OCaml or Python

The big difference: Closures can capture values, and this
can affect ownership

fn main() {
 fn square (x : i32) -> i32 { x * x }
 let square_cls = |x| { x * x };
 assert_eq!(square(2), 4);
 assert_eq!(square_cls(2), 4);
}

Common Use-case

The most common use case of closures is in
functional patterns like mapping and and
iterating

fn main() {
 let v: Vec<i32> = vec![1, 2, 3, 4, 5];
 for s in v.into_iter().map(|x| x * x) {
 print!("{s}")
 }
}

Example: Counters

The types get wonky very fast for basic
examples.

fn mk_counter() -> impl FnMut() -> i32 {
 let mut count = 0;
 return move || { count += 1; count }
}
fn main() {
 let mut f = mk_counter();
 assert_eq!(f(), 1);
 assert_eq!(f(), 2);
}

Type Inference

Rust does some type inference for closures, we
rarely need to include type annotations

That said, closures are monomorphic

fn main() {
 let v = vec![1, 2, 3];
 let w = vec![1, 2, 3];
 let id = |x| x;
 assert_eq!(id(v), w);
 // let x = id(2);
}

Borrow Inference

Rust also determines to what extent captured values
need to be borrowed or moved

Moving/Borrowing happens when the closure is defined

fn main() {
 let mut v = vec![1, 2, 3, 4, 5];
 let mut f = || { v.push(6) };
 v.push(8);
 f();
}

Closures and Traits

Closures are structures which satisfy a trait. There are three kinds of
closures:

» FnOnce: moves out captured values

» FnMut: does not move out captured values, but mutates them

» Fn: does not move out values, does not mutate them ("purely"
functional)

fn main() {
 let mut v = vec![1, 2, 3];
 let f = || v; // FnOnce only
 // let f = || v.push(4); // Not Fn
 // let f = || println!("{}", v[0]); // All three
}

let's take a look at
these traits

example
(using closures, existential types)

Iterators

High Level

We can use closures and iterators to write
"functional style" Rust

fn main() {
 (0..5).flat_map(|x| x * 100 .. x * 110)
 .enumerate()
 .filter(|&(i, x)| (i + x) % 3 == 0)
 .for_each(|(i, x)| println!("{i}:{x}"));
}

Creating Iterators

There are three common methods which can create
iterators from a collection:

» iter() for immutable references to elements

» iter_mut() for mutable references to elements

» into_iter() for consuming and iterating over
the elements

Common Design Pattern

There is a common pattern for defining iterators in Rust:

1. Define a separate struct to house the iterator (e.g.,
std::VecDeque::Iter)

2. Implement the Iterator trait for this struct

3. Implement an iter() method to construct an iterator
from a value

4. (Implement the IntoIterator trait)

let's take a look at
these traits

example
(using closures, existential types)

