Boxes and Recursive Data
CAS CS 392: Rust, in Theory and in Practice

Lecture 9

Outline

Boxes

Reminder: Stack vs. Heap

Everything in Rust is put on the stack by default, and must have
fixed size, known at compile time

The data associated with vectors and strings are put on the heap
because they're implemented that way:

pub struct Vec<T> {
ptr: NonNull<T>, // ignore for mow
cap: usize,
len: usize,

(The structure itself it put on the stack like everything else)

Question

int main(void) {
int *x = (int*)malloc(sizeof (int));
*x = b;
free(x);
return O;

b

What if we want to put something on the heap anyway?

Boxes

Boxes are a type-safe way to allocating memory on the heap:

fn main() {
let b = Box::new(5);
println! ("b = {b}");
}
// prints: b =5

Deallocating data is handled automatically through Rust's
ownership system

Note: There's something interesting going on in this example,
how does rust know to print 5 and not something "box-like"?

Recursive Data

Boxes are necessary to define recursive data types like lists and
trees:

// THIS DOES NOT COMPILE
enum List {
Cons(i32, List),
Nil,
}
fn main() {3}

This code does not compile because Rust cannot possibly know
how much space to allocate on the stack for this type

Type Layout

How much space do different structures take? How does Rust
know?

struct Foo = {

foo: 132,
bar: i64,
baz: i8

How much space does a value of the above structure take up?

Type Layout

The layout of every type in our program is determined at compile
time

struct Foo = {

foo: 132,
bar: i64,
baz: i8

A type layout consists of

1. Size (how many bytes does a value take up)
2. Alignment (addresses values can be stored at, must be 2%)
3. field offsets (where do fields live in the data, if applicable)

size_of and align_of

Rust provides functions for determining size and alignment:
struct Foo {bar : i32, foo : i64, baz : i8}

fn main() {
println! ("{}", std::mem::size_of::<Foo>());
println! ("{}", std::mem::align_of::<Foo>());
// print:
// 16
// 8

Type Layout Guarantees

struct Foo = {foo: 132, bar: i64, baz: i8}

Rust guarantees three things (at the moment) for structures:

1. Fields are aligned (they respect the alignment of the type of
the field, this might require padding)

2. Fields do not overlap (seems obvious)

3. The alignment of a structure is the maximum over the
alignments of its fields

Rust does not guarantee that fields are laid out so in the same
order they're defined

What about enumerations?

enum Message {

Quit,
Move { x: 132, y: i64 1},
Write(String),

ChangeColor(i32, i32, i32)

» every discriminant/constructor/variant gets a u8 tag (so
only 255 discriminants)
» and carries its data as if it where a structure

The size/alignment is the maximum over the size/alignment of
very discriminant

Cons Lists

What is the size (and alignment) of this type?

// THIS DOES NOT COMPILE
enum List {Cons(i32, List), Nil}

(morally speaking) the same as that of:

struct ConsDeterminant {

tag: u8,
value : 132,
tail : List

which is 1 + padding + 4+777

Size and Alignment of Boxes

A Box is just a structure with a usize pointer to data on the

heap, so the size and alignment will match that of usize (which
is 8 on my machine):

use std::mem::{size_of, align_of};

fn main() {
println! ("{}", size_of::<Box<String>>());
println! ("{}", align_of::<Box<String>>());
// prints:
// 8
// 8

Size of a Cons Cell

What is the size (and alignment) of this type?

enum List {
Cons(i64, Box<List>),
Nil,

Cons is (morally speaking) the same as:

struct ConsDeterminant {
tag: u8,
value : i64,
tail : Box<List> // usize

Aside: Null Pointer Optimization

Given a structure with a single unit-like constructor, we can use
the null pointer instead of a tag!

enum List {Cons(i64, Box<List>), Nil}

Cons is (morally speaking) the same as:

struct ConsDeterminant {
value : i64, tail : Box<List>

Outline

Deref

Boxes vs. Pointers

Boxes are similar to pointers, but like references we can't have
"shared" boxes

In particular, we can't define circular data structures

fn main() {
// THIS DOES NOT COMPILE
let mut 1 : List = Cons(l, Box::new(Nil));
if let Cons (_h, t) =1 {
xt = 1
}s

Reminder: Deref

Any type in Rust can be made to behave like a reference using
the Deref trait:

use std::ops::Deref;
struct MyBox<T>(T);

impl<T> Deref for MyBox<T> {
type Target = T;
fn deref (&self) -> &Self::Target {&self.O}

Using Boxes

If we want to make a reference to the data held, by the box, we
can make a "reference" to the box itself:

fn main() {
let x : Box<i32> = Box::new(5);
let y : &132 = &x;
assert_eq! (xy, 5);

If we want to move the data from a box, we can deference the
box itself

fn main() {
let x = Box::new(5);
assert_eq! (*x, 5);

Deref Coercions

Types which implement Deref are "chained" when dereferenced:

fn hello(name: &str) {
println! ("Hello, {namel}!");
}

fn main() {
let m = MyBox::new(String::from("Rust"));
hello(&m); // instead of hello(&(*m)[..]);

	Boxes
	Deref

