Rc<T> and RefCell<T>
CAS CS 392: Rust, in Theory and in Practice

Lecture 11

Outline

Reference Counting

High Leve

Ownership is nice, borrowing can make it ownership nice to work with, but
we still may want data to have multiple owners:

// THIS DOES NOT COMPILE

use crate::List::{Cons, Nil};

enum List {Cons(i32, Box<List>), Nil}

fn main() {
let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
let b = Cons(3, Box::new(a));
let ¢ = Cons(4, Box::new(a));

Recall: Reference Counting

Languages like Swift allow for this using reference counting:

class Stuff {
init() {print("allocating")}
deinit {print("deallocating")}

}

var rl : Stuff? = Stuff()

var r2 : Stuff? = ri1

var r3 : Stuff? = r2

rl = nil // prints:

r2 = nil // allocating
r3 = nil // deallocating

» The number of references is maintained

» Once the count goes to zero, the associated memory can be freed

Recall: Lists

// THIS DOES NOT COMPILE

use crate::List::{Cons, Nil};

enum List {Cons(i32, Box<List>), Nil}

fn main() {
let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
let b = Cons(3, Box::new(a));
let ¢ Cons (4, Box::new(a));

(Last time) We can build recursive list data types using boxes

Boxes still don't allow for complex reference structures, like two lists with
the same tail because a box must still have a single owner

The Reference Counting Type

use crate::List::{Cons, Nil};
use std::rc::Rc;
enum List {Cons(i32, Rc<List>), Nil}
fn main() {
let a = Rc::new(Cons(5,
Rc: :new(Cons (10,
Rc::new(Nil)))));
let b = Cons(3, Rc::clone(&a));
let ¢ Cons(4, Rc::clone(&a));

We can get these kinds of structures with the reference counted smart
pointers

Rc<T> is like a box, except that it's possible to clone the reference without
cloning the data itself

Rc::clone(&a) just increments the reference count

Aside: Deref and Reference Counting

Rc<T> implements the Deref trait:

let x : Rc<i32> = Rc::new(5);

let x_ref : &Rc<i32> = &x;

let x_ref2 : &i32 = &x;

let : Rc<i32> = Rc::clone(x_ref);

// let _ : Rc<t32> = Rc::clone(z_ref2);

Rc::clone has the following signature:

fn clone(&self) -> Rc<T, A>

The point: How a reference is coerced can be determined by the type
annotation

Rc::clone vs. .clone()

We can also just use .clone():

let x : Rc<i32> = Rc::new(5);
let _ = x.clone();

The Rust convention is to use Rc: : clone to distinguish shallow clones from
deep clones

References Counts

Clones increment the reference count:

impl<T: 7Sized, A: Allocator + Clone> Clone for Rc<T, A> {
fn clone(&self) -> Self {
unsafe {
self.inner().inc_strong();
Self::from_inner_in(self.ptr,
self.alloc.clone())

We can use Rc: :strong_count to see what the current count is:

fn main() {
let x = Rc::new(5); let y = x.clone();
assert_eq! (2, Rc::strong_count(&x)); drop(y);
assert_eq! (1, Rc::strong_count(&x));

Immutability

Reference counted smart pointers are immutable:

// THIS DOES NOT COMPILE
let x : Rc<i32> = Rc::new(5);

If we have multiple references, we don't want to be able to mutate them!

Reference Counting and Concurrency

We also have Arc<T> for (multi-)thread safe ("atomic") reference counting:

let counter = Arc::clone(&counter);

let handle = thread::spawn(move || {
let mut num = counter.lock() .unwrap();
*num += 1;

s

Rc<T> should only be used the in single-threaded settings (generally better
performance)

Outline

Interior Mutability

RefCell<T>

fn main() {
let x = RefCell::new(5);
let mut y : RefMut<'_, i32> = x.borrow_mut();
¥y += 1; drop(y);
println! ("{}", x.borrow())

RefCell<T> owns the data it holds like a Box<T>

We get a compile time error if we create multiple mutable references to a
Box<T>

We get a runtime error if we create multiple mutable references to a
RefCell<T>

The Takeaway: We can mutate a value in a RefCell<T> even when it is
immutable

Trade-offs

Compile-time errors give us better assurance that our code is correct

There are memory-safe operations that are not allowed by the borrow
checker

The Rust compiler is conservative. Annoyance is better than catastrophe

Comparisons

smart pointer # owners mut ref allowed? mut ref checked?
Box<T> one yes compile-time
Rc<T> many no N/A
RefCell<T> one yes run-time

Example: Mock Objects

There's a nice example in the text on this:

struct MockMessenger {sent_messages: RefCell<Vec<String>>,}
impl MockMessenger {
fn new() -> MockMessenger {
MockMessenger {sent_messages: RefCell::new(vec![]),}
}
3
impl Messenger for MockMessenger {
fn send(&self, message: &str) {
self.sent_messages
.borrow_mut () .push(String: :from(message)) ;

The rough idea: If we have to work with something by (immutable)
reference (e.g., because of a trait), we can have mutable state in a RefCell

Reference Counting + Interior Mutability

We can combine reference counting and interior mutability to have mutable
values in things like lists:

enum List {Cons(Rc<RefCell<i32>>, Rc<List>), Nil}

fn main() {
let value = Rc::new(RefCell::new(5));
let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));
let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));
let ¢ = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));
*value.borrow_mut() += 10;

Outline

A Couple Last Things

Reference Cyles

Combining RefCell<T> and Rc<T> can create reference cycles:

let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));
if let Some(link) = a.tail() {

*1link.borrow_mut() = Rc::clone(&b);

}

Reference cycles can lead to leaked memory (it's impossible to bring the
reference count down to 0)

This means /memory leaks are "safe" in Rust

An Implementation of Rc<T>

pub struct Rc<
T: 7?Sized,
A: Allocator = Global,
> {
ptr: NonNull<RcInner<T>>,
phantom: PhantomData<RcInner<T>>,
alloc: A,
}
V2
fn clone(&self) -> Self {
unsafe {
self.inner() .inc_strong();
Self::from_inner_in(self.ptr, self.alloc.clone())

What the heck is the NonNull? And what is PhantomData? And is it okay
to use this unsafe code?

	Reference Counting
	Interior Mutability
	A Couple Last Things

