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Outline

Reference Counting



High Leve

Ownership is nice, borrowing can make it ownership nice to work with, but
we still may want data to have multiple owners:

// THIS DOES NOT COMPILE

use crate::List::{Cons, Nil};

enum List {Cons(i32, Box<List>), Nil}

fn main() {
let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
let b = Cons(3, Box::new(a));
let ¢ = Cons(4, Box::new(a));



Recall: Reference Counting

Languages like Swift allow for this using reference counting:

class Stuff {
init() {print("allocating")}
deinit {print("deallocating")}

}

var rl : Stuff? = Stuff()

var r2 : Stuff? = ri1

var r3 : Stuff? = r2

rl = nil // prints:

r2 = nil // allocating
r3 = nil // deallocating

» The number of references is maintained

» Once the count goes to zero, the associated memory can be freed



Recall: Lists

// THIS DOES NOT COMPILE

use crate::List::{Cons, Nil};

enum List {Cons(i32, Box<List>), Nil}

fn main() {
let a = Cons(5, Box::new(Cons(10, Box::new(Nil))));
let b = Cons(3, Box::new(a));
let ¢ Cons (4, Box::new(a));

(Last time) We can build recursive list data types using boxes

Boxes still don't allow for complex reference structures, like two lists with
the same tail because a box must still have a single owner



The Reference Counting Type

use crate::List::{Cons, Nil};
use std::rc::Rc;
enum List {Cons(i32, Rc<List>), Nil}
fn main() {
let a = Rc::new(Cons(5,
Rc: :new(Cons (10,
Rc::new(Nil)))));
let b = Cons(3, Rc::clone(&a));
let ¢ Cons(4, Rc::clone(&a));

We can get these kinds of structures with the reference counted smart
pointers

Rc<T> is like a box, except that it's possible to clone the reference without
cloning the data itself

Rc::clone(&a) just increments the reference count



Aside: Deref and Reference Counting

Rc<T> implements the Deref trait:

let x : Rc<i32> = Rc::new(5);

let x_ref : &Rc<i32> = &x;

let x_ref2 : &i32 = &x;

let : Rc<i32> = Rc::clone(x_ref);

// let _ : Rc<t32> = Rc::clone(z_ref2);

Rc::clone has the following signature:

fn clone(&self) -> Rc<T, A>

The point: How a reference is coerced can be determined by the type
annotation



Rc::clone vs. .clone()

We can also just use .clone():

let x : Rc<i32> = Rc::new(5);
let _ = x.clone();

The Rust convention is to use Rc: : clone to distinguish shallow clones from
deep clones



References Counts

Clones increment the reference count:

impl<T: 7Sized, A: Allocator + Clone> Clone for Rc<T, A> {
fn clone(&self) -> Self {
unsafe {
self.inner().inc_strong();
Self::from_inner_in(self.ptr,
self.alloc.clone())

We can use Rc: :strong_count to see what the current count is:

fn main() {
let x = Rc::new(5); let y = x.clone();
assert_eq! (2, Rc::strong_count(&x)); drop(y);
assert_eq! (1, Rc::strong_count(&x));



Immutability

Reference counted smart pointers are immutable:

// THIS DOES NOT COMPILE
let x : Rc<i32> = Rc::new(5);

If we have multiple references, we don't want to be able to mutate them!



Reference Counting and Concurrency

We also have Arc<T> for (multi-)thread safe ("atomic") reference counting:

let counter = Arc::clone(&counter);

let handle = thread::spawn(move || {
let mut num = counter.lock() .unwrap();
*num += 1;

s

Rc<T> should only be used the in single-threaded settings (generally better
performance)



Outline

Interior Mutability



RefCell<T>

fn main() {
let x = RefCell::new(5);
let mut y : RefMut<'_, i32> = x.borrow_mut();
¥y += 1; drop(y);
println! ("{}", x.borrow())

RefCell<T> owns the data it holds like a Box<T>

We get a compile time error if we create multiple mutable references to a
Box<T>

We get a runtime error if we create multiple mutable references to a
RefCell<T>

The Takeaway: We can mutate a value in a RefCell<T> even when it is
immutable



Trade-offs

Compile-time errors give us better assurance that our code is correct

There are memory-safe operations that are not allowed by the borrow
checker

The Rust compiler is conservative. Annoyance is better than catastrophe



Comparisons

smart pointer # owners mut ref allowed? mut ref checked?
Box<T> one yes compile-time
Rc<T> many no N/A
RefCell<T> one yes run-time




Example: Mock Objects

There's a nice example in the text on this:

struct MockMessenger {sent_messages: RefCell<Vec<String>>,}
impl MockMessenger {
fn new() -> MockMessenger {
MockMessenger {sent_messages: RefCell::new(vec![]),}
}
3
impl Messenger for MockMessenger {
fn send(&self, message: &str) {
self.sent_messages
.borrow_mut () .push(String: :from(message)) ;

The rough idea: If we have to work with something by (immutable)
reference (e.g., because of a trait), we can have mutable state in a RefCell



Reference Counting + Interior Mutability

We can combine reference counting and interior mutability to have mutable
values in things like lists:

enum List {Cons(Rc<RefCell<i32>>, Rc<List>), Nil}

fn main() {
let value = Rc::new(RefCell::new(5));
let a = Rc::new(Cons(Rc::clone(&value), Rc::new(Nil)));
let b = Cons(Rc::new(RefCell::new(3)), Rc::clone(&a));
let ¢ = Cons(Rc::new(RefCell::new(4)), Rc::clone(&a));
*value.borrow_mut() += 10;



Outline

A Couple Last Things



Reference Cyles

Combining RefCell<T> and Rc<T> can create reference cycles:

let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil))));
let b = Rc::new(Cons(10, RefCell::new(Rc::clone(&a))));
if let Some(link) = a.tail() {

*1link.borrow_mut() = Rc::clone(&b);

}

Reference cycles can lead to leaked memory (it's impossible to bring the
reference count down to 0)

This means /memory leaks are "safe" in Rust



An Implementation of Rc<T>

pub struct Rc<
T: 7?Sized,
A: Allocator = Global,
> {
ptr: NonNull<RcInner<T>>,
phantom: PhantomData<RcInner<T>>,
alloc: A,
}
V2
fn clone(&self) -> Self {
unsafe {
self.inner() .inc_strong();
Self::from_inner_in(self.ptr, self.alloc.clone())

What the heck is the NonNull? And what is PhantomData? And is it okay
to use this unsafe code?
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